TY - THES A1 - Schneider, Thomas T1 - Synthese von reversiblen und kovalent-reversiblen Cysteinprotease-Inhibitoren T1 - Synthesis of reversible and covalent-reversible inhibitors of cysteine-proteases N2 - Als Vorlage für diese Inhibitoren diente der kovalent gebundene Inhibitor 9IN aus der Kristallstruktur 2AMD. Die Entwicklung der neuen Leitstruktur (Abbildung 7-1) erfolgte dabei durch Fragmentierung mit dem Programm FRED im Arbeitskreis Prof. Knut Baumann (Univ. Braunschweig). Die dargestellten Verbindungen wurden als nicht-kovalent gebundene Inhibitoren entwickelt und sowohl an SARS-CoV-Mpro als auch an SARSCoV-PLpro getestet. Da die Basisverbindung 34j (R = H) in durchgeführten Dockingstudien die Enzym-Bindetaschen S1, S2 und S4 bereits ausreichend besetzt hatte, war das Ziel v.a. die noch freie Bindetasche S1‘ mit eingefügten Resten R zu besetzen. Dazu wurden in der Reihe 34a-t verschiedene Alkylreste eingefügt. Die Verbindungen 37a-cc bzw. 38a-p besitzen hingegen die Reste C(O)NHR, CO2R, CH2C(O)NHR und CH2CO2R. Im Verlauf der Synthese wurde der teure Baustein 4-Methylcyclohexancarbonsäure durch die günstigere Verbindung Cyclohexancarbonsäure ersetzt. Keine der dargestellten Verbindungen wies eine besondere Hemmung auf. Trotz geringer Hemmung konnte Verbindung 34e mit dem Enzym SARS-CoV-Mpro co-kristallisiert werden. Die genaue Lage des Inhibitors in der Bindetasche ist bislang noch nicht eindeutig geklärt. Der zweite Teil der vorliegenden Arbeit beschäftigt sich mit der Entwicklung von kovalent-reversiblen Inhibitoren von Cysteinproteasen auf Grundlage von Vinylsulfonen. Bisherige bekannte Vinylsulfone reagieren wie ein Michaelsystem in einer irreversiblen Addition. Es wurden durch QM-Rechnungen in der Arbeitsgruppe Prof. Bernd Engels substituierte Vinylsulfone vorgeschlagen, die fähig sein sollten, mit Cysteinproteasen eine kovalent-reversible Bindung eingehen zu können. Durch die Wahl sowohl eines geeigneten Substituenten als auch einer geeigneten Abgangsgruppe sollte die Reaktion reversibel sein, wenn sie thermoneutral bis schwach endergon verläuft. Um diese Berechnungen zu bestätigen, wurden die dargestellten Verbindungen mit einem Überschuss 2-Phenylethanthiol umgesetzt und der Reaktionsverlauf durch NMR-Spektroskopie verfolgt. Dabei konnte die Einstellung eines Gleichgewichts und damit auch die Reversibilität der Reaktion beobachtet werden. Aus den berechneten Gleichgewichtskonstanten konnten die freien Reaktionsenergien ΔG berechnet werden. Die Ergebnisse zeigen, dass die Reaktionen nahezu thermoneutral verlaufen und bestätigen damit die QM-Berechnungen. N2 - The covalently bound inhibitor 9IN (pdb-code: 2AMD) was the basis of these new synthesized inhibitors (figure 8-1). The development of this new lead structure was achieved in the group of Knut Baumann (Univ. Braunschweig) by fragmentation using the program FRED. The compounds were developed as non-covalent inhibitors and were tested against both SARS-CoV-Mpro and SARS-CoV-PLpro. In the docking studies compound 34j (R=H) occupied the binding pockets S1, S2 and S4 of the enzyme sufficiently. So the aim was to fill the remaining binding pocket S1’ with a side-chain (R). Different alkyl sidechains were attached yielding compounds 34a-t. The compounds 37a-cc and 38a-p are carrying the side-chains C(O)NHR, CO2R, CH2C(O)NHR and CH2CO2R. Furthermore, the expensive building block 4-methylcyclohexanecarboxylic acid was replaced by the cheaper cyclohexanecarboxylic acid. None of the synthesized compounds showed good inhibition. But despite the low inhibition potency compound 34e was successfully co-crystallized with SARS-CoV-Mpro. Up to now the binding mode of the inhibitor in the binding pocket is not clear. Ongoing studies will clarify the exact binding mode of the inhibitor. The second part of this work consists of the development of covalent-reversible inhibitors of cysteineproteases based on vinylsulfones. Known inhibitors with a vinylsulfone-system react via an irreversible addition with the active center similar to a Michael-system. Substituted vinylsulfones were developed by QM-calculations in the group of Prof. Bernd Engels (Univ. Wuerzburg). These systems were postulated to be able to form a covalent-reversible bond with the cysteine sulfur in the active site. The reversible reaction should be possible by choosing a suitable substituent and a suitable leaving group. The reaction energy must be thermoneutral or weakly endergonic. To confirm these calculations the synthesized compounds were reacted with 2-phenylethanethiol and the reaction paths and progress were observed by NMR-spectroscopy. The reaction was found to be reversible. The reaction energies ΔG were calculated from the measured equilibrium constants. The results show that the measured vinylsulfones are reacting nearly thermoneutral. Thus they verify the QM-calculations. KW - Coronaviren KW - SARS KW - Proteaseinhibitor KW - Cysteinproteasen KW - Organische Synthese KW - coronavirus KW - organic synthesis KW - SARS KW - protease inhibitors Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-67491 ER - TY - THES A1 - Schulz, Franziska T1 - Synthese und Testung von Aziridin-2-carboxylaten als Cystein-Protease-Inhibitoren T1 - synthesis and testing of aziridine-2-carboxylates as inhibitors of cysteine proteases N2 - Das Ziel der vorliegenden Arbeit war es, eine neue Struktur abgeleitet von den potenten Aziridin-2,3-dicarboxylaten zu synthetisieren und diese dann an verschiedenen humanen und parasitären Cystein-Proteasen zu testen. Dafür wurde als Baustein die Aziridin-2-carbonsäure gewählt, die an C3-Position unsubstituiert ist und an C2-Position eine Carboxyl-Funktion trägt. Außerdem sollte der Ringstickstoff im Gegensatz zu den bisher bekannten N-acylierten Aziridin-2,3-dicarboxylaten basische Eigenschaften besitzten. Die Struktur der synthetisierten Azridin-2-carboxylate ist daher wie folgt gewählt worden: Die durch Cromwell-Synthese erhaltenen Verbindungen wurden als Racemate oder als Diastereomerengemische erhalten. Dabei wurden die Diastereomeren-Verhältnisse der einzelnen Verbindungen über die Integrale in den 1H-NMR-Spektren bestimmt. Die an Position R3 mit einer Aminosäure substituierten Aziridin-2-carboxylate wurden durch eine Modifikation der Cromwell-Synthese erhalten. Es wurden insgesamt 27 Azridin-2-carboxylate synthetisiert, die dann an verschiedenen Proteasen getestet wurden. Zu den getesteten Cystein-Proteasen gehören die parasitären Enzyme Falcipain 2, 3 und Rhodesain, die virale SARS-CoV Mpro und die humanen Proteasen Cathepsin B und L. Es wurde jeweils ein Screening der Substanzen an den Proteasen durchgeführt. Bei den wirksamen Verbindungen wurden dann die Ki-, ki-, k2nd- oder IC50-Werte bestimmt. Außerdem wurden die Substanzen auch an der SAP2, einer Aspartat-Protease aus Candida albicans, getestet, an der sie allerdings kaum eine Hemmwirkung zeigten. Bei den nicht-selektiven Inhibitoren stellte sich die Verbindung 9.1a, die auch an Rhodesain eine gute Aktivität besitzt, als ein noch potenterer Inhibitor heraus. Hauptsächlich zeigten an Rhodesain Verbindungen eine gute Hemmwirkung, die Nε- oder Nα-geschütztes Lysin-, Phenylalanin- oder Asparaginsäureester als Substituenten enthalten. Dabei waren die Verbindungen 9.1a/b, 4.9b und 4.8a/b die potentesten Inhibitoren am Rhodesain und 9.1b, 9.2, 4.4b und 4.8b an Falcipain 2 und 3. An der SARS-CoV Mpro hemmte die Verbindung 9.1b am besten. Es wurde weiterhin die Abhängigkeit der Aktivität der parasitären Cystein-Protease Rhodesain vom pH-Wert bestimmt, indem die Fluoreszenzzunahme durch die hydrolytische Spaltung des Substrates durch das Enzym bei pH-Werten zwischen 2.5 und 8.0 über 30 min vermessen wurde. Dabei zeigte sich, dass das Rhodesain in einem sehr weiten pH-Bereich von 3.0 – 8.0 eine sehr hohe Aktivität aufweist (80 – 100 %) und erst im relativ sauren Bereich bei pH 2.5 die Aktivität nachlässt (~ 60 %). Außerdem wurde auch die Hemmung von Rhodesain durch 9.1b in Abhängigkeit vom pH-Wert analysiert, wobei die Hemmstärke im sauren pH-Bereich durch die Protonierung des Stickstoffes des Aziridinringes sehr stark zunahm. Im Rahmen des SFB630 („Erkennung, Gewinnung und funktionale Analyse von Wirkstoffen gegen Infektionskrankheiten“) konnten viele der synthetisierten Verbindungen an verschiedenen Krankheitserregern, wie Trypanosoma brucei brucei, Leishmania major, sowie an sog. Problemkeimen, zu denen die gram-negativen Erreger Pseudomonas aeruginosa und Escheria coli, sowie die gram-positiven Staphylococcus-Arten S. aureus (Linie 325, 8325) und S. epidermidis (Linie RP62) gehören, untersucht werden. Dabei stellten sich die Verbindungen 9.1a/b an Trypanosoma brucei brucei als wirksame Inhibitoren gegen den Erreger heraus. Dies korreliert auch sehr gut mit der hohen Aktivität der beiden Verbindungen gegen Rhodesain (9.1a: Ki: 15.41 µM; 9.1b: Ki: 2.99 µM), wobei die Verbindung 9.1b allerdings an Makrophagen toxisch wirkte (9.1b: IC50: 80 µM). Außerdem war 9.1b auch ein Inhibitor des Wachstumes und der Biofilmbildung von S. aureus. Gegenüber Plasmodium falciparum zeigten die Verbindungen 4.9a/b (4.9a: IC50: 0.5 µM; 4.9b: IC50: 2.2 µM) und 9.4 (9.4: IC50: 1.7 µM) die größte Aktivität, wobei allerdings diese Verbindungen keine Hemmung an den Falcipainen aufwiesen und somit das Target der Inhibition noch ungeklärt ist. Im Rahmen eines Auslandsaufenthaltes in der Arbeitsgruppe von Prof. Dr. Philip Rosenthal, San Francisco, California, wurde außerdem ein Screening verschiedener im Arbeitskreis synthetisierter Substanzklassen an Falcipain 2, 3 und an Plasmodium falciparum durchgeführt. Die dabei getesteten Substanzklassen sind in Abb. 6.1 aufgezeigt. Die Aziridin-2,3-dicarboxylate II-c, I-v und I-j zeigten dabei die beste Aktivität, sowohl an den Falcipainen als auch an dem Parasiten. Unter den Epoxiden und an Position C3 substituierten Aziridin-2-carboxylaten ist die Verbindung IV-2 die einzige, die eine Hemmwirkung aufweist. Unter den anderen getesten Verbindungen zeigten nur die Ethacrynsäure-Derivate VII-b und VII-f eine antiplasmodiale Aktivität. N2 - The goal of the present work was the syntheses of a new structure derived from the aziridine-2,3-dicarboxylate motif, and the testing against different human and parasitic cysteine proteases. Therefore we chose the aziridine-2-carboxylate motif as building block which is unsubstituted at position C3 of the azridine ring and substituted with a carboxyl function at position C2. In addition to this, the nitrogen of the ring should have basic properties in opposite to the common N-acylated aziridine-2,3-dicarboxylates. The compounds were obtained as racemic or diastereomeric mixtures by the Cromwell synthesis. The diastereomeric excesses were determined by analysis of the integrals of the signals of the ring protons in the 1H-NMR spectra. The aziridine-2-carboxylates substituted with an amino acid ester at position R3 were synthesized by a modification of the Cromwell synthesis. Overall, 27 new aziridine-2-carboxylates were synthesized as new potential irreversible inhibitors of cysteine proteases. The aziridine-2-carboxylates were tested against the parasitic cysteine proteases falcipain 2 and 3 and rhodesain, the viral SARS-CoV Mpro and the human enzymes cathepsin B and L. First, we screened the aziridine-2-carboxylates to identify new potential agents against the proteases. Then we determined the inhibition constants Ki, ki, k2nd or IC50 for the most potent compounds. Against the aspartatic protease SAP2 from Candida albicans the aziridine-2-carboxylates showed no activity. In order to determine the inhibition constants we chose the continuous assay according to Tian and Tsou. The inhibition constants against SARS-CoV Mpro and SAP2 were determined using a FRET assay. Within the non-selective inhibitors the compound 9.1a was identified as a very potent inhibitor of cathepsin L and rhodesain. Compounds showing activity against rhodesain are the Nε- or Nα-protected lysine, phenylalanine or aspartic acid derivatives. Thus, the aziridine-2-carboxylates 9.1a/b, 4.9b and 4.8a/b were the most potent inhibitors against rhodesain and 9.1b, 9.2, 4.4b and 4.8b against falcipain 2 and 3. Against the SARS-CoV Mpro the compound 9.1b showed the highest activity. In order to analyse the pH-dependency of hydrolytic activity of the parasitic cysteine protease rhodesain we determined the activity of the enzyme in dilution assays measuring the increase of the fluorescence at different pH values between 2.5 and 8.0. Rhodesain was active in a wide pH range from 3.0 – 8.0 (80 – 100 %) with decreased activity at pH 2.5 (~ 60 %). In addition to this, we determined the pH-dependence of the inhibition constants of 9.1b against rhodesain. We found that the inhibition potency increased at an acid pH range due to the protonation of the basic nitrogen of the aziridine ring. Within the framework of the Collaborative Research Centre SFB 630 most compounds were examined for the activity against various pathogens: Trypanosoma brucei brucei, Leishmania major, the gramnegative bacteria Pseudomonas aeruginosa and Escheria coli, as well as grampositive Staphylococcus strains S. aureus (Linie 325, 8325) and S. epidermidis (line RP62). Tests against Trypanosoma brucei brucei revealed some active compounds which are not cytotoxic against the host cells, the macrophages (IC50 > 100 µM). The best compounds against this pathogen were 9.1a/b (9.1a: Ki: 15.41 µM; 9.1b: Ki: 2.99 µM). These results correlate well with the inhibition constants of this compounds against rhodesain, but unfortunaly 9.1b showed cytotoxity against the macrophages (9.1b: IC50: 80 µM). Furthermore, 9.1b inhibited the growth and biofilm production of S. aureus. The compounds 4.9a/b (4.9a: IC50: 0.5 µM; 4.9b: IC50: 2.2 µM) and 9.4 (9.4: IC50: 1.7 µM) showed the highest activity against Plasmodium falciparum, but unfortunaly they did not inhibit falcipain 2 or 3 and so the target of the inhibition of the pathogen is uncertain. Within the framework of another collaboration with the working group of Prof. Dr. Philip Rosenthal, San Francisco, California, I determined the inhibition constants of series of different compounds (scheme 6.1) against falcipain 2, falcipain 3 and Plasmodium falciparum. The aziridine-2,3-dicarboxylates II-c, I-v and I-j showed the highest activity both against the falcipains and the pathogen Plasmodium falciparum. Within the series of epoxides and the aziridine-2-carboxylates substituted at position 3 only the compound IV-2 showed activity against the pathogen. Besides this, the ethacrynic acid derivates VII-b and VII-f showed a high antiplasmodial activity. KW - Aziridine KW - Cysteinproteasen KW - Inhibitor KW - Aziridin-2-carboxylate KW - Cystein-Proteasen KW - Inhibitor KW - aziridine KW - cysteine proteases KW - inhibitors Y1 - 2006 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-19891 ER - TY - THES A1 - Käppler, Ulrich T1 - Synthese und Testung nichtpeptidischer Cystein-Protease-Inhibitoren - Etacrynsäure als Leitstruktur T1 - Synthesis and evaluation of non-peptidic cysteine protease inhibitors - etacrynic acid as lead compound N2 - Cystein-Proteasen sind in eine Vielzahl physiologischer und pathophysiologischen Prozesse involviert. Auch bei humanpathogenen Parasiten sind sie weit verbreitet und für das Überleben der Erreger essentiell. Substanzen, die diese Proteasen hemmen, könnten daher bei vielen Indikationen als neue Arzneistoffe eingesetzt werden. In der vorliegenden Arbeit wurden nichtpeptidische Cystein-Proteaseinhibitoren synthetisiert, die als elektrophile Gruppe ein a,b-ungesättigtes Keton enthalten, und den Cysteinrest im aktiven Zentrum der Proteasen in einer Michael-Reaktion addieren. Als Leitstruktur diente das Diuretikum Etacrynsäure, dessen Struktur an verschiedenen Positionen modifiziert wurde. Der Hauptsyntheseweg kann wie folgt beschrieben werden: Die Acylseitenkette gewünschter Kettenlänge wurde durch Friedel-Crafts-Acylierung in entsprechend substituierte Anisole eingeführt. Diese wurden in einer unmittelbar anschließenden Reaktion zu acylierten Phenolen gespalten, die in einem Folgeschritt mit Bromessigsäureethylester zu acylierten Phenoxyessigsäureethylestern verethert wurden. In diese wurde in a-Position zum Keton eine Doppelbindung eingeführt. Über eine Mannich-Reaktion mit N,N,N’,N’-Tetramethyldiaminomethan/Acetanhydrid oder Urotropin/Acetanhydrid erhält man so die acylierten Phenoxyessigsäureethylester mit a,b-ungesättigter Ketonstruktur. Zur Darstellung der entsprechenden ungesättigten Säuren aus den acylierten Phenoxyessigsäureethylestern bedient man sich einer basenkatalysierten Aldokondensation mit Formaldehyd, unter deren Bedingungen der Ethylester zur Säure gespalten wird. Kupplung von Etacrynsäure mit Aminen unter Aktivierung mit DCC/N-Hydroxysuccinimid führte zu den Etacrynsäureamiden. Methylierung der acylierten Phenole und anschließende Mannich-Reaktion dient der Darstellung der acylierten Anisole mit a,b-ungesättigter Ketonstruktur. Auf diesem Syntheseweg wurden 28 Derivate mit Michael-System synthetisiert. Diese wurden an den Cystein-Proteasen Papain, Cathepsin B (CB), Falcipain (FP) und Rhodesain (RD) getestet. Gegen Serin-Proteasen wurde keine Hemmung festgestellt. Die meisten Inhibitoren zeigten bei CB, FP und RD eine nicht-zeitabhängige Kinetik der Enzyminaktivierung. Nur bei Papain wurde eine zeitabhängige Kinetik beobachtet. Die Substanzen wurden zwar als irreversible Inhibitoren konzipiert, Dialyseversuche beweisen jedoch eine reversible Hemmung. Da eine Vergleichssubstanz ohne aktivierte Doppelbindung unwirksam ist, kann von einer kovalenten Reaktion mit den Cystein-Proteasen ausgegangen werden. Bestimmt wurden die Dissoziationskonstanten Ki der Enzym-Inhibitor-Komplexe EI als Maß für die Affinitäten der Inhibitoren zum Enzym und, soforn möglich, auch die Alkylierungsgeschwindigkeitskonstanten ki der Reaktion zu modifiziertem Enzym E-I. Eine allgemeine Selektivität für einzelne Enzyme konnte nicht gefunden werden. Die besten Inhibitoren (Ki = 3.2 - 57.5 µM) waren die Etacrynsäureamide. Die Analyse der Struktur-Wirkungs-Beziehungen ergab, dass wie erwartet das a,b-ungesättigte System essentiell für die Wirksamkeit an Cystein-Proteasen ist, ebenso ein aromatischer Ring. Eine längere Seitenkette an der Doppelbindung, die mindestens einen Ethylrest trägt, sowie zwei benachbarte Halogenatome am aromatischen Ring erwiesen sich als wirkungssteigernd. Ester und Amide zeigten generell bessere Hemmeigenschaften als die freien Säuren. Methoxy-Gruppen am Aromaten hatten keinen Wirkungsverlust zur Folge, senken aber die Löslichkeit in wässrigem Medium. Viel versprechend ist auch der [5-Chlor-2-(2-methylenbutyryl)-phenoxy]-essigsäureethylester, der das a,b-ungesättigte Doppelbindungs-System in ortho-Position zum phenolischen Sauerstoffatom trägt. Innerhalb der Amide sind kurze, voluminöse Reste wie der tertButylrest von Vorteil, eine gewisse Selektivität wird mit langkettigen Amiden wie dem n-Hexylamid für FP gegenüber CB und RD erreicht. Die Verbindungen wurden auf die Wachstumshemmung von grampositiven und gramnegativen Problemkeimen, sowie auf die Hemmung der Biofilmbildung grampositiver Erreger getestet. Bei gramnegativen Keimen wurde das Wachstum nicht gehemmt. Bei den grampositiven Keimen Staphylococcus aureus und S. epidermidis wirkten ebenfalls der Etacrynsäureethylester und das Hexylamid, Benzylamid, Anilid der Etacrynsäure am besten (MHK = 5 - 20 µM). Die genannten Verbindungen zeigten auch die stärkste Hemmwirkung auf die Biofilmbildung (100 % bei 20 - 40 µM bis zu 95 % bei 2.5 - 5 µM an S. aureus). Aufgrund positiver Screeningergebnisse in einem enzymatischen HPLC-Assays an der humanen SARS-Coronavirus Hauptprotease (SARS-CoV Mpro) wurden Docking-Experimente mit Etacrynsäure-tertbutylamid an der humanen SARS-Coronavirus Hauptprotease (SARS-CoV Mpro) durchgeführt. Die Ergebnisse führten zur Synthese einer modifizierten Verbindung, die eine geringe Verbesserung der Enzyminhibition im fluorimetrischen Assay zeigte. N2 - Cysteine proteases are involved in a variety of physiological and pathophysiological processes. They are wide-spread in pathogenic parasites as well and are essential for the survival of the pathogens. Compounds which inhibit these proteases could serve as new pharmaceuticals for many therapeutic indications. In the present work non-peptidic cysteine protease inhibitors, which contain an a,b-unsaturated ketone as electrophilic group and which are able to add the cysteine residue of the proteases’ active site in a Michael-type reaction, were synthesized. The diuretic etacrynic acid was used as lead compound, its structure was modified in several positions. The main synthetic pathway is as follows: the acyl side chain of the desired length was introduced in correspondingly substituted anisoles via a Friedel-Crafts acylation. The yielded acylated anisols were cleaved to the acylated phenols in a consecutive reaction. They were transferred to the acylated phenoxy acetic acid esters in a following step with bromo acetic acid ethyl ester. A double bond was introduced into the acylated phenoxy acetic acid esters in a-position of the ketone. The acylated phenoxy acetic acid ethyl esters with an a,b-unsaturated ketone moiety are yielded via a Mannich reaction with N,N,N’,N’-tetramethyl-diaminomethane/acetic acid anhydride or urotropine/acetic acid anhydride. To synthesize the corresponding unsaturated acids out of the acylated phenoxy acetic acid esters a base-catalyzed aldol condensation with formaldehyde in aqueous ethanol is used. Under these conditions the ethyl ester is cleaved to give the free acid. Coupling of etacrynic acid with amines by activation with DCC/N-hydroxy succinic imide led to the etacrynic acid amides. Methylation of the acylated phenols and consecutive Mannich reaction, as described above, leads to the acylated anisols with a,b-unsaturated ketone moiety. Following this synthetic pathway 28 derivatives with a Michael system were synthesized. These compounds were tested in the cysteine proteases papain, cathepsin B (CB), falcipain (FP) and rhodesain (RD). No inhibition of serine proteases was detected. Most of the inhibitors showed non-time-dependent kinetics for enzyme inactivation of CB, FP and RD. Only with papain time-dependent kinetics are observed. Although the compounds were planned as irreversible inhibitors, dialysis assays proved a reversible inhibiton. Since a comparative compound without a double bond is inactive, a covalent reaction with the cystein proteases can be assumed. Dissociation constants Ki of the enzyme-inhibitor-complexes EI were determined as a measurement of the affinities of the inhibitors towards the enzymes, as well as the alkylation velocity constants ki of the reaction yielding the modified enzyme E-I. The latter could be determined only in cases of a time-dependent inhibition. A general selectivity for single enzymes could not be found. The etacrynic acid amides were the best inhibitors (Ki = 3.2 - 57.5 µM). The analysis of the structure-activity relationship showed, as expected, the a,b-unsaturated system being essential for activity in cysteine proteases. The same fact is true for the aromatic ring. A longer side chain next to the double bond, which contains at least an ethyl moiety, as well as two vicinal halogen atoms at the aromatic ring proved to enhance the activtity of the inhibitors. Generally, esters and amides showed better inhibition properties than the free acids. Methoxy groups at the aromatic ring did not result in a loss of inhibition but in a reduced solubility in aqueous media. Compound [5-Chloro-2-(2-methylenebutyryl)-phenoxy]-acetic acid ethyl ester, which carries the a,b-unsaturated double bond system in ortho position to the phenolic oxygen atom, is also promising. Within the amides short voluminous moieties such as the tertbutyl moiety are advantageous. A distinct selectivity for FP against CB and RD can be achieved with long-chain amides such as the n-hexyl amide. The compounds were examined for growth inhibition of gram-positive and gram-negative pathogens as well as for inhibition of biofilm formation of gram-positive pathogens. The growth of gram-negative germs was not inhibited. The gram-positive germs Staphylococcus aureus and S. epidermidis were inactivated best by etacrynic acid ethyl ester and by the n-hexyl amide, the benzyl amide and the anilide of etacrynic acid (MHK = 5 - 20 µM). The mentioned compounds also showed the highest inhibition rate for biofilm formation (100 % at 20 - 40 µM to 95 % at 2.5 - 5 µM in S. aureus). Due to positive screening results in a enzymatic HPLC-assay of human SARS coronavirus main protease (SARS-CoV Mpro) docking experiments were conducted on etacrynic acid tertbutyl amide. The results led to the synthesis of a modified compound which showed weak improvement of enzyme inhibition in a fluorimetric assay. KW - Cysteinproteasen KW - Proteaseinhibitor KW - Etacrynsäure KW - Etacrynsäure KW - nichtpeptidische Inhibitoren KW - Cystein-Protease KW - etacrynic acid KW - non-peptidic inhibitors KW - cysteine protease Y1 - 2004 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-12122 ER - TY - THES A1 - Vicik, Radim T1 - Synthese und Eigenschaften N-Acylierter Aziridin-2,3-dicarboxylate als selektive, peptidomimetische Inhibitoren von Cystein-Proteasen der Cathepsin-L-Subfamilie T1 - Synthesis and Properties N-Acylated Aziridin-2,3-dicarboxylates as selective, peptidomimetic Inhibitors of Cystein Proteases of Cathepsin-L-Subfamily N2 - Die Cystein-Proteasen der Säuger und Parasiten wurden erst in den letzten zwei Jahrzehnten als pharmazeutisch/medizinisches Target erkannt. Die genauen Aufgaben der einzelnen Enzyme dieser sehr umfangreichen und ständig wachsenden Protease-Familie bleiben zwar teilweise noch unbekannt, es ist jedoch klar, dass ihre Aufgabe nicht nur der unspezifische Protein-Abbau ist. Das Ziel der vorliegenden Arbeit waren die Synthese einer Reihe peptidomimetischer Inhibitoren mit elektrophilem Aziridin-2,3-dicarbonsäure-Baustein und deren Testung an den Proteasen Cathepsin B (human), Cathepsin L (Paramecium tetraurelia), Falcipain-2 (Plasmodium falciparum) und Rhodesain (Trypanosoma brucei rhodesiense). Die Verbindungen sind als irreversible Inhibitoren der Proteasen konzipiert. Der Aziridin-Baustein als Elektrophil wird durch den Cystein-Rest des aktiven Zentrums der Proteasen angegriffen, es erfolgt eine nucleophile Ringöffnung und damit die irreversible Alkylierung der Proteasen. Die Aziridin-Bausteine wurden entweder stereoselektiv aus Tartraten oder als Racemate aus Fumaraten dargestellt. Durch NMR-spektroskopische Versuche wurde der Mechanismus der Epimerisierung der als Intermediate der stereoselektiven Synthese auftretenden Azidoalkohole aufgeklärt. Die N-Acylierung des Aziridin-Bausteins mit den Aminosäuren bzw. Dipeptiden erfolgte über Segmentkopplungen oder über eine schrittweise Anknüpfung der Aminosäuren. Es wurden dabei verschiedenste Methoden der Peptidchemie eingesetzt. Die Hemmkonstanten der synthetisierten Substanzen wurden in einem kontinuierlichen fluorimetrischen Mikrotiterplatten-Assay bei Inhibitor-Konzentrationen von 0.35 - 140 µM ermittelt. Als Substrat diente für alle Enzyme Z-Phe-Arg-AMC. Der Nachweis der Irreversibilität der Hemmung wurde durch Dialyse-Versuche und die Affinitätsmarkierung von Cathepsin L und Falcipain 2 mit Hilfe eines Biotin-markierten Inhibitors erbracht. Bei Inhibitoren, die eine zeitabhängige Hemmung aufweisen, wurden die Alkylierungskonstanten (ki –Werte) ermittelt. Diese sind im Vergleich zu den Konstanten der Epoxysuccinyl-Peptide ca. 1000x kleiner, was frühere Untersuchungen bestätigt. Aus den ermittelten Dissoziationskonstanten (Ki) ist die Selektivität für Cathepsin-L-ähnliche Proteasen eindeutig. Dabei wird die Reihenfolge RD > CL > FP >>> CB gefunden. Der beste Inhibitor für alle Enzyme ist die Substanz 116C (BOC-(S)-Leu-(S)-Azy-(S,S)-Azi(OBn)2), für die Hemmkonstanten im unteren micromolaren bzw. sogar nanomolaren Bereich gefunden werden. Unter den Substanzen finden sich auch einige, die für einzelne Enzyme selektiv sind. Für CL sind es die Verbindungen 517C, 105G, Z-023B, 023A; für CB 034A und 013B und für RD 112C, 222C, 105B, 013A. Dabei gibt es zwei Inhibitoren (105A, 517G), die selektiv nur die parasitären Enzyme FP und RD hemmen. Die Analyse der Struktur-Wirkungs-Beziehungen ergab, dass in Abhängigkeit von den Substituenten am Aziridinring (Benzylester, Ethylester, Disäure), von den Substituenten am Aziridin-Stickstoff (Phe-Ala, Leu-Xxx, Gly-Xxx, Xxx = cyclische Aminosäure) und der Stereochemie unterschiedliche Bindungsmodi vorliegen müssen. Erste Docking-Versuche, die in Kooperation mit der Arbeitsgruppe Baumann (Institut für Pharmazie und LMC, Universität Würzburg) durchgeführt wurden, bestätigen dies. Postuliert wird für Inhibitoren, die die Sequenz Leu-Pro enthalten, eine Bindung an die S`- Seite von Cathepsin L. Dies erklärt die Selektivität dieser Inhibitoren, denn innerhalb der S`-Substratbindungstaschen finden sich die größten strukturellen Unterschiede zwischen Cathepsin B und den Cathepsin-L-ähnlichen Proteasen. Im Gegensatz dazu wird für eines der Phe-Ala-Derivate eine Bindung an die S-Taschen postuliert, die zwischen den einzelnen Proteasen geringere strukturelle Unterschiede aufweisen. Dieser Inhibitor hemmt, wie fast alle Phe-Ala-Derivate, dementsprechend auch Cathepsin B besser als die Leu-Xxx-Derivate. In Rahmen einer Kooperation mit der Arbeitsgruppe Engels Institut für Organische Chemie, Universität Würzburg) wurden quantenchemische Rechnungen durchgeführt, die u.a. den Einfluss von Substituenten auf die Kinetik und Thermodynamik der nucleophilen Ringöffnung untersuchten. Vorhergesagt wurde, dass Substituenten am Aziridin-Stickstoff, die den Übergangzustand stabilisieren (N-Formyl), zu einer besseren Hemmung führen sollten. Das darauf hin synthetisierte N-Formylaziridin-2,3-dicarboxylat 008B weist eine etwa 5000x bessere Hemmung von CL auf als das nicht-formylierte Diethylaziridin-2,3-dicarboxylat. Die gezielt als "affinity label" entwickelte Biotin-markierte Verbindung 999C wurde zur Identifizierung von Cystein-Proteasen, die von Plasmodium falciparum exprimiert werden, eingesetzt (Kooperation mit der Arbeitsgruppe Gelhaus/Leippe, Institut für Zoologie, Universität Kiel). N2 - Mammalian and parasitic cysteine proteases have been discovered as potential drug targets within the last two decades. The physiological and pathophysiological functions of this huge and growing family of proteases are not yet known in detail. However, their role is no longer considered to be only unspecific protein degradation. The goal of the present work was the syntheses of a series of peptidomimetic cysteine protease inhibitors containing aziridine-2,3-dicarboxylate as electrophilic fragment, and the testing of the synthesized compounds on the cysteine proteases cathepsin B (human), cathepsin L (Paramecium tetraurelia), falcipain 2 (Plasmodium falciparum), and rhodesain (Trypanosoma brucei rhodesiense. The compounds are designed as irreversible protease inhibitors. The aziridine ring represents an electophilic building block which is attacked by the cysteine residue of the proteases` active sites. As a consequence, the nucleophilic ring opening reaction leads to irreversible enzyme alkylation. The aziridine building blocks were synthesized stereoselectively in a chiral pool synthesis starting from tartrates, and as racemates starting from fumarates, respectively. NMR spectroscopic studies were used to clarify the mechanism of epimerization occurring during the synthesis of the azido alcohols which are intermediates of the stereoselective synthetic route. The N-acylation of the aziridines with amino acids or dipeptides was carried out via segment or subsequent peptide coupling. Various methods of peptide chemistry were used. The inhibition constants were determined in fluorimetric microplate enzyme assays with inhibitor concentrations between 0.35-140 µM. In all cases, the substrate Z-Phe-Arg-AMC was used. The irreversibility of inhibition was proven by dialysis assays, and by affinity labelling of CL and falcipain using a biotinylated inhibitor. The alkylation rate constant ki was determined in cases where time-dependent inhibition could be observed. In comparison to epoxysuccinyl peptides the ki -values are lower by three orders of magnitude confirming previous investigations. The Ki values unambiguously show that the compounds exhibit a selectivity for the CL-like enzymes. The order of inhibition potency is RD > CL > FP >>> CB. The most potent inhibitor is 116C (BOC-(S)-Leu-(S)-Azy-(S,S)-Azi(OBn)2) with inhibition constants in the submicromolar and even nanomolar range. Some compounds exhibit selectivity for single enzymes: CL: 517C, 105G, Z-023B, 023A; CB: 034A, 013B; RD: 112C, 222C, 105B, 013A. Compounds 105A and 517G selectively inhibit the parasitic proteases FP and RD. The analysis of the structure-activity-relationship led to the assumption that different binding modes have to exist in dependence on the aziridine ring substituents (benzyl ester, ethyl ester, diacid), of the aziridine nitrogen substituents (Phe-Ala, Leu-Xxx, Gly-Xxx, Xxx = cyclic amino acid), and of the stereochemistry, respectively. First docking experiments, performed in cooperation with Dr. Baumann`s group (Institue of Pharmay and Food Chemistry, University of Wuerzburg), confirm this assumption. Inhibitors containing a Leu-Pro sequence are predicted to bind into the S`-subsites of CL. Since the most striking structural difference between CB and CL-like proteases is found within these S`-subsites the selectivity between the enzymes may be due to binding into these subsites. In contrast, for a Phe-Ala derivative the docking postulates binding into the S-subsites which do not differ much between the enzymes. As a consequence, CB is inhibited much better by Phe-Ala-derivatives than by Leu-Xxx-derivatives. In cooperation with Prof. Engels` group (Institute of Organic Chemistry, University of Wuerzburg) quantumchemical computations were performed analyzing the influence of substituents on the thermodynamics and kinetics of the nucleophilic ring opening. These calculations predicted that substituents stabilizing the transition state (N-formyl) should improve inhibition potency. In order to proof this predicition the compound 008B (N-formyl aziridine-2,3-dicarboxylate) was synthesized and tested. Indeed, the compound is about 5000x more potent on CL than the non-formylated diethyl aziridine-2,3-dicarboxylate. The principal mechanism of inhibition - the nucleophilic ring opening - was proven in a model reaction by means of NMR spectroscopy and mass spectrometry. The biotinylated compound 999C was designed as an affinity labelling inhibitor usable to label and to identify cysteine proteases expressed by Plasmodium falciparum (cooperation with the group of Dr. Gelhaus, Prof. Leippe, Institute of Zoology, University of Kiel). KW - Aziridine KW - Cysteinproteasen KW - Inhibitor KW - Cystein KW - Protease KW - irreversibel KW - Aziridin KW - Cathepsin KW - cystein KW - protease KW - irreversible KW - aziridin KW - cathepsin Y1 - 2004 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-11127 ER - TY - THES A1 - Buback, Verena Simone [geb. Schulz] T1 - Synthese neuer Cystein-Protease-Inhibitoren sowie deren theoretische und experimentelle Untersuchung hinsichtlich der Struktur-Wirkungs-Beziehung T1 - Synthesis of new Cystein protease inhibitors and their theoretical and experimental investigation regarding the structure activity relationship N2 - Derivate von Vinylsulfonen (VS), die zur Klasse der Michael-Akzeptoren gehören, haben sich in den letzten Jahren als potente irreversible Inhibitoren von Cystein-Proteasen etabliert. Durch einen nucleophilen Angriff des Cys-Restes im aktiven Zentrum der Protease auf das beta-Kohlenstoffatom der C-C-Doppelbindung wird die Protease irreversibel alkyliert. Ziel dieser Arbeit war es, einfache theoretische und experimentelle Methoden zu entwickeln, um erste Schlussfolgerungen hinsichtlich der Reaktivität unterschiedlicher Vinylsulfone ziehen zu können, die zur vollständigen Aufklärung der Struktur-Wirkungsbeziehung von Vinylsulfonen mit diversen Cystein-Proteasen dienen. Im ersten Teil der Arbeit wurden quantenmechanische Rechnungen an kleinen Vinylsulfon-Bausteinen angestellt, um den Einfluss unterschiedlicher Substitutionsmuster an der Sulfoneinheit auf die Reaktionskinetik von Vinylsulfonen zu untersuchen. Anhand der jeweiligen Potentialflächen ließen sich die charakteristischen Punkte der Reaktion, wie der Reaktionskomplex, der Übergangszustand (transition state, TS) sowie das Produkt mitsamt ihren Energien und Geometrien bestimmen. Die Höhe der Energiebarriere, die zum Erreichen des TS überwunden werden muss, die sogenannte Aktiverungsenergie, hängt über die Arrhenius-Gleichung mit den kinetischen Parametern der Reaktion zusammen. Es lässt sich also durch die Kenntnis der Aktivierungsenergien die Reaktivitätsreihenfolge unterschiedlich substituierter Vinylsulfone VS vorhersagen. Im zweiten Teil dieser Arbeit wurden Vinylsulfonbausteine synthetisiert und an separat hergestellte Peptide gekuppelt, sodass potentielle Inhibitoren erhalten wurden. So konnten u.a. die peptidischen Inhibitoren Mu-D-Phe-L-HomoPhe-VS-Me und MP-D-Phe-L-HomoPhe-VS-Me hergestellt werden. Ein zweites Syntheseprojekt beschäftigte sich mit der Kupplung von Peptiden an neue Derivate der trans-Aziridin-2,3-dicarbonsäure. Die synthetisierten Inhibitoren waren Z-Phe-Ala-Azi, Boc-Leu-Pro-Azi und Z-Pro-Leu-Azi. Hierfür wurden die Peptide des Vinylsulfonsprojekts in umgekehrter Aminosäure-Reihenfolge synthetisiert, um sie an die Aziridinbausteine kuppeln zu können. Der dritte Teil der Doktorarbeit befasste sich mit der experimentellen Untersuchung der synthetisierten Vinylsulfonbausteine sowie den erhaltenen peptidischen VS- und Aziridin-basierten Inhibitoren. Es wurden einerseits Enzym-Assays durchgeführt, um die prozentuale Hemmung verschiedener Cystein-Proteasen durch die synthetisierten Moleküle zu messen. Keine der Verbindungen wies jedoch eine signifikannte Hemmung der Proteasen Rhodesain, Falcipain 2 und Cathepsin B auf. Andererseits wurden Modellsysteme entwickelt, um die Kinetik der Reaktionen der Vinylsulfon- und Aziridinbausteine mit einem geeigneten Thiol als Enzym-Imitat zu verfolgen. Ein zielführendes Modell konnte mit Phenylethanthiol in deuteriertem Methanol realisiert werden. Durch Zusatz von NaOH, KOH oder KOtBu konnte zusätzlich die Reaktion mit dem Thiolat untersucht werden. Die Reaktionen wurden sowohl mit IR- als auch NMR-Spektroskopie verfolgt und es wurden die Geschwindigkeitskonstanten 2. Ordnung bestimmt. Auf den ersten Blick konnte mit dem theoretischen Modell der experimentell gefundene Trend nicht vorhergesagt werden. Die Reihenfolge der Sulfonderivate aber, die an der Sulfongruppe ein weiteres Heteroatom tragen, Sulfonester und Sulfonamid, wurde richtig abgeschätzt. Der Unterschied in der Aktivierungsenergie zwischen den Sulfonestern beläuft sich auf 0.7 kcal pro mol. Über die Arrheniusgleichung, ergibt sich bei Annahme desselben Arrhenius-Faktors bei einer Temperatur von 25°C, dass OPhVS um einen Faktor 3 schneller als OMeVS reagieren sollte. Tatsächlich wurde im Experiment ein Faktor von 2.6 gefunden. Aufgrund der unterschiedlichen Substituenten am Stickstoffatom, ist das Amid nicht vollständig mit seinem H-substituierten theoretischen Pendant vergleichbar. Dass das Sulfonamid langsamer als die Sulfonester reagieren, wurde vom theoretischen Modell ebenfalls richtig vorhergesagt. N2 - Derivatives of vinyl sulfones (VS), which belong to the class of Michael acceptors, have been established as potent, irreversible inhibitors of cysteine proteases during the past years. The protease is irreversibly alkylated by the nucleophilic attack of the Cys-residue of the protease's active site at the beta-carbon atom of the C-C-double bond. The objective of this work was the development of simple, theoretical and experimental methods to draw first conclusions concerning the reactivity of diverse vinyl sulfones, which are needed for further investigations to fully understand the complex structure-activity relationship of vinyl sulfones as inhibitors of various cysteine proteases. In the first part of this work, quantum mechanical calculations of small vinyl sulfone entities were conducted in order to investigate the impact of different substitution patterns at the sulfone moiety on the reaction kinetics of vinyl sulfones. By means of the PES characteristic reaction points, such as the reaction complex, the transition state (TS) or the product, including energies and structural parameters, could be determined. The height of the energy barrier to pass the TS, the so-called activation energy, is related to the kinetic parameters of a reaction through the Arrhenius equation. In the second part of this work, the discussed vinyl sulfone building blocks were synthesized and coupled to separately synthesized peptides, yielding potential inhibitors such as Mu-D-Phe-L-HomoPhe-VS-Me and MP-D-Phe-L-HomoPhe-VS-Me. A second synthesis project dealt with the coupling of peptides to new derivatives of trans-aziridine-2,3-dicarbonylic acid. The synthesized inhibitors are Z-Phe-Ala-Azi, Boc-Leu-Pro-Azi, and Z-Pro-Leu-Azi. Additionally, the stated peptides were synthesized with reverse amino acid sequence in order to couple them to the aziridine building blocks. The third part of this phD thesis dealt with the experimental investigation of the synthesized vinyl sulfone building blocks as well as the obtained peptidic VS- and aziridine-based inhibitors. On the one hand, enzymatic assays were carried out, to measure the percentage inhibition of various cysteine proteases caused by the synthesized molecules. Unfortunately, none of the compounds showed significant inhibition of the proteases rhodesaine, falcipain 2 or cathepsine B. On the other hand, model systems were developed to track the reaction kintics of the addition reactions of the vinyl sulfone and aziridine building blocks with a suitable thiol as the enzyme "dummy". A target-aimed model could be realized with phenyl ethane thiol in deuterated methanol. Moreover, by addition of NaOH, KOH or KOtBu, the raction with the respective thiolate could be studied. The reactions were followed by IR- and NMR-spectroscopy and the second order rate constants were determined. The series of the investigated vinyl sulfones with respect to the reactivity towards phenyl ethane thiolate was established. At first glance, the theoretical model was not able to predict the experimentally disclosed reactivity trend. Nevertheless, the order of the sulfone derivatives carrying a hetero atom at the sulfone moiety, sulfone esters and sulfone amide, was estimated correctly. The calculated difference in activation energy between the sulfone esters is 0.7 kcal per mol. Applying the Arrhenius equation under the assumption of identical Arrhenius factors at a temperature of 25°C, OPhVS should react faster than OMeVS by a factor of 3. Indeed, experiments showed a factor of 2.6. Because of the different substituents at the nitrogen atom, the amide is not thouroughly comparable to its H-substituted theoretical pendant. The even slower reaction of the sulfone amide compared to the sulfone esters was still correctly predicted with the theoretical model. KW - Cysteinproteasen KW - Enzyminhibitor KW - Struktur-Aktivitäts-Beziehung KW - cystein protease inhibitor QSAR Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-72306 ER -