TY - THES A1 - Greiffenberg, Lars T1 - Interaktion von Listeria monocytogenes mit Endothelzellen T1 - Interaction of Listeria monocytogenes with endothelial cells N2 - Listeria monocytogenes überwindet endotheliale Barrieren, um eine Meningitis oder Encephalitis auszulösen. Das Hindurchtreten durch diese Barriere könnte über die Invasion von Endothelzellen durch Listerien aus dem Blut und anschließender Freisetzung der Bakterien ins Gehirn erfolgen. In den ersten Infektionsmodellen, in denen gezeigt wurde, daß Listerien in der Lage sind Endothelzellen zu invadieren, wurden humane, makrovaskuläre Nabelschnurendothelzellen (HUVEC) verwendet. Die für die Ausbildung der Blut-Hirn-Schranke verantwortlichen mikrovaskulären Hirnendothelzellen (BMEC) unterscheiden sich aber deutlich von den makrovaskulären HUVEC. In der vorliegenden Arbeit wurde die Interaktion von L. monocytogenes mit HUVEC und mit humanen BMEC (HBMEC) untersucht. Es konnte gezeigt werden, daß L. monocytogenes HBMEC effizient invadieren kann. Nach der Aufnahme und dem Entkommen der Bakterien aus dem Phagosom bilden sie Aktinschweife aus, mit deren Hilfe sie sich im Zytoplasma frei bewegen können. Listerien sind in der Lage, sich in HBMEC über einen Zeitraum von 20 Stunden zu vermehren und über eine Ausbreitung von Zelle zu Zelle in benachbarte Zellen zu gelangen. Mit einem Listerien-Stamm, der das grün-fluoreszierende Protein (GFP) exprimiert, konnte der Infektionsverlauf in HBMEC über einen Zeitraum von 20 Stunden in Echtzeit verfolgt werden. Hierbei zeigte sich, daß auch stark infizierte HBMEC sich nicht vom Untergrund ablösen oder lysieren und somit gegenüber intrazellulären Listerien sehr widerstandsfähig sind. Wie rasterelektronenmikroskopische Aufnahmen von HBMEC-Monolayern nach einer Infektion mit L. monocytogenes erkennen ließen, adhärieren Listerien an HBMEC, indem sie einen engen Kontakt mit Mikrovilli auf HBMEC eingehen. Mit Listerien infizierte HBMEC bilden wenige Stunden nach der Infektion Membranausstülpungen aus, in denen sich Listerien befinden. Diese Ausstülpungen sind mit der Zelle nur noch über sehr dünne Membranschläuche verbunden. Um herauszufinden, welche Listerienproteine an der Aufnahme von L. monocytogenes in HUVEC und HBMEC beteiligt sind, wurden verschiedene Deletionsmutanten auf ihre Invasivität in HUVEC und HBMEC getestet. In Gegenwart von 20 Prozent Humanserum wurden HUVEC in einer von den Oberflächenproteinen InlA, InlB und ActA unabhängigen Weise von L. monocytogenes invadiert. Wurde das Gen, welches für den positiven Regulationsfaktor PrfA kodiert, deletiert, reduzierte dies die Invasionsrate beträchtlich. Listerienstämme mit einer Deletion im für InlB kodierenden Gen sind unfähig, HBMEC zu invadieren. Neben InlG und ActA spielt auch PrfA eine entscheidende Rolle bei der Invasion von L. monocytogenes in HBMEC. Die Adhäsion von L. monocytogenes an HBMEC ist von InlB unabhängig. Auch die apathogene und nicht-invasive Art L. innocua bindet an HBMEC. Humanserum hemmt die Invasion von L. monocytogenes in HBMEC, nicht aber in HUVEC. Während sich die Invasionsraten von L. monocytogenes in HUVEC durch Zentrifugation bei der Infektion erhöhen ließen, hatte die Zentrifugation keine Auswirkung auf die Invasivität von L. monocytogenes in HBMEC. Neben diesen konnten in dieser Arbeit noch weitere Infektionsparameter gefunden werden, die unterschiedliche Auswirkungen auf die Invasion von L. monocytogenes in HUVEC und HBMEC haben. Im Zellüberstand von HUVEC konnten bis zu 6 Stunden nach einer Infektion mit L. monocytogenes große Mengen an IL-8 nachgewiesen werden. Während eine Infektion von HUVEC mit L. monocytogenes die Expression von IL-6-spezifischer mRNA schwach induzierte, war keine vermehrte Expression von MCP-1- und VCAM-1-spezifischer mRNA feststellbar. Indem Caco-2-Zellen und HBMEC auf gegenüberliegenden Seiten eines Filters bis zur Konfluenz kultiviert wurden, konnte ein in-vitro-Modell des choroid plexus etabliert werden. Wenige Stunden nach der Infektion von HBMEC mit L. monocytogenes befanden sich auch in den Caco-2-Zellen Listerien. Wie elektronenmikroskopisch nachgewiesen werden konnte, waren diese Listerien durch die Filterporen in die Epithelzellen gelangt. Der Mechanismus, dem diese Ausbreitung zugrunde liegt, ist noch unbekannt. N2 - Listeria monocytogenes cross endothelial barriers to cause meningitis or encephalitis. Passage through the barrier may be achieved by invasion of endothelial cells by Listeria from the blood stream followed by release of the bacteria into the brain. Internalization of L. monocytogenes by endothelial cells has been previously demonstrated using macrovascular human umbilical vein endothelial cells (HUVEC) as a model system. However, brain microvascular endothelial cells (BMEC) which form the blood brain barrier, are strikingly different from the macrovascular HUVEC. Therefore, in this investigation, the interaction of L. monocytogenes with HUVEC and human BMEC (HBMEC) was studied. It was found that L. monocytogenes efficiently invades HBMEC. After invasion and escape from the phagosome the bacteria induce the formation of actin tails which allows them to move intracellularly. Once within the HBMEC, L. monocytogenes are able to multiply over a period of at least 20 hours and enter neighbouring cells by cell-to-cell spread. Using a green fluorescent protein-expressing L. monocytogenes strain, this process of infection was followed in real time. It was shown that heavily infected HBMEC do not detach from the tissue culture dish and do not lyse, indicating that they are highly resistant to intracellular L. monocytogenes. Scanning electron microscopy studies of infected HBMEC-monolayers showed adherent Listeria in close contact with surface microvilli. Listeria-infected HBMEC shows bacteria-containing membrane protrusions within a few hours after infection. These protrusions are connected with the cell suface via thin stalk-shaped membrane connections. To determine which listerial proteins are responsible for the uptake of L. monocytogenes in HUVEC and HBMEC, different deletion mutants of L. monocytogenes were tested with respect to their effect on the efficiency of invasion. It was found that L. monocytogenes invades HUVEC in the presence of 20 per cent human serum independently of InlA, InlB, and ActA. However, deletion of the gene encoding the positive virulence regulatory factor PrfA results in a strong inhibition of invasion. Listeria-strains with a deletion in the InlB encoding gene are unable to invade HBMEC. Moreover, InlG, ActA, and also PrfA play important roles in invasion of HBMEC by L. monocytogenes. Adherence of L monocytogenes to HBMEC is independent of InlB. Even the nonpathogenic and noninvasive species L. innocua adheres to HBMEC. Human serum was shown to inhibit the uptake of L. monocytogenes by HBMEC but not by HUVEC. Centrifugation of Listeria onto the cells enhanced the invasion of HUVEC, but had no effect on invasion of HBMEC. In addition to these differences, other parameters were identified which have different effects on the invasiveness of L. monocytogenes for HUVEC and HBMEC. High amounts of IL-8 could be detected in the supernatants of Listeria-infected HUVEC within 6 hours. Additionally, a weak induction of IL-6 specific mRNA could be detected during infection of HUVEC, but mRNA-expression specific for MCP-1 and VCAM-1 was not altered. Using HBMEC and Caco-2 cells, an in-vitro-model of the choroid plexus was developed by growing each cell type on either side of porous membrane filters. A few hours after infection of HBMEC with L. monocytogenes, bacteria were found in the underlying Caco-2 cells. In transmission electron microscopic studies it could be shown that Listeria reached the epithelial cells via the filter pores. The mechanism for this spreading is so far unknown. KW - Listeria monocytogenes KW - Virulenz KW - Blut-Hirn-Schranke KW - Molekularbiologie KW - Listeria monocytogenes KW - humane mikrovaskuläre Hirnendothelzellen KW - Blut-Hirn-Schranke KW - HUVEC KW - HBMEC KW - Listeria monocytogenes KW - human brain microvascular endothelial cells KW - blood-brain-barrier KW - HUVEC KW - HBMEC Y1 - 2000 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-1340 ER - TY - THES A1 - Andres, Oliver T1 - Interaktion von Masernviren mit vaskulären Endothelzellen T1 - Interaction of measles virus with vascular endothelial cells N2 - Obwohl eine wirksame Schutzimpfung verfügbar ist, sind Masern noch immer weltweit verbreitet. Mit etwa 750.000 Todesfällen jährlich gehören sie zu den gefährlichsten Infektionskrankheiten im Kindesalter überhaupt. Nicht allein wegen der masernvirusinduzierten Immunsuppression treten sekundäre bakterielle Infektionen, darunter Otitiden oder Pneumonien, gehäuft auf. Eine Beteiligung des zentralen Nervensystems kann zur akuten postinfektiösen Masernenzephalitis (APME), die meist mit einer hohen Defektheilungsrate einhergeht, oder zur letal verlaufenden subakuten sklerosierenden Panenzephalitis (SSPE) führen. Besonders gefürchtet sind die schweren Komplikationen der Riesenzellpneumonie oder der measles inclusion body encephalitis (MIBE) bei immunsupprimierten Patienten. Viele pathogenetische Aspekte und pathophysiologische Vorgänge sind dabei noch nicht gänzlich verstanden. Vaskuläre Endothelzellen sind neben Epithelzellen, Monozyten und Makrophagen sowie Lymphozyten als wichtige Zielzellen für das Masernvirus bei der Ausbreitung der Masernvirusinfektion und Entstehung ihrer Komplikationen anzusehen. In immunhistochemisch aufbereiteten pathologischen Schnittpräparaten wurden in infizierten und stark entzündlich veränderten Arealen immer wieder infizierte Gefäßendothelzellen gefunden. Eine systematische Untersuchung der Interaktion von Masernviren mit humanen Gefäßendothelzellen in vitro lag allerdings bislang nicht vor. Das Ziel dieser Dissertation war es nun, die Interaktion von attenuierten und virulenten Masernvirusstämmen mit humanen Gefäßendothelzellen grundlegend und systematisch zu untersuchen und eine Basis für die Definition pathogenetisch bedeutsamer molekularer Mechanismen zu schaffen. Hierfür wurde mit primären Endothelzellen der menschlichen Nabelschnurvene (HUVEC) und einer humanen mikrovaskulären Hirnendothelzelllinie (HBMEC) ein rein humanes Zellkulturmodell gewählt und unter Verwendung attenuierter und virulenter Masernvirusstämme den natürlichen Bedingungen Rechnung getragen. Als essentielle Grundlage für die Untersuchungsreihen wurden die Endothelzellen auf endothelzellspezifische Markermoleküle hin untersucht und charakterisiert. Einzig die Oberflächenproteine membrane cofactor protein (MCP oder CD46) und signaling lymphocytic activation molecule (SLAM oder CD150) sind bislang als zelluläre Rezeptoren für das Masernvirus identifiziert worden. Es konnte hier eindeutig nachgewiesen werden, dass HUVEC und HBMEC auf verschiedenen zellulären Ebenen konstitutiv CD46, nicht aber SLAM exprimieren. Weder eine Aktivierung der Endothelzellen mit diversen Zytokinen und Stimulantien, noch der Kontakt der Endothelzellen mit inaktivierten Masernviren vermochte eine Expression von SLAM zu induzieren, obwohl eine Expression von toll-like receptor 2 (TLR2) klar aufgezeigt werden konnte. Es konnte hier ebenfalls belegt werden, dass sowohl der attenuierte Masernvirusstamm Edmonston (Edm) als auch die virulenten Masernvirusstämme WTFb, Wü4797 und Wü5679 Endothelzellen infizieren und eine morphologische Zellalteration mit Ausbildung eines zytopathischen Effekts hervorrufen können. Weitere Analysen zeigten für Edm und Wü4797 ein enormes Infektionsausmaß und eine sehr gute Ausbreitungseffizienz, die durch die Anwesenheit CD46-spezifischer Antikörper nur bei Edm klar reduziert werden konnte. Eine Aktivierung der Endothelzellen mit diversen Zytokinen und Stimulantien trug keinen eindeutigen begünstigenden oder hemmenden Effekt auf die Masernvirusinfektion mit sich, Interferon-α und -γ schienen das Infektionsausmaß abzuschwächen. Folgeversuche zur Rezeptormodulation durch Masernviren deuten darauf hin, dass CD46 nur für den attenuierten Masernvirusstamm Edm, nicht aber für die virulenten Masernvirusstämme WTFb, Wü4797 und Wü5679 als zellulärer Rezeptor fungiert. Die Ergebnisse dieser Dissertation belegen eine von den beiden Masernvirusrezeptoren CD46 und SLAM unabhängige Infektion humaner vaskulärer Endothelzellen mit Masernviruswildtypstämmen. Diese Beobachtungen lassen einen weiteren, bislang noch nicht bekannten zellulären Rezeptor oder einen von einem zellulären Rezeptor unabhängigen Aufnahme- und Ausbreitungsmechanismus bei Gefäßendothelzellen vermuten. Es darf weiterhin als sicher angesehen werden, dass Endothelzellen in der Pathogenese von masernvirusinduzierten Komplikationen, sei es direkt oder indirekt, involviert sind. N2 - Although an effective live vaccine is available, measles still represents a major infectious disease causing about 750,000 deaths a year, preferentially in children. Due to the measles virus (MV)-induced immunosuppression secondary bacterial infections as otitis or pneumonia are common complications. Neurological involvement can lead to the acute postinfectious measles encephalitis (APME), which usually ends up with severe cerebral damage, or to the lethal subacute sclerosing panencephalitis (SSPE). In particular, immunosuppressed patients may acquire serious complications such as giant-cell pneumonia or measles inclusion body encephalitis (MIBE). However, the pathogenesis of complicated measles is poorly understood. Apart from epithelial cells, monocytes, macrophages and lymphocytes vascular endothelial cells (EC) are supposed to be important target cells for MV and involved in the pathogenesis of classic and complicated measles. Immunohistochemistry of pathologic sections has repeatedly revealed infected vascular EC in areas of extensive infection and inflammation. A systematic in-vitro analysis of the interaction of MV with human vascular EC has not been performed yet. This dissertation issues now a basic and systematic investigation of the interaction of attenuated and virulent MV strains with human vascular EC and aims to create a basis to define molecular mechanisms of MV pathogenesis. Natural conditions were approached by using primary human umbilical vein endothelial cells (HUVEC) and a human brain microvascular endothelial cell line (HBMEC) as cell culture models and attenuated and virulent MV strains as infectious agents. As a prerequisite for all experiments, both the primary cells and the cell line were examined for their growth features and their expression of EC specific marker molecules. The surface proteins membrane cofactor protein (MCP or CD46) and signaling lymphocytic activation molecule (SLAM or CD150) have previously been described as cellular receptors for MV. It has been proven here that HUVEC and HBMEC express CD46 constitutively, whereas SLAM was not detectable on various cellular levels. Neither the activation of EC with a range of cytokines and stimulants nor the contact of EC with inactivated MV induced the expression of SLAM, although an expression of toll-like receptor 2 (TLR2) by EC can be observed. Several studies on the infection of EC with MV displayed that the attenuated MV strain Edmonston (Edm) and, to a lower extent, the virulent MV strains WTFb, Wü4797 and Wü5679 are able to infect EC, accompanied by morphologic alte¬rations and cytopathic effects. Further experiments revealed efficient replication and spreading especially of Edm and Wü4797 in EC cultures. However, CD46 specific antibodies were able to reduce the capability of Edm to infect EC clearly, the replication of Wü4797, however, was not affected. Activation of EC by preincubation with a range of cytokines or stimulants had no significant effect on MV infection, interferon-α and -γ seemed to lower the extent of MV infection. The following analyses of differential receptor modulation by MV indicate that CD46 acts as a cellular receptor only for the attenuated strain Edm, but not for the virulent strains WTFb, Wü4797 or Wü5679. The results of this dissertation provide clear evidence of a CD46- and SLAM-independent infection of human vascular EC with virulent MV strains. In consequence, a further, yet unidentified cellular receptor on EC or a receptor-independent uptake and spreading mechanism of MV in EC cultures must be postulated. Finally, it is certain that EC are involved in the pathogenesis of MV-induced complications, whether directly or indirectly. KW - Masern KW - Endothel KW - Masernvirus KW - Infektion KW - Paramyxovirose KW - Slow-Virus-Infektion KW - Virusinfektion KW - Encephalitis KW - Rezeptor KW - Toll-like-Rezeptoren KW - SLAM KW - CD150 KW - CD46 KW - HUVEC KW - HBMEC KW - measles KW - HUVEC KW - HBMEC KW - SLAM KW - CD46 Y1 - 2006 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-25650 ER - TY - THES A1 - Nikulin, Joanna T1 - Untersuchungen zu intrazellulären Folgereaktionen von Neisseria meningitidis und Escherichia coli K1 in HBMEC (human brain microvascular endothelial cells) T1 - Intracellular survival and replication of Neisseria meningitidis and Escherichia coli K1 in HBMEC (human brain microvascular endothelial cells) N2 - Neisseria meningitidis ist einer der wichtigsten Erreger bakterieller Meningitiden und gefürchtet für das Potential Epidemien auszulösen. Die Meningokokken-Meningitis bleibt bis heute auch in Industrieländern mit hoher Mortalität verbunden. Um eine Meningitis verursachen zu können, müssen Meningokokken die Blut-Hirn/Liquor-Schranke überqueren. Dies erfolgt vermutlich über den transzellulären Weg durch die Endothelzellbarriere der Gehirnkapillare. Ereignisse unmittelbar vor der bakteriellen Internalisierung sind vielfach untersucht, noch wenig erforscht sind jedoch die in der Endothelzelle durch den initialen Kontakt des Erregers ausgelösten Signalkaskaden. Die Rolle des für eine ADP-Ribosyltransferase kodierenden narE Gens in der Pathogenese der Meningokokken-Infektion und die mögliche Bedeutung in der Aktivierung von Signaltransduktionsmechanismen wird diskutiert. Eine narE Insertionsmutante wurde hergestellt und charakterisiert. Anschließend wurde die Aktivierung der extracellular signal regulated kinase (ERK) im Verlauf von Infektionsassays in HBMEC (human brain microvascular endothelial cell) mittels Western Blot untersucht. Eine Zu- oder Abnahme in der Phosphorylierung von ERK und folglich eine Aktivierung oder Deaktivierung der ERK-vermittelten Signalkaskaden in HBMEC konnte jedoch im Laufe der Infektion bei der narE Mutante im Vergleich zum Wildtypstamm nicht festgestellt werden. Elektronenmikroskopische Aufnahmen zeigen Meningokokken intrazellulär einzeln aber auch zu mehreren in phagosomenähnlichen membranumgebenen Strukturen. Die Fähigkeit von N. meningitidis sich intrazellulär zu replizieren wurde mittels Infektions-assay untersucht. Bekapselte Meningokokken waren in der Lage, sich sowohl in Epithel- als auch in Endothelzellen zu replizieren, während unbekapselte Erreger intrazellulär abgetötet wurden. Bei Meningokokken wie auch beim Erreger neonataler Meningitiden E. coli K1 wird eine O-Acetylierung des Kapselpolysaccharids beobachtet. Die biologische Bedeutung der O-Acetylierung der Sialinsäure wurde in Infektionsassays mit einem nicht acetylierten E. coli K1 Stamm und einer isogenen konstitutiv acetylierten Mutante untersucht. In der Adhärenz an und Invasion in HBMEC konnten keine signifikanten Unterschiede festgestellt werden. Eine stärker ausgeprägte intrazelluläre Replikation wurde jedoch nach einer Verzögerung von mehreren Stunden bei dem nicht acetylierten Isolat beobachtet. Um die Neisseria containing Vacuole (NCV) näher zu charakterisieren und mögliche Interaktionen mit dem Endozytoseweg in HBMEC zu untersuchen, wurde eine dreifache Immunfluoreszenzfärbung zur simultanen Darstellung intrazellulärer Meningokken und spezifischer Marker des frühen bzw. späten Endosoms und Lysosoms etabliert. Eine Akquirierung des Transferrinrezeptors als Marker für das frühe Endosom und des Lamp-1 (lysosomal associated membrane protein 1) als Marker für das späte Endosom konnte durch Kolokalisationsstudien mittels Immunfluoreszenzmikroskopie gezeigt werden. N2 - In order to cause meningitis the extracellular pathogen Neisseria meningitidis has to traverse the blood-brain-barrier (BBB). It remains unclear, if the passage occurs through a transcellular or paracellular pathway. Postulating a transcellular passage, meningococci (MC) have been shown to adhere to and enter into BBB forming human brain microvascular endothelial cells (HBMECs). Furthermore, electron microscopy studies demonstrate that intracellular MC reside within membrane-bound compartments both solitary and in groups. Whether this is a result of simultaneous uptake or vacuole fusion or possible intracellular replication needs to be assessed. In order to investigate the ability of MC to survive and replicate intracellularly, prolonged gentamicin protection assays were performed using human epithelial (HEp-2) and endothelial (HBMEC) cells. Cells were infected with encapsulated and unencapsulated N. meningitidis serogroup B mutants in order to identify the potential role of the polysaccharide capsule for the intracellular survival. Encapsulated bacteria were found to be able to survive and, after an initial delay, to replicate within both endothelial and epithelial cells, whereas the number of intracellular capsule-deficient mutants decreased continuously. This strongly suggests that the capsule plays a pivotal role for the intracellular survival of MC both in epithelial and endothelial cells. Further investigations were initiated to characterise the membran-bound compartment, the Neisseria containing vacuole (NCV). Immunfluorescence microscopy studies showed that NCV acquire the early endosomal marker protein transferrin receptor and the lysosomal marker protein Lamp-1 respectively. The acquisition of further marker proteins as well as the kinetics of the association of these with NCV remain to be studied. KW - Neisseria meningitidis KW - Escherichia coli K1 KW - Meningitis KW - HBMEC KW - intrazellulär KW - Neisseria meningitidis KW - Escherichia coli K1 KW - meningitis KW - HBMEC KW - intracellular Y1 - 2005 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-16552 ER -