TY - JOUR A1 - Klughammer, Johanna A1 - Dittrich, Marcus A1 - Blom, Jochen A1 - Mitesser, Vera A1 - Vogel, Ulrich A1 - Frosch, Matthias A1 - Goesmann, Alexander A1 - Müller, Tobias A1 - Schoen, Christoph T1 - Comparative genome sequencing reveals within-host genetic changes in Neisseria meningitidis during invasive disease JF - PLoS ONE N2 - Some members of the physiological human microbiome occasionally cause life-threatening disease even in immunocompetent individuals. A prime example of such a commensal pathogen is Neisseria meningitidis, which normally resides in the human nasopharynx but is also a leading cause of sepsis and epidemic meningitis. Using N. meningitidis as model organism, we tested the hypothesis that virulence of commensal pathogens is a consequence of within host evolution and selection of invasive variants due to mutations at contingency genes, a mechanism called phase variation. In line with the hypothesis that phase variation evolved as an adaptation to colonize diverse hosts, computational comparisons of all 27 to date completely sequenced and annotated meningococcal genomes retrieved from public databases showed that contingency genes are indeed enriched for genes involved in host interactions. To assess within-host genetic changes in meningococci, we further used ultra-deep whole-genome sequencing of throat-blood strain pairs isolated from four patients suffering from invasive meningococcal disease. We detected up to three mutations per strain pair, affecting predominantly contingency genes involved in type IV pilus biogenesis. However, there was not a single (set) of mutation(s) that could invariably be found in all four pairs of strains. Phenotypic assays further showed that these genetic changes were generally not associated with increased serum resistance, higher fitness in human blood ex vivo or differences in the interaction with human epithelial and endothelial cells in vitro. In conclusion, we hypothesize that virulence of meningococci results from accidental emergence of invasive variants during carriage and without within host evolution of invasive phenotypes during disease progression in vivo. KW - blood KW - comparative genomics KW - throat KW - genetic loci KW - Neisseria meningitidis KW - genomic libraries KW - genome sequencing KW - sequence assembly tools Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-159547 VL - 12 IS - 1 ER - TY - JOUR A1 - Haertle, Larissa A1 - Maierhofer, Anna A1 - Böck, Julia A1 - Lehnen, Harald A1 - Böttcher, Yvonne A1 - Blüher, Matthias A1 - Schorsch, Martin A1 - Potabattula, Ramya A1 - El Hajj, Nady A1 - Appenzeller, Silke A1 - Haaf, Thomas T1 - Hypermethylation of the non-imprinted maternal MEG3 and paternal MEST alleles is highly variable among normal individuals JF - PLoS ONE N2 - Imprinted genes show parent-specific activity (functional haploidy), which makes them particularly vulnerable to epigenetic dysregulation. Here we studied the methylation profiles of oppositely imprinted genes at single DNA molecule resolution by two independent parental allele-specific deep bisulfite sequencing (DBS) techniques. Using Roche (GSJunior) next generation sequencing technology, we analyzed the maternally imprinted MEST promoter and the paternally imprinted MEG3 intergenic (IG) differentially methylated region (DMR) in fetal cord blood, adult blood, and visceral adipose tissue. Epimutations were defined as paternal or maternal alleles with >50% aberrantly (de)methylated CpG sites, showing the wrong methylation imprint. The epimutation rates (range 2–66%) of the paternal MEST and the maternal MEG3 IG DMR allele, which should be completely unmethylated, were significantly higher than those (0–15%) of the maternal MEST and paternal MEG3 alleles, which are expected to be fully methylated. This hypermethylation of the non-imprinted allele (HNA) was independent of parental origin. Very low epimutation rates in sperm suggest that HNA occurred after fertilization. DBS with Illumina (MiSeq) technology confirmed HNA for the MEST promoter and the MEG3 IG DMR, and to a lesser extent, for the paternally imprinted secondary MEG3 promoter and the maternally imprinted PEG3 promoter. HNA leads to biallelic methylation of imprinted genes in a considerable proportion of normal body cells (somatic mosaicism) and is highly variable between individuals. We propose that during development and differentiation maintenance of differential methylation at most imprinting control regions may become to some extent redundant. The accumulation of stochastic and environmentally-induced methylation errors on the non-imprinted allele may increase epigenetic diversity between cells and individuals. KW - DNA methylation KW - genomic imprinting KW - polymerase chain reaction KW - blood KW - epigenetics KW - sequence alignment KW - sperm Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-170433 VL - 12 IS - 8 ER -