TY - THES A1 - Siegl, Alexander T1 - Einzelzell-basierte Methoden zur Charakterisierung Schwamm-assoziierter Bakterien T1 - Single cell based methods for the characterization of sponge-associated bacteria N2 - Schwämme (Phylum Porifera) sind der älteste rezente Tierstamm der Erde. Insbesondere marine Vertreter dieser sessilen Invertebraten sind oftmals mit einem mikrobiellen Konsortium assoziiert, welches hochgradig wirtsspezifisch und phylogenetisch divers ist. Die Biomasse dieser Mikroflora kann dabei rund die Hälfte der Masse eines Schwamms ausmachen. Die Komplexität des Konsortiums sowie der Mangel an kultivierbaren Vertretern der Schwamm-spezifischen Kladen erschwert dabei eine gezielte funktionelle Charakterisierung. Von besonderem Interesse hierbei ist das exklusiv in marinen Schwämmen vorzufindende Candidatus Phylum Poribacteria, für das bislang kein kultivierter Vertreter vorliegt. Die metabolisch aktiven und hochabundanten Poribakterien liegen in der extrazellulären Matrix des Schwammes vor und zeichnen sich durch das Vorhandensein einer Nukleoid-ähnlichen intrazellulären Struktur aus. Ziel dieser Promotionsarbeit war es, neue Einzelzell-basierte Methoden auf das Gebiet der funktionellen Charakterisierung von Bakterien anzuwenden, welche spezifisch mit dem mediterranen Schwamm Aplysina aerophoba assoziiert sind. Dabei wurden sowohl kultivierungs-abhängige, als auch kultivierungs-unabhängige Versuchsansätze verfolgt. Das Hauptaugenmerk dieser Studien lag dabei auf dem Candidatus Phylum Poribacteria. Während auf dem ‚dilution-to-extinction‘-Prinzip beruhende Hochdurchsatz-Kultivierungen nicht zum Erhalt einer Schwammsymbionten-Reinkultur führten, konnten durch eine Kombination aus FACS-Vereinzelung von Schwamm-assoziierten Bakterien und anschließenden Einzel-Genom-Amplifizierungen (‚whole genome amplifications‘) umfassende Einblicke in die metabolischen Kapazitäten von Schwammsymbionten gewonnen werden. Ferner gelang durch die Anwendung dieser neuen kultivierungs-unabhängigen Methode eine spezifische Verknüpfung von Phylogenie und Funktion Schwamm-assoziierter, nicht-kultivierbarer Bakterien. So konnte im Rahmen dieser Dissertation eine neue nicht-ribosomale Peptidsynthetase (NRPS) einem Vertreter einer Schwamm-spezifischen Chloroflexi-Klade zugewiesen werden. Ferner gelang die Zuordnung einer exklusiv in marinen Schwämmen vorgefundenen Polyketidsynthase (Sup-PKS) zu den Poribacteria. Die Klonierung von hochmolekularer, Einzel-Genom-amplifizierter DNA in Cosmide gewährte zudem Einblicke in den genomischen Kontext dieser, mit dem bakteriellen Sekundärmetabolismus assoziierten Gene. Die Pyrosequenzierung eines amplifizierten, von einem einzelnen Poribakterium abstammenden Genoms führte zudem zum Erhalt von rund zwei Megabasen an genetischer Information über diese Schwammsymbionten. Dadurch wurden detaillierte Informationen über den poribakteriellen Primär- und Sekundärstoffwechsel gewonnen. Die Auswertung der automatisch annotierten 454-Daten erlaubte die Rekonstruktion von Stoffwechselwegen, so z.B. der Glykolyse oder des Citratzyklus und bestätigte das Vorhandensein eines Sup-PKS-Gens im poribakteriellen Genom. Ferner konnten Gemeinsamkeiten mit den Schwesterphyla Planctomycetes, Chlamydiae und Verrucomicrobia gefunden werden. Zudem zeigte die vergleichende Analyse mit einem poribakteriellen Referenzklon aus einer bestehenden Metagenombank die genomische Mikroheterogenität innerhalb dieses Phylums. Nicht zuletzt konnte die Auswertung der poribakteriellen 454-Sequenzierung eine Reihe von möglichen Symbiose-Determinanten aufdecken, die beispielsweise am Austausch von Metaboliten zwischen den Interaktionspartnern beteiligt sind. Die Ergebnisse dieser Dissertationsarbeit stellen die Basis für eine gezielte und detaillierte funktionelle Beschreibung einzelner Bakterien innerhalb komplexer mikrobieller Konsortien dar, wie sie in marinen Schwämmen vorzufinden sind. Dieser Studie gewährte erstmalig umfassende Einblicke in das genomische Potential der nicht-kultivierten, Schwamm-assoziierten Poribacteria. Weiterführende Einzelzell-basierte Experimente werden in Zukunft dazu beitragen, das Bild von der Interaktion zwischen Bakterien und eukaryontischen Wirten zu komplettieren. N2 - Sponges (phylum Porifera) represent the evolutionarily oldest of all extant animal phyla. Especially marine members of these sessile invertebrates are well known to be permanently associated with microbial consortia, which are highly host-specific and phylogenetically diverse. About half of the sponge’s biomass can be made up of this microflora. However, the complexity of the consortia as well as the lack of cultured representatives impedes a directed functional characterization of sponge-specific bacterial phylotypes. Of special interest in this context is the candidate phylum Poribacteria, whose members have so far been exclusively detected in marine sponges. As indicated by the annex ‘candidate’, no cultured representative exists for the Poribacteria. The metabolically active and abundant Poribacteria are located in the sponge extracellular matrix and are characterized by the presence of a nucleoid-like organelle. The aim of this dissertation was the application of novel single cell based methods to the field of sponge microbiology for functional characterization of bacteria specifically associated with the Mediterranean sponge Aplysina aerophoba. For that purpose, cultivation-dependent as well as cultivation-independent approaches were pursued. Particular attention was paid to the candidate phylum Poribacteria. While high-throughput cultivation experiments based on the ‘dilution-to-extinction’ principle did not yield a sponge symbiont in pure culture, extensive insights into the metabolic properties of sponge-associated bacteria were gained by dissecting the microbial consortia using FACS-sorting with subsequent ‘whole genome amplifications’. In addition, this approach enabled a specific linkage between phylogeny and function of sponge-specific, non-culturable bacteria. Within the scope of this PhD thesis a novel non ribosomal peptide synthetase (NRPS) could be assigned to a member of a sponge-specific clade within the phylum Chloroflexi. Moreover, an exclusively in marine sponges existing class of polyketide synthases (Sup-PKS) was shown to be encoded by the Poribacteria. Cosmide-cloning of amplified genomic DNA derived from FACS-sorted sponge microbes provided insights into genes associated with secondary metabolism and adjacent genomic context. Pyrosequencing of a single amplified genome derived from a member of the Poribacteria resulted in almost two megabases of genetic information about this sponge symbiont. Data analysis provided detailed insights into the poribacterial primary and secondary metabolism. Analysis of the automatically annotated 454-data enabled the reconstruction of metabolic pathways like glycolysis and citric acid cycle. Furthermore, the presence of the Sup-PKS gene in the poribacterial genome was confirmed. Moreover, common features with the sister phyla Planctomycetes, Chlamydiae and Verrucomicrobia were traced within the poribacterial data set. Additionally, the comparative study with a poribacterial reference clone from an existing metagenomic library revealed genomic microheterogeneity within the phylum Poribacteria. Last but not least the interpretation of the 454-sequencing approach did expose a set of putative determinants such as metabolite exchange factors required for establishment and maintenance of the symbiosis with the sponge host. The results of this dissertation provide a basis for a directed and detailed functional characterization of single bacteria within complex microbial consortia like they exist in marine sponges. This study provided a comprehensive picture of the genomic potential of the uncultured sponge-associated Poribacteria. Continued single cell based experiments will lead to a better knowledge of the mechanisms of interaction between bacteria and eukaryotic hosts. KW - Genomik KW - Kultivierung KW - Schwamm KW - Symbiose KW - Bakterien KW - Poribakterien KW - Poribacteria KW - Einzelzell-Genomik KW - Metagenomik KW - Aplysina aerophoba KW - Poribacteria KW - single cell genomics KW - metagenomics KW - Aplysina aerophoba Y1 - 2009 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-37443 ER - TY - THES A1 - Bayer, Kristina T1 - Physiologie, Phylogenie und metagenomische Analyse Ammoniak-oxidierender Bakterien und Archaeen im Mittelmeerschwamm Aplysina aerophoba T1 - physiology, phylogeny and metagenomic analyses of ammonia-oxidizing bacteria and archaea in the Mediterranean sponge Aplysina aerophoba N2 - Marine Schwämme (Phylum Porifera) sind sessile Invertebraten, deren Biomasse bis zu 60% aus Mikroorganismen bestehen kann. Während die mikrobielle Diversität in Schwämmen in den letzten Jahren recht gut beschrieben wurde, weiß man noch sehr wenig über mögliche Funktionen und Interaktionen zwischen Schwamm-assoziierten Mikroorganismen mit ihren Wirten. Das Ziel dieser Promotionsarbeit war es, den Prozess der mikrobiellen Nitrifikation im bakterienhaltigen Mittelmeerschwamm Aplysina aerophoba nachzuweisen und im Kontext der Symbiose näher zu untersuchen. Die Nitrifikation beschreibt die zweistufige Oxidation von Ammoniak zu Nitrit und weiter zu Nitrat und wird von bestimmten Mikroorganismen zur Energiegewinnung durchgeführt. Um dieser Fragestellung nachzugehen, wurden physiologische Untersuchungen an lebenden Schwämmen während Freilandexkursionen nach Rovinj (Kroatien) durchgeführt. Frisch gesammelte Schwämme wurden zu unterschiedlichen Jahreszeiten in experimentellen Aquarien jeweils über einen Zeitraum von über 24 Stunden gehältert. Die Konzentrationen von Ammonium, Nitrit und Nitrat wurden in Zeitintervallen mittels photometrischer Nachweise gemessen und die Aufnahme- und Exkretionsraten berechnet. Nitrit wurde in keinem der Experimente messbar ausgeschieden. Ammonium, als natürliches Stoffwechselendprodukt mariner Schwämme, wurde von A. aerophoba in Raten ausgeschieden, die saisonal variabel waren. Im Frühjahr wurde keine Ammonium-ausscheidung beobachtet während die Exkretionsrate zum Sommer hin stetig anstieg. Nitrat, welches natürlicherweise nur durch mikrobielle Nitrifikation entstehen kann, wurde saisonunabhängig konstant ausgeschieden. Ammoniumaufnahme-Experimente zeigten auf, dass Ammonium im Frühjahr rasch aufgenommen wurde und dass Ammonium die Nitratexkretionsrate bis zu vierfach stimulierte, wohingegen im Sommer keine Ammoniumaufnahme und keine Stimulation der Nitratexkretion stattfanden. Durch Zugabe des spezifischen Inhibitors der Nitrifikation, Nitrapyrin, konnte die Nitratexkretion in A. aerophoba vollständig gehemmt werden. Im Gegensatz zu bakterienhaltigen Schwämmen zeigten sogenannte bakterienfreie Schwämme erwartungsgemäß keine Nitratausscheidung. Das 16S rRNA- und das amoA-Gen wurden als molekulare Marker verwendet, um nitrifizierende Mikroorganismen in Schwämmen phylogenetisch zu identifizieren. Es konnten zahlreiche 16S rRNA-Gene aus insgesamt sechs Schwammarten inklusive Aplysina aerophoba amplifiziert und dem marinen Nitrosospira Cluster 1 zugeordnet werden. Aus A. aerophoba konnten auch Nitrosospira amoA-Gensequenzen gewonnen werden. Archaeale 16S rRNA- und amoA-Gensequenzen wurden ebenfalls aus A. aerophoba gewonnen, wobei die 16S rRNA-Gene mit anderen aus Schwämmen stammenden Sequenzen ein Schwamm-spezifisches Cluster innerhalb der Crenarchaea Gruppe I.1A bildeten. Unter Verwendung spezifischer Fluoreszenz-markierter 16S rRNA Sonden konnten den Nitrosospira Cluster 1 und Crenarchaea Gruppe 1 zugehörige Zellen innerhalb des mikrobiellen Konsortiums aus A. aerophoba nachgewiesen werden. Basierend auf der geschätzten Menge nitrifizierender Mikroben in der Schwammmesohylmatrix und den Nitratexkretionsraten wurde eine zellspezifische Ammoniakoxidationsrate von 1,6 fmol Zelle-1 h-1 errechnet. Der Nachweis von 16S rRNA- oder funktionellen Genen des anaeroben mikrobiellen N-Kreislaufs in A. aerophoba verlief negativ. Darüber hinaus wurde eine in vorherigen Arbeiten aus dem mit A. aerophoba assoziierten mikrobiellen Konsortium erstellte Metagenombank auf das Vorhandensein von funktionellen (amoA) Nitrosospira- und Crenarchaea-Genen untersucht. Aus der Sequenzierung des archaealen Metagenomklons 58F6 resultierte die Sequenz des kompletten AMO-Operons eines möglicherweise Schwamm-spezifischen Crenarchaeoten. Diese Ergebnisse liefern erste funktionelle Einblicke in die komplexen Stoffflüsse und Wechselwirkungen zwischen Schwämmen und den mit ihnen assoziierten mikrobiellen Konsortien. Aufgrund dieser Arbeit wurde ein Modell des Stickstoffkreislaufs in A. aerophoba erstellt, welches die Mikroorganismen mit möglichen Stoffwechselfunktionen in dem Wirtsschwamm verknüpft. Diese Arbeit trägt zu dem Informationsstand über die Interaktionen zwischen Schwämmen und Mikroorganismen bei und leistet einen Beitrag zur Aufklärung des Stickstoffkreislaufs in A. aerophoba. N2 - Marine sponges (phylum Porifera) can harbor large amounts of microorganisms which can contribute up to 60% of the sponge biomass. While the microbial diversity has been well described in the last decade, there is only little known about possible functions and metabolic interactions of these microbes with their hosts. The aim of this Ph.D. thesis was to assess and investigate the potential for microbial nitrification in the Mediterranean high microbial abundance sponge (HMA) Aplysina aerophoba. Nitrification consists of the two-step oxidation of ammonia to nitrite and subsequently to nitrate and is carried out by certain microbes for energy purposes. Physiological experiments with living sponges were performed during several expeditions to Rovinj (Croatia). Freshly sampled sponges were incubated in experimental aquaria for more than 24 hours during different seasons. Concentrations of ammonium, nitrite and nitrate were determined in time intervals using colorimetric assays and the excretion- and uptake rates were determined. Nitrite was not excreted in any of the incubation experiments. Ammonium as the natural metabolic waste product of marine sponges was excreted by A. aerophoba and the excretion was seasonally variable. During spring ammonium excretion was not observed, but the excretion rates increased towards the summer. Nitrate which is solely produced by microbial nitrification was excreted constantly and independent of the season. Ammonium uptake experiments proved that ammonium was taken up rapidly in spring and nitrate excretion was stimulated up to 4-fold. During summer no ammonium uptake by A. aerophoba was observed and nitrate excretion was not stimulated. Addition of the specific inhibitor of nitrification, nitrapyrin, resulted in the complete inhibition of nitrate excretion. In contrast to high microbial abundance sponges, nitrate was not excreted by low microbial abundance sponges as expected. The 16S rRNA gene as well as the amoA gene was used as molecular markers to phylogenetically identify microbial nitrifiers in sponges. Numerous 16S rRNA gene sequences representing the marine Nitrosospira cluster 1 were obtained from six sponge species including Aplysina aerophoba. Nitrosospira amoA genes and archaeal 16S rRNA and amoA gene sequences were also amplified from Aplysina aerophoba. The archaeal 16S rRNA gene sequences formed a sponge-specific sub-cluster within the Crenarchaea group I.1A together with other, exclusively sponge-derived sequences. Using fluorescently-labeled 16S rRNA probes targeting the Nitrosospira cluster 1 and the Crenarchaea group 1, their presence was confirmed in A. aerophoba mesohyl. Based on nitrifier abundance in sponge tissues as estimated by FISH and nitrate excretion rates, a cell specific ammonia oxidation rate of 1.6 fmol cell-1 h-1 was calculated. No 16S rRNA or functional genes representing microbes of the anaerobic part of the N-cycle were obtained from A. aerophoba. Furthermore, a previously constructed metagenomic library containing DNA from A. aerophoba associated microbial consortia was screened for clones harboring functional (amoA) genes from Nitrosospira and Crenarchaea. Sequencing of the archaeal clone 58F6 resulted to a complete AMO operon of a possible sponge specific crenarchaeote. The results of this dissertation thesis provide first insights into the complex nitrogen fluxes and interactions between sponges and their associated microbial consortia. Based on this study, a model of N-cycle was postulated for A. aerophoba which links microbial diversity with possible metabolic functions. This study contributes significantly to sponge-microbial interactions and adds new information about the nitrogen cycle in A. aerophoba and its associated microorganisms. KW - Schwämme KW - Nitrifikation KW - Ammoniakstoffwechsel KW - Nitrifikation KW - Schwämme KW - Aplysina aerophoba KW - Stickstoff KW - nitrification KW - sponges KW - nitrogen KW - Aplysina aerophoba Y1 - 2008 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-29116 ER -