TY - THES A1 - Zoeller, Maria Simone T1 - Lipidperoxidation in der inkompatiblen Pseudomonas-Arabidopsis Interaktion: Biosynthese von Pimelin- und Azelainsäure T1 - Lipidperoxidation in the incompatible Pseudomonas-Arabidopsis interaction: biosynthesis of pimelic and azelaic acid N2 - Die Biosynthese von fragmentierten Fettsäuren (kurzkettige Dicarbonsäuren und deren Oxocarbonsäure-Vorstufen) ist in den meisten Pflanzen noch unklar. Wichtige, bekannte Dicarbonsäuren sind Pimelinsäure (PIM) und Azelainsäure (AZA) mit den putativen Vorstufen 7-Oxo¬heptanonsäure (OHA) und 9-Oxononanonsäure (ONA). Es besteht großes Interesse die Biosynthese¬mechanismen und die Regulation der Synthese dieser Substanzen aufzuklären, da Fettsäure¬fragmente an wichtigen biologischen Prozessen beteiligt sind. PIM ist eine essentielle Vorstufe von Biotin in Mikroben, Pilzen und Pflanzen. Bisher konnte die Biosynthese von PIM nur in Bakterien (E. coli und B. subtilis) aufgeklärt werden. Es gibt keine Hinweise auf einen analogen Mechanismus in Pflanzen. Eine biologische Aktivität von AZA bei Pflanzen konnte erst vor kurzem beschrieben werden. Eine Forschergruppe identifizierte AZA als Metabolit, der nach Infektion mit dem Pathogen Pseudomonas syringae vermehrt im Phloemsaft von Arabidopsis vorhanden ist und der in Pflanzen eine lokale und systemische Resistenz gegenüber dem Pathogen induziert. In Tieren sind Fettsäurefragmente ebenfalls Gegenstand aktueller Forschung. Es ist bekannt, dass eine nichtenzymatische oxidative Fragmentierung von Fettsäurehydroperoxiden in komplexen Membranlipiden als Folge von oxidativem Stress abläuft. Phospholipide mit veresterter ONA / AZA spielen aufgrund ihrer Struktur eine Rolle als endogene Liganden bei Reaktionen des angeborenen Immunsystems. Ziel dieser Arbeit war es, die Mechanismen der Oxidation von Fettsäuren und deren Fragmentierung in Pflanzen aufzuklären. Weiterhin sollte die Rolle der oxidierten Fragmente in der Immunantwort der Modellpflanze Arabidopsis thaliana untersucht werden. In Pflanzen wurden fragmentierte Fettsäuren im Rahmen dieser Arbeit erstmals in komplexen Lipiden identifiziert und verschiedene Hypothesen zur Bildung von Fettsäurefragmenten experimentell überprüft. Es konnte gezeigt werden, dass die Biosynthese der Fettsäurefragmente in A. thaliana ausgehend von zwei- oder dreifach ungesättigten Fettsäuren stattfindet. 9- und 13-Lipoxygenasen (LOX1, LOX5 und LOX2) spielen dabei keine essentielle Rolle. Die Fettsäurefragmente konnten in Arabidopsis in freier Form und in komplexen Lipiden verestert (ausschließlich in Galactolipiden) detektiert werden. Applikationsexperimente zeigten, dass die Biosynthese der Fettsäurefragmente in den komplexen Lipiden auf nichtenzymatischem Wege in situ stattfindet. Dabei wird in Übereinstimmung mit den experimentellen in vitro und in vivo Daten als Reaktionsmechanismus die Dimer-Hypothese der Arbeitsgruppe um Alan Brash vorgeschlagen. In grünen Pflanzenteilen verläuft die Biosynthese demzufolge in drei Schritten ab: Im ersten Schritt entsteht ein „Pool“ von oxidierten Galactolipiden mit Hydroperoxid-Acylketten (mit konjugierten Dienen). Diese Hydroperoxide entstehen fortlaufend durch Oxidation der Fettsäureacyle mittels Singulett Sauerstoff in Plastiden. Nach Infektion mit dem Pathogen P. syringae (avirulenter Stamm) wird der „Pool“ von Galactolipidperoxiden durch die katalytische Einwirkung von freien Radikalen und der LOX2 erhöht. Im zweiten Schritt findet eine Radikal-katalysierte Addition von Peroxylradikalen an Fettsäurehydroperoxide statt, wobei Lipid-Peroxid-Dimere gebildet werden. Diese instabilen Zwischenprodukte zerfallen spontan in vier Produkte, darunter zwei Aldehyd-Fragmente, ein Alkoxyradikal und ein Hydroxylradikal. Bemerkenswert ist, dass durch die Fragmentierung des Dimers weitere Radikale de novo entstehen. Im dritten Schritt können die in Galactolipiden veresterten Oxocarbonsäuren zu Dicarbonsäuren oxidiert werden. Hydroperoxide, die Vorläufer der Fettsäurefragmente, wurden in freier Form und in komplexen Lipiden verestert analysiert. Unter basalen Bedingungen liegt sowohl bei den freien, als auch bei den veresterten Hydroxyfettsäuren ein fast komplett Singulett Sauerstoff abhängiger Oxidationsmechanismus vor. Drei Galactolipid Hauptspezies (Monogalactosyldiacylglycerol (MGDG)-18:3-16:3, Digalactosyldiacylglycerol (DGDG)-18:3-18:3 und DGDG-18:3-16:3) sind hoch oxidiert (5 bis 9 Mol-%, relativ zur jeweiligen Vorstufe). MGDG-18:3-18:3, ebenso wie Phosphatidylglycerol-, Phosphatidylinositol- und Triacylglycerol-Hydroxyfettsäurespezies liegen basal nur schwach oxidiert vor (< 2 Mol-%). Nach Infektion mit dem Pathogen P. syringae kommt es zu einer massiven Lipid Biosynthese und Oxidation durch die 13-Lipoxygenase LOX2, Singulett Sauerstoff und freie Radikale. Der Oxidationsgrad der Hydroxyfettsäuren in den Galactolipiden ändert sich kaum. Innerhalb der Triacylglycerole kommt es zu einem großen Anstieg der oxidierten Spezies (auf 12 bis 38 Mol-%). Die Oxidation und Fragmentierung der Fettsäuren in den Galactolipiden unter basalen Bedingungen und induziert durch die Pathogenbehandlung, stellen einen wichtigen biochemischen Prozess dar, auf dem PIM und AZA entstehen. N2 - The biosynthesis of fragmented fatty acids (short chain bicarboxylic acids and their precursor oxoacids) has not been established in plants. Important and common bicarboxylic fatty acids are pimelic acid and azelaic acid (PIM and AZA) and their putative precursors 7-oxoheptanoic acid (OHA) and 9-oxononanoic acid (ONA). Interest in the biogenetic origin of these unusual fatty acids stems from the fact that these fragmented fatty acids are involved in important biological processes. PIM is an established precursor of biotin in bacteria, fungi and plants. PIM biosynthesis has only recently been clarified in bacteria (E. coli and B. subtilis) and there is yet no evidence that an analogous pathway is operative in plants. Moreover, AZA has been identified as a pathogen-induced metabolite in Arabidopsis vascular sap that has been reported to prime local and systemic resistance against the pathogen Pseudomonas syringae. In animals, non-enzymatic fragmentation of fatty acid hydroperoxides is known to occur in complex membrane lipids during oxidative stress. ONA and AZA comprising phospholipids serve as endogenous pattern recognition ligands in the innate immune system of animals. The aim of this work was to clarify the mechanisms of fatty acid oxidation and fragmentation as well as the function of the oxidized fragments in the immune response of the model plant Arabidopsis thaliana. Within this work, fragmented fatty acids have been identified in complex lipids of plants for the first time and different hypotheses for the biosynthesis of fragmented fatty acids were examined. It could be shown that dienoic or trienoic fatty acids are precursors of fatty acid fragments in Arabidopsis thaliana. 9- and 13-lipoxygenases (LOX1, LOX5 and LOX2) are not essential for biosynthesis. In Arabidopsis fragmented fatty acids could be identified in free form and esterified in complex lipids, exclusively galactolipids. Application experiments revealed that biosynthesis of fatty acid fragments takes place in galactolipids in situ in a non-enzymatic way. Interpretation of in vitro and in vivo results lets suggest a reaction mechanism due to dimer hypothesis from Alan Brashs working group. The fragmentation process in green organelles was found to proceed through three steps. An initial and essential event is the formation of a pool of galactolipids comprising acyl hydroperoxides with conjugated dienes. These hydroperoxides are generated continuously in plastids through oxidation of fatty acyls by singlet oxygen. After infection with the avirulent strain of Pseudomonas syringae pathovar tomato the pool of galactolipid-peroxides is increased by catalytic impact of free radicals and lipoxygenases. In a second step, peroxy radical addition to fatty acid hydroperoxides results in dimerization of peroxides thereby forming an unstable intermediate that spontaneously decomposes to yield two aldehyde fragments, an alkoxy radical and a hydroxy radical. Notably, decomposition of the dimer leads to a de novo production of radicals. In a third step oxoacids esterified in galactolipids could be oxidized into bicarboxylic acids in a radical catalyzed process. Hydroperoxides, precursors of fatty acid fragments, were analyzed reduced to hydroxy fatty acids, in free form and esterified in complex lipids. Under basal conditions, some complex lipids were found to be highly and almost exclusively oxidized by singlet oxygen. Three galactolipid species (monogalactosyldiacylglycerole (MGDG)-18:3-16:3, digalactosyldiacylglycerole (DGDG)-18:3-18:3 and DGDG-18:3-16:3) showed highest level of oxidation with 5 to 9 mol-% (relative to their precursors). MGDG-18:3-18:3, as well as phosphatidylglycerol, phosphatidylinositol and triacylglycerol species are only slightly oxidized (< 2 mol-%). After P. syringae infection, massive lipid biosynthesis and oxidation by 13-lipoxygenase LOX2, singlet oxygen and free radicals was observed. Degree of oxidation in galactolipids was almost the same but hydroxylated triacylglycerol species showed a strong increase (up to 12 until 38 mol-%). Basal and pathogen-induced fatty acyl oxidation and fragmentation in galactolipids might be an important and general biochemical process yielding the essential biotin precursor PIM and AZA, which has previously been shown to prime the local and systemic immune response of A. thaliana. KW - Schmalwand KW - Arabidopsis KW - Pseudomonas KW - Interaktion KW - Pimelinsäure KW - Azelainsäure KW - Arabidopsis KW - Pseudomonas KW - interaction KW - pimelic acid KW - azelaic acid Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-71614 ER - TY - THES A1 - Peer, Markus T1 - Sphingolipide – Analytik, Biosynthese und Funktion in der Arabidopsis thaliana Pathogenantwort T1 - Sphingolipids – Analytics, Biosynthesis and Functions in the Arabidopsis thaliana Pathogen Interaction N2 - Sphingolipide (SPL) sind wichtige und ubiquitar verbreitete Bestandteile von Biomembranen. Aufgrund der enormen Vielfalt, der komplexen Struktur und diverser physiko-chemischer Eigenschaften der Sphingolipide gestaltet sich die qualitative und quantitative Untersuchung der Sphingolipide allerdings schwierig. In dieser Arbeit konnten, basierend auf publizierten Methoden, analytische Verfahren entwickelt werden, mit deren Hilfe sich die Gehalte spezifischer Sphingolipide in A. thaliana quantitativ nachweisen lassen. Unter Einsatz eines targeted metabolite profiling-Ansatzes wurde die Rolle spezifischer Sphingolipide in der Pflanzen-Pathogen Interaktion charakterisiert. Infiltration von avirulenten P. syringae pv. tomato (Pst) in Blätter von A. thaliana führte zu schnell und transient erhöhten Gehalten der freien Sphingobase Phytosphingosin (t18:0). Im Gegensatz zu avirulenten Pst kam es nach Infiltration von virulenten Pst zu einer schnellen Rückkehr auf Basalniveau und nicht zu einer hypersensitiven Antwort (HR), was auf eine positiv regulatorische Rolle von t18:0 in Abwehrreaktionen von Pflanzen hinwies, z.B. bei der HR. Damit konnte in der vorliegenden Arbeit zum ersten Mal gezeigt werden, dass die Spiegel freier Sphingobasen der Pflanze, insbesondere von t18:0, in Antwort auf bakterielle Pathogene reguliert werden. Diese spezifische Regulation korreliert, in Abhängigkeit von der Pathogeninfektion, mit dem Verlauf der HR. Im Unterschied zu avirulenten Stämmen sind virulente Pst in der Lage, Abwehrreaktionen des Wirtsorganismus zu unterdrücken. Daher tritt keine HR auf, welche die Ausbreitung des Pathogens stoppen könnte. Die unterschiedliche Beeinflussung der t18:0 Gehalte virulenter und avirulenter Stämme zeigte sich auch in Experimenten mit einem anderen P. syringae Stamm. Freie Sphingobasen zeigten in dieser Arbeit typische Merkmale von Signalmolekulen: geringe basale Spiegel, schnelle und transiente Gehaltsanderungen, präzise Regulation sowie spezifische Wirkeffekte. Sphingolipide stellen somit, neben den etwa durch PAMPs ausgelösten und durch Phytohormone vermittelten, weitere Signalwege in der Pflanzen Pathogen Interaktion dar. Die Infiltration von Pst in Blätter der A. thaliana Mutante sbh1-1 führte zu transient erhöhten d18:0 Spiegeln. In dieser Mutante ist die Funktion von einer der zwei Sphingobasen-Hydroxylasen gestört. Wie sich nach Totalhydrolyse zeigte, sind die Gesamtgehalte von t18:0 in der Mutante allerdings nicht reduziert. Dies spricht dafür, dass der pathogenabhängige transiente Anstieg von t18:0 durch de novo Synthese aus d18:0 entsteht und nicht durch Freisetzung aus komplexen Sphingolipiden mittels spezifischer Lipasen. Somit ist die Hydroxylase SBH1 für den schnellen signalvermittelten Anstieg von t18:0 verantwortlich. Neben t18:0 lösen auch strukturell ähnliche freie Sphingobasen, z.B. d18:1 und d18:0, Abwehrreaktionen und Zelltod aus, während andere Sphingobasen (d20:0 und d20:1) sowie Ceramide keine Reaktionen auslösten. Dies weist auch direkt auf die Spezifität der beteiligten Mechanismen hin. N2 - Sphingolipids (SPL) are important and ubiquitously distributed constituents of biological membranes. Due to the tremendous variety, complex structure and diverse physicochemical properties of sphingolipids, qualitative and quantitative analysis has only recently been possible due to newly developed methods in mass spectrometry and chromatography. In this work, analytical methods to quantitatively detect the SPL content in A. thaliana leaves were established based on published literature. Using a targeted metabolic profiling approach, the role of specific SPL in the plant‐pathogen interaction was characterized. In line with the production of reactive oxygen species (ROS), a hallmark of biotic stress, infiltration of the avirulent form of the phytopathogen P. syringae pv. tomato (Pst) led to a fast and transient increase of the free long chain base Phytosphingosine (t18:0). Virulent Pst showed also a fast and transient, but clearly less prolonged elevation of t18:0 levels. Also, no HR was elicited in response to the infiltration, pointing to a positive regulatory role of t18:0 in this plant defense response. This work shows, for the first time, that SPL, namely t18:0, were regulated in response to bacterial pathogens. The t18:0 kinetics showed a strong correlation with the course of the pathogen‐elicited HR. There was also evidence, that virulent Pst influences the plants own biosynthetic and regulatory mechanisms to inhibit the SPL mediated defense response. This was also the case with another tested Pseudomonas syringae strain. In this work, free long chain bases showed characteristics typical for signaling molecules: low basal levels, a fast and transient increase in response to pathogens and a tight regulation. Hence, SPL may represent members of signaling pathways in plant‐pathogen interactions in addition to or besides PAMP‐triggered and hormonal mediated signaling pathways. Infiltration of Pst into leaves of the A. thaliana hydroxylase mutant sbh1-1 led to transiently increased d18:0 levels in leaves. In this mutant, one of the two functional sphingobase hydroxylases of A. thaliana is impaired. As the total pool of t18:0 was not significantly reduced in the mutant after total hydrolysis, we argue that the pathogen‐dependent transient increase of t18:0 was due to de novo synthesis from d18:0 and not to the action of specific lipases. Furthermore SBH1 was responsible for the fast increase of t18:0 levels. In addition to t18:0, also other free long chain bases, e.g. d18:0, elicited plant reactions and cell death, whereas other long chain bases (d20:0 and d20:1) or ceramides elicited no response. Apparently, the specific lipid structure plays a major role for the efficiency in different signaling pathways. KW - Sphingolipide KW - Ackerschmalwand KW - Pseudomonas syringae tomato KW - Abwehrreaktion KW - Pathogeninteraktion KW - Sphingolipidstoffwechsel KW - Pseudomonas syringae KW - Schmalwand KW - Sphingolipids KW - Pathogens KW - Pseudomonas KW - HPLC-MS KW - Arabidopsis Y1 - 2010 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-55034 ER - TY - THES A1 - Grun, Christoph T1 - Untersuchung enzymatisch und nicht-enzymatisch gebildeter Oxylipine in Arabidopsis thaliana in der kompatiblen und der inkompatiblen Interaktion mit Pseudomonas syringae T1 - Encymatically and not encymatically formed oxylipins in Arabidopsis thaliana in compatible und not compatible interaction with Pseudomonas syringae N2 - 1. OH-FS wurden in vitro hergestellt, um als Standardsubstanzen zur gaschromato-graphischen Identifizierung von OH-FS in Pflanzenmaterial eingesetzt zu werden. 2. Für die Untersuchung der Oxylipin-Gehalte in A. thaliana wurden der virulente Pst-Stamm DC3000 sowie der avirulente Stamm avrRPM1 verwendet, um die kompatible Interaktion mit der inkompatiblen Interaktion vergleichen zu können. Die Konzentrationen der Oxylipine sowie SA wurden innerhalb einer Versuchsdauer von 60 h verfolgt. Dabei wurden PPF1 sowie 12- und 16-OH-FS, als Vertreter der nicht-enzymatisch entstandenen Oxylipine, 9- und 13-OH-FS, sowohl als enzymatisch als auch nicht-enzymatisch entstandene Oxylipine, sowie JA und deren Vorstufe OPDA als enzymatisch gebildete Phytohormone untersucht. Es wurden monophasische Konzentrationsanstiege, bei allen untersuchten Substanzen, in der kompatiblen Interaktion ermittelt, wohingegen die Konzentrationsanstiege in der inkompatiblen Interaktion biphasisch waren. In beiden Interaktionen wurden nach 48 bis 60 h Konzentrationsmaxima der freien sowie der veresterten OH-FS und PPF1 nachgewiesen, ein früher Konzentrationsanstieg nach 5 bis 10 h konnte ausschließlich in der inkompatiblen Interaktion ermittelt werden. Die gleichzeitige Akkumulation von 9-, 10-, 12-, 13, 15- und 16-OH-FS und PPF1 deutet auf eine parallel ablaufende Oxylipin-Synthese durch enzymatische, Photo-oxidative und über freie Radikale vermittelte Prozesse hin. Die Akkumulation veresterter OH-FS und PPF1 erfolgte in beiden Interaktionen 5 bis 12 h früher als die Konzentrationsanstiege der freien OH-FS und PPF1. Die Ergebnisse bestätigen die Hypothese, dass nicht-enzymatische Oxylipine in Membranen gebildet werden können und anschließend vermutlich durch eine Lipase frei gesetzt werden. In der inkompatiblen Interaktion konnte ein erstes frühes Konzentrationsmaximum von JA und OPDA nach 5 h beobachtet werden, während späte Maxima in beiden Interaktionen nach 24 bis 36 h erfolgten. Somit akkumulierten die OH-FS und PPF1 in der inkompatiblen Interaktion zeitgleich mit den Jasmonaten nach 5 h. 3. Bei einer Kälteexposition von A. thaliana bei 4°C über 2 h wurde jeweils ein 3,3-facher Konzentrationsanstieg der freien und der veresterten enzymatisch gebildeten 13-OH-FS nachgewiesen. Darüberhinaus wurde ein 4,6-facher Anstieg der enzymatisch entstandenen 9-OH-FS ermittelt. Die nicht-enzymatisch gebildeten 12- und 16-OH-FS zeigten dagegen keine signifikanten Konzentrationsanstiege über die basalen Konzentrationen hinaus. Die angewendeten Stressbedingungen bewirken demnach ausschließlich eine enzymatische Bildung von OH-FS in A. thaliana. 4. Zur Untersuchung der OH-FS-Synthese in der inkompatiblen Interaktion in Abhängigkeit von der bei der Pflanzenanzucht eingesetzten Lichtstärke wurden A. thaliana bei Licht und in Dunkelheit mit Pst avrRPM1 infiziert. Nach 10 h wurde eine 1,1- bis 3,7-fach stärkere Bildung der freien sowie eine 2,0- bis 3,4-fach stärkere Akkumulation der veresterten 9-, 10-, 12-, 13, 15- und 16-OH-FS bei den Pflanzen ermittelt, die bei Licht angezogen wurden. Die Lichtintensität, der Pflanzen während der Infektion mit Pst ausgesetzt sind, hat demnach große Bedeutung für die Entstehung enzymatisch und nicht-enzymatisch gebildeter OH-FS. Ein 4,9-facher Anstieg veresterter 15-OH-FS, ein Marker für eine photooxidative OH-FS-Entstehung, auch bei Dunkelheit widersprach der Hypothese, dass 15-OH-FS ohne Lichteinwirkung nicht gebildet werden können und deutet auf eine bisher unbekannte Licht-unabhängige Entstehung von 1O2 bzw. von 15-OH-FS hin. 5. Die Bestimmung von OH-FS in Blättern und Wurzeln von unbehandelten A. thaliana-Pflanzen ergab eine 13- bis 31-fach höhere Konzentration veresterter 9-, 10-, 12-, 13- und 16-OH-FS in den Blättern. Darüberhinaus wurde eine 111-fach höhere Konzentration von veresterten 15-OH-FS in Blättern im Vergleich zu Wurzeln nachgewiesen. 15-OH-FS wurden als selektiver Marker für eine Photo-oxidative OH-FS-Bildung durch 1O2 verwendet. Mit 0,57 µg/g TG kommt 15-OH-FS allerdings auch im Wurzelgewebe vor, was einen Hinweis darauf darstellt, dass neben einem Licht-abhängigen Hauptweg auch ein Licht-unabhängiger Entstehungsmechanismus von 15-OH-FS bzw. 1O2 existiert. Alternativ wäre es denkbar, dass ein Transport von 15-OH-FS von den Blättern in die Wurzeln stattfindet. 6. Eine Untersuchung der Gehalte an OH-FS und PPF1 in NahG-, lsd1-, atrbohD- und atrbohF-Mutanten ergab 48 h nach Infiltration von Pst avrRPM1 keine signifikanten Unterschiede im Vergleich zu den Pflanzen des jeweiligen Wildtyps Col-0 und WS. Unter den gewählten Versuchsbedingungen bewirken die genetischen Defekte der untersuchten Mutanten keine veränderte Akkumulation enzymatisch sowie nicht-enzymatisch gebildeter Oxylipine. N2 - 1. To obtain reference-substances for the identification of OH-FA in plant material by GC-MS, OH-FA were made in vitro. 9- and 13-hydroxy-octadecadienoic acids were formed from linoleic acid, 9- and 13-hydroxy-octadecatrienoic acids from -linolenic acid by LOX-catalized reaction. 2. In order to compare the concentrations of oxylipins in A. thaliana during compatible and incompatible interaction, a virulent Pst-strain DC3000 and an avirulent strain avrRPM1 were utilized. The concentrations of oxylipins and salicylic acid were investigated within 60 h after inoculation. F1-phytoprostanes, 12- and 16-OH-FA were used as markers for non-enzymatically formed oxylipins. Concentrations of 9- and 13-OH-FA, either enzymatically or non-enzymatically formed, were measured as well as phytohormones, jasmonic acid and its precursor 12-oxo-phytodienoic acid. Within the compatible interaction an increase of the amount of all measured compounds was observed. In contrast, during incompatible interaction the increases of all measured substances was seperated into two phases. In both interactions, free and esterified OH-FA- and PPF1-concentrations exhibited maxima after 48 to 60 h, an early increase after 5 to 10 h was exclusively found in the incompatible interaction. The concurrent accumulation of 9-, 10-, 12-, 13, 15- und 16-OH-FA und PPF1 indicates that enzymatically, Photo-oxidative, and free-radical catalyzed synthesis of oxylipins takes place simultaneously. In both interactions the accumulation of esterified OH-FA and PPF1 occurred 5 - 12 h earlier than the increase of the concentrations of free OH-FA and PPF1. These results confirm the hypothesis that oxylipins are formed non-enzymatically from lipids inside cell membranes and are subsequently released by lipases. An early increase of JA- and OPDA-concentrations after 5 h was found in the incompatible interaction, while late maxima occurred in both interactions after 24 to 36 h. Therefore, OH-FA- and PPF1-accumulation took place at the same time as the increase of jasmonates after 5 h. 3. When A. thaliana plants were chilled for 2 h at 4°C an 3,3-fold incrceased formation of both, the enzymatically formed free and esterified 13-OH-FA was detected. The amount of enzymatically formed free 9-OH-FA increased 4,6-fold. In contrast, the amount of non-enzymatically formed 12- and 16-OH-FA did not increase significantly indicating that the applied mild stress conditions triggered exclusively enzymatical OH-FA-formation. 4. In order to get information about OH-FA-formation with regard to light intensity A. thaliana was infected by Pst avrRPM1 and cultivated either in the dark or in the light. When plants were cultivated in the light after 10 h an 1,1- to 3,7- fold increased formation of free and an 2,0- to 3,4-fold increased accumulation of esterified 9-, 10-, 12-, 13-, 15- und 16-OH-FA could be detected. Therefore, the light intensity during an infection with Pst avrRPM1 is an important factor for the formation of enzymatically as well as non-enzymatically formed OH-FA in planta. The 4,9-fold increase of esterified 15-OH-FA (a marker for photooxidative formation of OH-FA) in the dark contradicted the hypothesis that its formation is impossible without the impact of light. In contrast the accumulation of 15-OH-FA in the dark points to a light-independent 1O2- and subsequent 15-OH-FA-formation by a so far unknown mechanism. 5. Determination of the concentrations of OH-FA in leaves and roots of untreated plants of A. thaliana showed 13- to 31-fold higher amounts of esterified 9-,10-, 12-, 13 und 16-OH-FA in the leaves. Moreover, the amounts of esterified 15-OH-FA exceeded in leaves by the factor 111 in comparison to roots. 15-OH-FA was used as a selective marker for Photo-oxidative formation of OH-FA by 1O2. Though, 15-OH-FA occurred to an amount of 0,57 µg/g (dry weight) in roots as well. This indicates that, apart from an primarily used light depending mechanism, a second path for the formation of 15-OH-FA respectively 1O2 exists which does not depend on light strength. An alternative explanation could be the transport of 15-OH-FA from leaves to roots. 6. Compared to the wildtype plants no significant differences in the increase of OH-FA and PPF1 could be detected in NahG-, lsd1-, atrbohD and atrbohF-mutants 48 h after infiltration of Pst avrRPM1. Under the utilized conditions the genetic defects of the analyzed mutants did not cause a modified accumulation of both, enzymatically and not enzymatically formed oxylipins. KW - Lipid-Peroxide KW - Ackerschmalwand KW - Pseudomonas syringae KW - Oxylipine KW - Arabidopsis KW - thaliana KW - Pseudomonas KW - syringae KW - Oxylipines KW - Arabidopsis KW - thaliana KW - Pseudomonas KW - syringae Y1 - 2006 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-20804 ER -