TY - THES A1 - Falge, Mirjam T1 - Dynamik gekoppelter Elektronen-Kern-Systeme in Laserfeldern T1 - Dynamics of Coupled Electron-Nuclei-Systems in Laser Fields N2 - Die vorliegende Arbeit beschäftigt sich mit der theoretischen Untersuchung zweier Themenkomplexe: der Erzeugung Hoher Harmonischer in Molekülen und dem Einfluss von gekoppelter Elektronen-Kern-Dynamik auf Ultrakurzpuls-Ionisationsprozesse und Quantenkontrolle. Während bei der Untersuchung der Hohen Harmonischen die Auswirkungen der Kernbewegung auf die Spektren im Mittelpunkt des Interesses stehen, wird bei der Analyse der gekoppelter Elektronen-Kern-Dynamik das Hauptaugenmerk auf die nicht-adiabatischen Effekte gerichtet, die auftreten, wenn Kern- und Elektronenbewegung sich nicht, wie es im Rahmen der Born-Oppenheimer-Näherung in der Quantenchemie häufig angenommen wird, voneinander trennen lassen. N2 - This work aims at the theoretical analysis of high harmonic generation in molecules and the influence of coupled electron and nuclear dynamics on ultra-short pulse ionization processes. KW - Nichtadiabatischer Prozess KW - Laserstrahlung KW - Quantenmechanik KW - Molekulardynamik KW - Quantendynamik KW - nicht-adiabatische Effekte KW - Hohe Harmonische KW - Photoelektronenspektroskopie KW - quantum dynamics KW - nonadiabatic effects KW - high harmonic generation KW - photoelectron spectroscopy Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-72889 ER - TY - THES A1 - Schubert, Alexander T1 - Kohärente und dissipative Wellenpaketdynamik und zeitaufgelöste Spektroskopie: Von zweiatomigen Molekülen zu molekularen Aggregaten T1 - Coherent and dissipative wave-packet dynamics and time-resolved spectroscopy: From diatomic molecules to molecular aggregates N2 - Unter dem Gesichtspunkt kohärenter Wellenpaketdynamik werden in dieser Arbeit zwei Themenfelder untersucht: Zum einen die Auswirkungen von Kernfreiheitsgraden auf die zweidimensionale vibronische Spektroskopie (2D-Spektroskopie) und zum anderen photoinduzierte Energieverlustmechanismen in organischen Halbleitern. Im ersten Abschnitt wird am numerischen Beispiel zweiatomiger Moleküle gezeigt, dass sich die Anharmonizität der Wellenpaketbewegung durch Variation der Verzögerungszeit der Femtosekundenpulse in der komplexwertigen Spektralfunktion, die aus der störungstheoretischen Berechnung der Polarisationsfunktion hervorgeht, widerspiegelt. Die zeitliche Entwicklung besetzter Vibrationszustände zeigt sich in der Struktur des Signals anhand sogenannter Quantenphasen. Durch Variation der Pulsparameter und -reihenfolge kann dabei die Quantendynamik in unterschiedlichen elektronischen Zuständen charakterisiert werden. Im zweiten Teil der Arbeit wird für molekulare Aggregate (3,4,9,10-Perylentetracarbonsäurediimid und 3,4,9,10-Perylentetracarbonsäuredianhydrid) ein zeitaufgelöstes, atomistisches Bild intra- und intermolekularer Strukturverzerrungen vorgestellt. Letztere induzieren eine ultraschnelle Depopulation der durch Photoabsorption angeregten elektronischen Zustände, was mit einer deutlichen Abnahme der Anregungsenergie einhergeht. N2 - In the present work two topics were examined within the framework of coherent wave-packet dynamics: First, the appearance of fingerprints of nuclear degrees-of-freedom in two-dimensional vibronic spectra (2D spectra), and second, photoinduced energy quenching processes in organic semi-conductors. Using the numerical example of diatomic molecules, it is shown in the first part that a variation of the delay-time between femtosecond laser pulses reveals the anharmonicity of the wave packet motion by influencing the complex-valued spectral function, which stems from a calculation of the perturbative polarization function. The time-evolution of vibrational states is monitored in the signal structure by so-called quantum phases. Different electronic states are accessible through variation of the parameters and the order of involved laser pulses. In the second part, a time-resolved atomistic picture of intra- and intermolecular structural deformations in molecular aggregates (3,4,9,10-perylene tetracarboxylic acid bisimide and 3,4,9,10-perylene tetracarboxylic acid dianhydride) is presented. The latter induce an ultrafast depopulation of the photoexcited electronic states, which goes in hand with a considerable loss of excitation energy. KW - Kurzzeitphysik KW - Physikalische Chemie KW - Molekularbewegung KW - Wellenpaket KW - Quantendynamik KW - Theoretische Physik KW - Quantisierung KW - Physikalische Theorie KW - Physik KW - Computerphysik KW - quantum dynamics Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-74258 ER - TY - THES A1 - Brüning, Christoph T1 - Quantendynamische Untersuchungen zur Exzitonenlokalisierung und linearen Spektroskopie in molekularen Oligomeren T1 - Quantum dynamical study on excition localization and linear spectroscopy in molecular oligomers N2 - Diese Arbeit befasst sich mit den spektralen Signaturen molekularer Aggregate sowie mit ihrer Wellenpakets- und Populationsdynamik in angeregten Zuständen unter dem Einfluss externer Störungen und photoinduzierter Asymmetrie. Hierzu werden quantendynamische numerische Berechnungen mit der Multi-Configuration Time-Dependent Hartree-Methode durchgeführt, um die angesprochenen Prozesse zu charakterisieren. Durch die Konzentration auf Modellrechnungen sind die qualitativen Ergebnisse dieser Arbeit auf viele Systeme übertragbar. Zunächst widmet sich die Arbeit den linearen UV/Vis-Absorptions- und Emissionsspektren von Aggregaten. Hier zeigt sich, dass die Anzahl der Größen, die ein Absorptionsspektrum bestimmen -- etwa die Anzahl der Chromophore, ihre geometrischen Anordnung und die elektronische Kopplung zwischen ihnen -- zu groß ist, um ihre numerischen Werte eindeutig aus den Spektren bestimmen zu können. Insbesondere können sich die Auswirkungen der Aggregatgröße und der Kopplungsstärke gegenseitig so beeinflussen, dass die Form der Absorptionsbande bei sehr unterschiedlichen Systemen nahezu identisch ist. Daraus ergeben sich Schwierigkeiten bei der Interpretation experimenteller Spektren, insbesondere von selbst-aggregierten Oligomeren, deren Größe unbekannt ist. Es ist daher notwendig, entweder die elektronische Kopplung oder die Anzahl der Monomere in einem Aggregat durch andere experimentelle Methoden unabhängig zu bestimmen. Ist die Aggregatgröße jedoch bekannt, können die Absorptionsspektren sehr wohl zur Bestimmung anderer Eigenschaften des Systems herangezogen werden. Dies wird durch die Untersuchung der Spektren kovalent gebundener zyklischer Aggregate aus drei und vier cis-Indolenin-Squarain-Molekülen als Beispiel für Systeme mit bekannter Größe dargestellt. Das zweite Hauptthema der Arbeit ist die Populationsdynamik in angeregten Zuständen molekularer Aggregate. Dazu werden numerische Rechnungen an Dimeren, Pentameren und Nonameren durchgeführt. Eine Asymmetrie, sei es im System selbst oder am Wellenpaket, das durch die Anregung entsteht, kann dazu führen, dass ein einzelnes Monomer dauerhaft bevorzugt populiert ist. Wenn durch eine externe Störung die Energie des angeregten Zustands bestimmter Monomere für eine gewisse Zeit erhöht ist, kommt es zu einer Lokalisation der Population in diesem energetisch höheren Zustand. In einem System mit weiteren internen Freiheitsgraden wird die Population auf benachbarte Monomere übertragen, wenn der Betrag der Energieverschiebung des gestörten Zustands mit dem Abstand der Schwingungsniveaus zusammenfällt. Der anfängliche Lokalisierungseffekt ist darüber hinaus zustandsspezifisch: Er wird durch die Überlappintegrale der Schwingungskomponenten der Wellenfunktion in den diabatischen angeregten elektronischen Zuständen bestimmt. Durch die Kombination von zwei Laserpulsen kann auch ein Wellenpaket in den angeregten Zuständen erzeugt werden, dessen Symmetrieachsen nicht mit denen der Potentialflächen des Systems zusammenfallen. Dadurch, dass hier die Asymmetrie schon im Wellenpaket vorliegt, kann es auch ohne äußere Störung zu einer Lokalisation der Population auf einem Monomer kommen. N2 - This work studies the spectral signatures of molecular aggregates as well as their excited-state wave-packet and population dynamics under the influence of external perturbations and photo-induced asymmetry. Quantum dynamical numerical calculations employing the Multi-Configuration Time-Dependent Hartee method are performed in order to characterize the aforementioned processes. Concentrating on model calculations, the results of this work can qualitatively be transferred to a variety of different systems. First, linear UV/Vis- absorption and emission spectra of aggregates are investigated. It becomes apparent that the number of quantities which determine an absorption spectrum -- such as the number of chromophores, their geometrical arrangement and the electronic coupling between them -- is too large to uniquely determine their numerical values from the specta. Especially, the effects of the aggregate size and the coupling strength can influence each other in a way such that nearly identical spectra are obtained for vastly different systems. This leads to difficulties in the interpretation of experimental spectra, in particular when investigating self-assembled oligomers whose size is unknown. It is thus necessary to determine either the number of monomers within the Aggregate or their electronic coupling independently via other experimental techniques. If the aggregate size is, however, known, absorption spectra provide a valuable tool for determining other properties of the system under investigation. This is shown by investigating the spectra of covalently linked aggregates comprised of three or four cis-Indolenine Squaraine dye molecules as an example for systems of known size. The second main topic of the thesis is the excited-state population dynamics of molecular aggregates. Here, numerical calculations for dimer, pentamer and nonamer systems are performed. It is shown that any asymmetry, originating from the system itself or from the photo-excited wave-packet, leads to a quasi-permanent enhancement of the population of a single monomer unit. When the energy of the excited states of certain monomers is increased by an external perturbation, the excited-state population is, after a very short time, localized in the state with higher energy. In a system that features additional internal degrees of freedom, the population is transferred to neighboring Monomers if the energy shift of the perturbed state is in resonance with the spacing of the vibrational levels. In addition, the inital localization effect is state-specific as it is determined by the overlap integral of the vibrational wave-function components in the diabatic electronic states. By combining two laser pulses, it is possible to generate an excited-state wave-packet whose axes of symmetry do not coincide with those of the potential energy surfaces of the system. Since, here, the asymmetry is already contained in the wave-packet, localization of the population on a single monomer is possible even without an external perturbation. KW - Kurzzeitphysik KW - Wellenpaket KW - Molekularbewegung KW - Physikalische Chemie KW - Quantendynamik KW - quantum dynamics Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-139413 ER - TY - THES A1 - Renziehausen, Klaus T1 - Wechselwirkung von Molekülen mit Laserpulsen: Untersuchungen zur numerischen Implementierung zeitabhängiger Störungstheorie und zu Effekten der absoluten Phase von Laserpulsen beliebiger Länge T1 - Interaction of molecules with laser pulses: researches on the numerical implementation of time-dependent perturbation theory and on carrier envelope phase effects for laser pulses of arbitrary length N2 - In dieser Dissertation wurden zwei Aspekte der Wechselwirkung von Laserpulsen mit Molekülen betrachtet: Erstens wurden numerische Algorithmen, die auf der zeitabhängigen Störungstheorie basieren, zur Berechnung von quantenmechanischen Wellenfunktionen analysiert. Zweitens wurden Effekte der absoluten Phase (Carrier envelope phase = CEP) von Laserpulsen bei der Laseranregung molekularer Systeme analysiert. In den Analysen zum ersten Aspekt wurden zwei verschiedene Algorithmen - in dieser Arbeit als simple und improved algorithm bezeichnet - verwendet, und die Normabweichung von mit diesen Algorithmen berechneten Wellenfunktionen untersucht. Es konnte gezeigt werden, dass diese Normabweichung für beide Algorithmen in zwei unterschiedliche Beiträge zerlegt werden kann. Der erste Normabweichungsbeitrag tritt aufgrund der numerischen Diskretisierung der Zeit auf und verschwindet, wenn der Zeitschritt, der die Dauer der Intervalle für diese Diskretisierung angibt, gegen Null geht. Man kann den ersten Normabweichungsbeitrag mit exzellenter Genauigkeit berechnen und seine Eigenschaften, die sich für die beiden Algorithmen erheblich unterschieden, eingehend analysieren. Der zweite Normabweichungsbeitrag tritt dadurch auf, dass die zeitabhängige Störungstheorie nicht normerhaltend ist, und geht daher gegen Null, wenn die Störungsordnung gegen unendlich geht. Dieser zweite Beitrag ist außerdem in guter Näherung unabhängig vom Zeitschritt und für beide Algorithmen näherungsweise gleich. Des Weiteren kann man das Verhalten des zweiten Normabweichungsbeitrags im Gegensatz zum ersten Beitrag nur qualitativ beschreiben. Für die Analyse zum zweiten Themengebiet dieser Arbeit, den CEP-Effekten, wurde betrachtet, ob CEP-Effekte auch für Laserpulse beliebiger Länge auftreten können. Über eine analytische Betrachtung erkennt man, dass dies für ein Zweiniveausystem nur dann der Fall ist, wenn beide Zustände vor Beginn der Wechselwirkung des Systems mit dem Laserpuls besetzt sind. Man kann aus diesem Ergebnis folgern, dass für einen Laserpuls, der zwei elektronische Zustände eines Moleküls über Einphotonenübergänge koppelt, in der Regel kein CEP-Effekt für beliebige Längen dieses Pulses auftritt. Der Grund dafür ist, dass vor der Wechselwirkung eines molekularen Systems mit einem Laserpuls für dieses üblicherweise nur der elektronische Grundzustand besetzt ist. In dieser Arbeit wird gezeigt, dass dieses Problem durch ein spezielles Zweipulsschema für die Anregung eines molekularen Systems gelöst werden kann. Für dieses Pulsschema wird ein erster Puls verwendet, der zeitlich so kurz ist, dass Wellenpakete in mehreren elektronischen Zuständen angeregt werden. Der nachfolgende zweite Laserpuls ist spektral schmal, und seine zeitliche Länge kann beliebig groß gewählt werden. Man erhält für dieses Pulsschema Observablen, die von der CEP des zweiten Pulses, aber nicht von der CEP des ersten Pulses abhängen; somit ist ein CEP-Effekt nachweisbar. Derartige Observablen sind geometrische Asymmetrien für Zerfallsprodukte von Photodissoziationsreaktionen. Insbesondere unterscheidet sich das hier vorgestellte Pulsschema von anderen Zweipulsschemata, für welche Observablen von der Differenz der CEPs beider Pulse abhängen, aber nicht von der CEP einer der beiden Pulse allein. N2 - In this dissertation, two aspects for the interaction of laser pulses with molecules were considered: First, we analysed numerical algorithms which are based on time-dependent perturbation theory. Second, carrier envelope phase (= CEP) effects of laser pulses for the laser excitation of molecular systems were studied. In the analyses to the first aspect, two different algorithms referred in this thesis as simple and improved algorithm were used, and the norm deviation occurring for wave functions calculated with these algorithms was examined. As a result, this norm deviation can be divided in two different contributions for both algorithms. The first contribution occurs because of the numerical discretisation of time and disappears when the time step defining the length of the intervals for this discretisation goes to zero. This first contribution can be calculated with excellent accuracy, and its properties, which differ substantially for the two algorithms, can be analysed in detail. The second contribution occurs because time-dependent perturbation theory is not norm conserving. Thus, it goes to zero when the perturbation order goes to infinity. Moreover, this second contribution is in good approximation independent of the time step, and it is approximately equal for both algorithms. Futhermore, in contrast to the first contribution the behaviour of the second contribution can be described only qualitatively. For the analyses to the second aspect of this thesis, namely CEP effects, it was considered if CEP effects can also appear for laser pulses of arbitrary length. An analytical inspection reveals that for a two level system this is only true if both states are occupied before the laser pulse starts to interact with the system. This result allows to conclude that as a rule when a laser pulse couples two electronical states of a molecule by one photon transitions, no CEP effect arises for arbitrary lengths of this laser pulse. The reason for this is that normally only the electronical ground state is occupied before the interaction of the molecular system with the laser pulse starts. In this thesis it is shown that this problem can be solved with a special two-pulse-scheme for the excitation of a molecular system. For this pulse scheme a first pulse is applied which is temporally as short as to excite wave packets in several electronic states. The subsequent second laser pulse is spectrally small, and its temporal length can be chosen unconditionally large. For this pulse scheme there are observables which depend on the CEP of the second pulse but not on the CEP of the first pulse, thus a CEP effect is measurable. Such observables are geometrical asymmetries for decay products of photodissociation reactions. In particular the pulse scheme presented here differs from other two-pulse-schemes where the observables depend on the difference of the CEPs of both pulses but not on the CEP of one of the two pulses alone. KW - Störungstheorie KW - Computerphysik KW - Laserchemie KW - Kurzzeitphysik KW - Molekülphysik KW - Numerische Physik KW - Ultrakurzzeitlaser KW - Effekte der absoluten Phase KW - Quantendynamik KW - Molekularbewegung KW - Computational physics KW - Ultrashort pulse lasers KW - Carrier envelope phase effects KW - Quantum dynamics KW - Molecular motion Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-100850 ER - TY - THES A1 - Keß, Martin T1 - Wellenfunktionsbasierte Beschreibung der zweidimensionalen vibronischen Spektroskopie von molekularen Aggregaten und Ladungstransfersystemen T1 - Wave-function based description of the two-dimensional vibronic spectroscopy of molecular aggregates and charge-transfer systems N2 - Diese Arbeit befasst sich mit zeitaufgelösten Prozessen in molekularen Systemen. Dabei wurde sowohl die Wellenpaketdynamik nach Photoanregung betrachtet als auch spektrale Eigenschaften mittels Absorptions- und zweidimensionaler Spektroskopie untersucht. Zunächst widmet sich die Arbeit der Wellenpaket- und Populationsdynamik in zwei diabatischen, gekoppelten Zuständen. Nach impulsiver Anregung aus dem zu Beginn besetzten Zustand treten in der Populationsdynamik zwei deutlich verschiedene Oszillationen auf. Der langsamer variierende Populationstransfer besitzt die Periodendauer der Vibrationsbewegung und ist auf einen Wechsel der Zustände beim Durchlaufen des Wellenpakets durch die Kreuzungsregion der diabatischen Potentiale zurückzuführen. Die ultraschnelle Komponente mit einer Periodendauer von etwa 4 fs lässt sich als eine Art Rabi-Oszillation beschreiben, die durch die (zeitunabhängige) Kopplung hervorgerufen wird. Sie wurde mit Hilfe von analytischen Berechnungen ausführlich charakterisiert. Damit dieser Prozess auftreten kann müssen mehrere Bedingungen erfüllt werden: Das Wellenpaket muss über die Dauer der Oszillationen annähernd örtlich lokalisiert bleiben; dies ist an den Umkehrpunkten der Wellenpaketsbewegung der Fall. Die Amplitude der Oszillationen in den Populationen ist proportional zum Verhältnis der Kopplung zum Energieabstand der Zustände. Deshalb muss an den stationären Stellen die Kopplung groß im Vergleich zum Energieabstand sein. Die Amplitude der Oszillationen hängt außerdem von dem Populationsverhältnis und den Phasen der Komponenten des Wellenpakets in den beiden Zuständen ab. Die ultraschnellen Oszillationen bleiben auch in mehrdimensionalen Systemen mit unterschiedlichen Vibrationsfrequenzen je Freiheitsgrad erhalten. Das gleiche Modell wurde benutzt, um Ladungstransferprozesse mittels linearer und 2D-Spektroskopie zu untersuchen. Eine Kopplung an die Umgebung wurde, aufbauend auf einer Quanten-Master-Gleichung in Markov-Näherung, wellenfunktionsbasiert mittels eines Quantum-Jump-Algorithmus mit expliziter Dephasierung beschrieben. Dabei findet mit vorher definierten Wahrscheinlichkeiten zu jedem Zeitschritt einer von drei stochastischen Prozessen statt. Neben kohärenter Propagation können Sprünge in einen anderen Eigenzustand des Systems und Dephasierungen auftreten. Zwei Dissipationsparameter spielen dabei eine Rolle. Dies ist zum einen die Stärke der System-Bad-Kopplung, welche die Gesamtrate der Energierelaxation beschreibt. Weiterhin beeinflusst die Dephasierungskonstante den Verlust kohärenter Phasen ohne Energieänderung. Fallenzustände wurden identifiziert, die durch sehr geringe Sprungraten in niedrigere Zustände charakterisiert sind. Die Langlebigkeit kann durch die Form der Eigenfunktionen erklärt werden, die eine deutlich andere Wahrscheinlichkeitsverteilung als die der Nicht-Fallenzustände besitzen. Dadurch werden die in die Sprungraten eingehenden Matrixelemente klein. Das Absorptionsspektrum zeigt Peaks an der Stelle der Fallenzustände, da nur die Eigenfunktionen der Fallenzustände große Franck-Condon-Faktoren mit der Anfangswellenfunktion besitzen. Verschiedene Kombinationen der Dissipationsparameter führen zu Änderungen der relativen Peakintensitäten und der Peakbreiten. Die 2D-Spektren des Ladungstransfersystems werden störungstheoretisch über die Polarisation dritter Ordnung berechnet. Sie zeigen viele eng nebeneinander liegende Peaks in einer schachbrettmusterförmigen Anordnung, die sich auf Übergänge unter Mitwirkung der Fallenzustände zurückführen lassen. Höhere System-Bad-Kopplungen führen aufgrund der effizienten Energiedissipation zu einer Verschiebung zu kleineren Energien. Peaks, die mit schneller zerfallenden Fallenzuständen korrespondieren, bleichen schneller aus. Höhere Dephasierungskonstanten resultieren in verbreiterten Peaks. Um den Einfluss der Dissipation genauer zu charakterisieren, wurden gefilterte 2D-Spektren betrachtet. Dazu wurden Ausschnitte der Polarisation dritter Ordnung zu verschiedenen Zeiten fouriertransformiert. Längere Zeiten führen zu einer effektiveren Energierelaxation entlang der entsprechenden Zeitvariablen. Die Entvölkerung der höher liegenden Zustände lässt sich somit zeit- und energieaufgelöst betrachten. Weiterhin wurde gezeigt, dass sich der Zerfall eines einzelnen Peaks mit dem Populationsabfall des damit korrespondierenden Eigenzustandes in Einklang bringen lässt, obwohl die Zuordnung der Peaks im 2D-Spektrum zu Übergängen zwischen definierten Eigenzuständen nicht eindeutig ist. Mit dem benutzten eindimensionalen Modell können auch Ladungstransferprozesse in organischen gemischtvalenten Verbindungen beschrieben werden. Es wurde die Frage untersucht, welche Prozesse nach einem optisch induzierten Energietransfer in solchen Systemen ablaufen. Experimentelle Daten (aufgenommen im Arbeitskreis von Prof. Lambert) deuten auf eine schnelle interne Konversion (IC) gefolgt von Thermalisierung hin. Um dies theoretisch zu überprüfen, wurden Absorptionsspektren bei verschiedenen Temperaturen berechnet und mit den gemessenen transienten Spektren verglichen. Es findet sich, abhängig von der Stärke der elektronischen Kopplung, eine sehr gute bis gute Übereinstimmung, was die Annahme eines schnellen ICs stützt. Im letzten Teil der Arbeit wurden vibronische 2D-Spektren von molekularen Aggregaten betrachtet. Dazu wurde die zeitabhängige Schrödingergleichung für ein Monomer-, Dimer- und Trimersystem mit der Multi-Configuration Time-Dependent Hartree-Methode gelöst und die Polarisation nicht-störungstheoretisch berechnet. Der Hamiltonoperator des Trimers umfasst hierbei sieben gekoppelte elektronische Zustände und drei bzw. sechs Vibrationsfreiheitsgrade. Der betrachtete Photonenecho-Beitrag der Polarisation wurde mittels phasencodierter Laserpulse extrahiert. Die resultierenden Spektren sind geometrieabhängig, ein Winkel zwischen den Übergangsdipolmomenten der Monomere von 0° (180°) resultiert in einem H-Aggregat (J-Aggregat). Die Lage und Intensität der Peaks im rein elektronischen Trimer wurde analytisch erläutert. Die Spektren unter Einbeziehung der Vibration zeigen eine ausgeprägte vibronische Struktur. Es wurde gezeigt, wie die Spektren für höhere Aggregationsgrade durch die höhere Dichte an vibronischen Zuständen komplexer werden. Im J-Aggregat ist mit zunehmender Aggregation eine stärkere Rotverschiebung zu sehen. Das Spektrum des H-Aggregats zeigt eine im Vergleich zum J-Aggregat kompliziertere Struktur. Die Verwendung zweier Vibrationsfreiheitsgrade je Monomer führt zu Spektren mit überlappenden Peaks und einer zusätzlichen vibronischen Progression. Der Vergleich von Spektren verschiedener Mischungen von Monomer, Dimer und Trimer, entsprechend einem von Temperatur und Konzentration abhängigen Aggregationsgrad, zeigt den Einfluss dieser experimentellen Faktoren. Schließlich wurden mögliche Ansätze aufgezeigt, anhand der Spektren auf den Aggregationsgrad zu schließen. N2 - This work studies time-resolved phenomena in molecular systems. Both, the wave-packet dynamics after photoexcitation and the spectral properties, examined via absorption and two-dimensional spectroscopy, are regarded. First, the wave-packet and population dynamics in two coupled diabatic states are considered. After an impulsive excitation from the initially populated state, two significantly different oscillatory features are visible in the population dynamics. The slower varying population transfer follows the oscillation period of the vibrational motion and results from the diabatic transition when the wave-packet passes through the crossing region of the respective potentials. The ultrafast oscillatory component with an oscillation period of about 4 fs can be described as a Rabi-like oscillation induced by the (time-independent) coupling. It is characterized in detail via analytic calculations. For this contribution to be visible, some conditions have to be met: The wave-packet needs to be spatially localized during the duration of the oscillations. This is the case at the classical turning points of the wave-packet motion. The oscillations' amplitude seen in the populations is proportional to the ratio between the coupling and the energetic gap between the involved states. This means that the coupling needs to be large compared to the energy separation at the points where the wave-packet is stationary. Additionally, the amplitude depends on the relative populations and the phases of the wave-packet components in the two states. The ultrafast oscillations persist in systems of higher dimensionality with different vibrational frequencies in each degree of freedom. The same model is used to examine charge-transfer processes via linear and 2D spectroscopy. A coupling to the environment is described by a quantum-jump algorithm with explicit treatment of dephasing, based on a quantum-master equation in Markov approximation. At each time step, one of three stochastic processes takes place with a pre-defined probability. Besides coherent propagation, jumps into other eigenstates of the system and dephasing occur. Two dissipation parameters are of relevance. The first is the value of the system-bath coupling which influences the overall energy relaxation rate while, additionally, the dephasing constant causes a loss of phase coherence without energy relaxation. Trap states are identified, which are characterized by very low jump rates to lower states. Their slow decay can be explained by the shape of their respective eigenfunctions, which possess a vastly different probability density than eigenstates of the non-trap states. This results in small matrix elements entering in the equations for the jump rates. The absorption spectrum exhibits peaks at the energies of the trap states because only the trap states' eigenfunctions lead to large Franck-Condon factors with the initial wave function. Different values of the dissipation parameters lead to changes in the relative peak intensities and peak widths. The 2D spectra of the charge-transfer system are calculated via the third-order polarization. They show many close lying peaks in a chessboard like distribution. The peaks can be traced back to transitions involving the trap states. Higher values of the system-bath coupling lead to a shift to lower energies because of the more efficient energy dissipation. Peaks corresponding to faster decaying trap states show more substantial loss in intensity as compared to other peaks. Higher values of the dephasing constant result in broader peaks. To better characterize the influence of the dissipation, we consider filtered 2D spectra. Therefore, cuts of the third-order polarization at different times are Fourier-transformed separately. Cuts at later times map the more effective energy relaxation along the respective time-variable. Via this technique the de-population of higher lying states can be monitored both in time and energy. Additionally it is shown that the decay of a specific peak can be related to the population decay of the corresponding eigenstate, even though the assignment of peaks in the 2D spectrum to transitions between eigenstates is not unique. The one-dimensional model can also be used to examine charge-transfer processes in organic mixed-valence compounds. Here, the question is, which processes take place after an optically induced energy transfer. Transient absorption spectra, recorded in the group of Prof. Lambert, hint to a fast internal conversion (IC) followed by thermalisation. To check this theoretically, absorption spectra at different temperatures are calculated and compared to the measured transient spectra. Depending on the value of the electronic coupling element, a very good to good agreement is found, supporting the existence of a fast IC process. The last part of this work considers vibronic 2D spectra of molecular aggregates. Therefore, the time-dependent Schrödinger equation is solved with the Multi-Dimentional Time-Dependent Hartree-method for a monomer, dimer and trimer system, and the polarization is calculated via a non-perturbative scheme. The trimer Hamiltonian consists of seven coupled electronic states and three or six vibrational degrees of freedom, respectively. The photon-echo contribution of the polarization is extracted via phase-coded laser pulses. This results in geometry dependent spectra: An angle between the monomer transition dipole moments of 0° (180°) leads to an H-aggregate (J-aggregate). In the purely electronic system, the location and intensities of the peaks are explained analytically. The spectra including vibrations show a rich vibronic structure. It is shown that spectra for higher degrees of aggregation are more complex because of the higher density of vibronic states. The J-aggregate is stronger red shifted in larger aggregates. The spectrum of the H-aggregate possesses a more complicated structure as compared to the J-aggregate spectrum. The inclusion of a second vibrational degree of freedom into each monomer results in spectra with overlapping peaks and an additional vibrational progression. Spectra of different mixtures of monomer, dimer and trimer are compared. Because the level of aggregation depends on temperature and concentration, this documents the influence of the experimental conditions on the 2D spectra. Finally, possible approaches to infer the degree of aggregation from the spectra are discussed. KW - Quantenmechanik KW - Ladungstransfer KW - Quantendynamik KW - Zweidimensionale elektronische Spektroskopie KW - Aggregat KW - Spektroskopie KW - Dimension 2 Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-136458 ER -