TY - THES A1 - Zube, Christina T1 - Neuronal representation and processing of chemosensory communication signals in the ant brain N2 - Ants heavily rely on olfaction for communication and orientation and ant societies are characterized by caste- and sex-specific division of labor. Olfaction plays a key role in mediating caste-specific behaviours. I investigated whether caste- and sex-specific differences in odor driven behavior are reflected in specific differences and/or adaptations in the ant olfactory system. In particular, I asked the question whether in the carpenter ant, Camponotus floridanus, the olfactory pathway exhibits structural and/or functional adaptations to processing of pheromonal and general odors. To analyze neuroanatomical specializations, the central olfactory pathway in the brain of large (major) workers, small (minor) workers, virgin queens, and males of the carpenter ant C. floridanus was investigated using fluorescent tracing, immunocytochemistry, confocal microscopy and 3D-analyzes. For physiological analyzes of processing of pheromonal and non-pheromonal odors in the first odor processing neuropil , the antennal lobe (AL), calcium imaging of olfactory projection neurons (PNs) was applied. Although different in total glomerular volumes, the numbers of olfactory glomeruli in the ALs were similar across the female worker caste and in virgin queens. Here the AL contains up to ~460 olfactory glomeruli organized in 7 distinct clusters innervated via 7 antennal sensory tracts. The AL is divided into two hemispheres regarding innervations of glomeruli by PNs with axons leaving via a dual output pathway. This pathway consists of the medial (m) and lateral (l) antenno-cerebral tract (ACT) and connects the AL with the higher integration areas in the mushroom bodies (MB) and the lateral horn (LH). M- and l-ACT PNs differ in their target areas in the MB calyx and the LH. Three additional ACTs (mediolateral - ml) project to the lateral protocerebrum only. Males had ~45% fewer glomeruli compared to females and one of the seven sensory tracts was absent. Despite a substantially smaller number of glomeruli, males possess a dual PN output pathway to the MBs. In contrast to females, however, only a small number of glomeruli were innervated by projection neurons of the m-ACT. Whereas all glomeruli in males were densely innervated by serotonergic processes, glomeruli innervated by sensory tract six lacked serotonergic innervations in the female castes. It appears that differences in general glomerular organization are subtle among the female castes, but sex-specific differences in the number, connectivity and neuromodulatory innervations of glomeruli are substantial and likely to promote differences in olfactory behavior. Calcium imaging experiments to monitor pheromonal and non-pheromonal processing in the ant AL revealed that odor responses were reproducible and comparable across individuals. Calcium responses to both odor groups were very sensitive (10-11 dilution), and patterns from both groups were partly overlapping indicating that processing of both odor classes is not spatially segregated within the AL. Intensity response patterns to the pheromone components tested (trail pheromone: nerolic acid; alarm pheromone: n-undecane), in most cases, remained invariant over a wide range of intensities (7-8 log units), whereas patterns in response to general odors (heptanal, octanol) varied across intensities. Durations of calcium responses to stimulation with the trail pheromone component nerolic acid increased with increasing odor concentration indicating that odor quality is maintained by a stable pattern (concentration invariance) and intensity is mainly encoded in the response durations of calcium activities. For n-undecane and both general odors increasing response dynamics were only monitored in very few cases. In summary, this is the first detailed structure-function analyses within the ant’s central olfactory system. The results contribute to a better understanding of important aspects of odor processing and olfactory adaptations in an insect’s central olfactory system. Furthermore, this study serves as an excellent basis for future anatomical and/or physiological experiments. N2 - Für Ameisen spielt die olfaktorische Kommunikation und Orientierung eine zentrale Rolle hinsichtlich der Organisation des Ameisenstaates. Ob sich kasten- und geschlechtsspezifische Verhaltensunterschiede auf neuronaler Ebene und besonders im olfaktorischen System der Ameise widerspiegeln ist die zentrale Frage meiner Arbeit. Im Speziellen stellte ich die Frage, ob sich in der olfaktorischen Bahn der Rossameise Camponotus floridanus strukturelle oder funktionelle Anpassungen an die Verarbeitung von Pheromonen und generellen Düften aufzeigen lassen. Zur Analyse hinsichtlich neuroanatomischer Spezialisierungen wurde die olfaktorische Bahn im Gehirn von großen und kleinen Arbeiterinnen, Jungköniginnen und Männchen der Rossameise C. floridanus mittels Fluoreszenzmassenfärbungen, Immunzytochemie, konfokaler Laserscanningmikroskopie und 3D-Auswertung untersucht. Um die Verarbeitung von Pheromonen und generellen Düften im primären olfaktorischen Neuropil, dem Antennallobus (AL), auf physiologischer Ebene zu charakterisieren wurden olfaktorische Projektionsneurone mittels Calcium Imaging untersucht. Obwohl sich das glomeruläre Gesamtvolumen der ALs zwischen Arbeiterinnenkasten und Jungköniginnen unterscheidet, lag die Gesamtzahl der Glomeruli im AL in einem ähnlichen Bereich. Der AL besteht in allen drei weiblichen Kasten aus bis zu 460 Glomeruli, die in sieben Clustern angeordnet sind und von sieben sensorischen Eingangstrakten innerviert werden. Der AL unterteilt sich in zwei Hemispheren, deren entsprechende Glomeruli von Projektionsneuronen innverviert werden, die vom AL über die Nervenbahn des “dual output pathway” in höhere Hirnregionen projizieren. Diese Nervenbahn besteht aus dem medialen (m) und lateralen (l) Antennocerebraltrakt (ACT) und verbindet den AL mit höheren Integrationszentren wie den Pilzkörpern (MB) und dem lateralen Horn (LH). M- und l-ACT unterscheiden sich in ihren Zielregionen im MB Calyx und dem LH. Drei weitere ACTs (mediolateral – ml) projizieren ausschließlich ins laterale Protocerebrum. Männchen besitzen ca. 45% weniger Glomeruli im Vergleich zur Weibchenkaste. Ihnen fehlt weiterhin einer der sieben sensorischen Eingangstrakte vollständig. Trotz der wesentlich geringeren Anzahl an Glomeruli, besitzen auch Männchen den “dual output pathway”. Im Gegensatz zu den Weibchen ist allerdings nur eine geringe Anzahl an Glomeruli durch m-ACT Projektionsneurone innerviert. Ein weiterer Unterschied im AL von Männchen und Weibchen findet sich in den Glomeruli des sensorische Trakts Nummer sechs, die bei Weibchen keinerlei serotonerge Innervierung aufweisen während beim Männchen der gesamte AL dichte serotonerge Verzweigungen besitzt. Es zeigt sich somit, dass die kastenspezifischen Unterschiede in der allgmeinen glomerulären Organisation des AL innerhalb der Weibchenkaste nur sehr fein sind. Im Gegensatz dazu sind die geschlechtsspezifischen Unterschiede in Anzahl, Konnektivität und neuromodulatorischer Innervierung von Glomeruli zwischen Weibchen- und Männchen wesentlich ausgeprägter was Unterschiede in olfaktorisch geprägten Verhaltensweisen begünstigen könnte. Die Calcium Imaging Experimente zur Untersuchung der Verarbeitung von Pheromonen und generellen Düften im AL der Ameise zeigten, dass Duftantworten reproduzierbar und zwischen Individuen vergleichbar waren. Die Sensitivität des Calcium Signals lag für beide Duftgruppen in einem sehr niedrigen Bereich (Verdünnung 10-11). Die Antortmuster beider Duftgruppen überlappten zum Teil, was die Annahme zuläßt, dass die Verarbeitung von Pheromonen und generellen Düften keiner räumlichen Trennung innerhalb des AL unterliegt. Die Intensität der Antwortmuster auf die Pheromonkomponenten (Spurpheromon: Nerolsäure; Alarmpheromon: n-Undecan) blieben in den meisten Fällen über einen weiten Konzentrationsbereich konstant (7-8 log Einheiten). Die Dauer der Calciumantwort nach Stimulation mit Nerolsäure verlängerte sich mit steigender Duftkonzentration. Dies läßt für das Spurpheromon den Schluß zu, dass die Duftqualität in einem konstanten Duftmuster (Konzentrationsinvarianz) repräsentiert und die Duftintensität über die Dauer des Calciumsignals abgebildet wird. Da die Antwortmuster auf generelle Düfte (Heptanal, Octanol) dagegen sehr viel stärker innerhalb des getesteten Konzentrationsbereichs varrieren ließ sich für n-Undecan und die beiden generellen Düfte eine solche Dynamik nur in einigen wenigen Fällen beobachtet. Zusammenfassend ist diese Studie die erste strukturelle und funktionelle Studie des olfaktorischen Systems der Ameise. Die Ergebnisse tragen zu einem besseren Verständnis der neuronalen Adaptationen und Mechanismen hinsichtlich Duftverarbeitung im zentralen Nervensystem von Insekten bei. Außerdem liefert diese Studie eine wichtige Grundlage für zukünftige neuroanatomische und –physiologische Untersuchungen auf dem Gebiet der Neurobiologie der Insekten. KW - Gehirn KW - Neuroethologie KW - Neuroanatomie KW - Geruchswahrnehmung KW - Neuronale Plastizität KW - Insekten KW - Antennallobus KW - Glomeruli KW - olfaktorische Bahn KW - Camponotus floridanus KW - Dufverarbeitung KW - antennal lobe KW - glomeruli KW - olfactory pathway KW - Campontous floridanus KW - odor processing Y1 - 2008 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-30383 ER - TY - THES A1 - Eskandar, Kevin T1 - Langzeitdepressions-ähnliche Minderung kortikospinaler Exzitabilität durch ein assoziatives Paarstimulationsprotokoll : Methodische Untersuchungen und neurophysiologisches Mapping T1 - Long-term depression-like reduction of corticospinal excitability by the use of a paired associative stimulation protocol: Systematic examination and neurophysiologic mapping N2 - Neuronale Plastizität ist die Voraussetzung für Lernen und Erinnerung. Sie wurde in einer Reihe von Experimenten am Menschen und am Tier eindrucksvoll demonstriert. Das zugrunde liegende Prinzip neuronaler Plastizität ist die Modulierbarkeit synaptischer Übertragungseffizienz. Diese kann im Sinne einer Langzeitpotenzierung (LTP) sowohl hinauf als auch im Sinne einer Langzeitdepression (LTD) herab reguliert werden. Von besonderem Interesse im Allgemeinen und für diese Arbeit ist das Prinzip der assoziativen LTD: Wirkt auf das postsynaptische Neuron zunächst ein starker depolarisierender Reiz und danach in enger zeitlicher Kopplung ein schwacher nicht depolarisierender Reiz so kommt es in der Folge zu einer Erniedrigung der synaptischen Übertragungseffizienz. Für den menschlichen Motorkortex wurde ein experimentelles Protokoll entwickelt, dass mit Hilfe etablierter neurophysiologischer Methoden eine Veränderung der synaptischen Übertragungseffizienz im Sinne eines LTD-ähnlichen Phänomens bewirkt: beinahe synchrone und repetitive Kopplung peripherer N. medianus Stimulation (entspricht dem nicht depolarisierenden Reiz) und kontralateraler transkranieller Magnetstimulation (entspricht dem depolarisierenden Reiz) führt zu einer signifikanten Amplitudenreduktion der magnetisch evozierbaren Potentiale (MEP) des M. abductor pollicis brevis (APB). Voraussetzung für die Effektivität der assoziativen Paarstimulation (PAS-Protokoll) ist, dass der depolarisierende Reiz wenige Millisekunden vor dem nicht depolarisierenden Reiz auf die synaptischen Verbindungen des zentralen APB-Repräsentationsareals einwirkt. Das Ziel dieser Arbeit war es zunächst durch Optimierung der im PAS-Protokoll etablierten Stimulationsparameter die Robustheit und das Ausmaß der erzeugten Exzitabilitätsminderung im APB-Kortexareals zu steigern. Untersucht wurde erstens der Einfluss der Steigerung der Frequenz, sowie zweitens der absoluten Zahl applizierter Paarreize. Drittens wurde untersucht ob ein optimaler Wirkzeitabstand zwischen den beiden assoziativen Stimuli besteht: Eine Synchronisierung des Intervalls zwischen den beiden Paarreizen durch Normierung auf die individuelle Körperlänge führt zu einem konstanten Wirkzeitabstand innerhalb der synaptischen Verbindungen des zentralen APB-Repräsentationsareales. Dies erlaubt eine systematische Untersuchung des optimalen Wirkzeitabstandes der assoziativen Paarreize unabhängig von der individuellen Körperlänge. Mit einem so optimierten PAS-Protokoll wurde der zweite Teil der Arbeit durchgeführt: In den eben beschriebenen Vorversuchen wurde die Änderung der kortikomuskulären Exzitabilität durch Vergleich der durchschnittlichen MEP-Amplituden des Punktes der Schädeldecke, von dem aus eine maximale Reizantwort im Zielmuskel erzeugbar war bestimmt. Um jedoch eine möglichst umfassende Aussage über die Veränderung kortikomuskulärer Exzitabilität treffen zu können, wurde ein etabliertes Kartierungsverfahren verwendet, das eine Darstellung des APB-Repräsentationsareales als zweidimensionale Karte ermöglicht. Mit Hilfe dieser Mapping-Untersuchung sind Aussagen über die räumliche Dimension der Veränderungen kortikomuskulärer Exzitabilität möglich, die über den einfachen Vergleich der an einem Punkt gewonnenen Amplituden hinausgehen. In dieser Arbeit gelang die Induktion kortikaler Plastizität im Sinne assoziativer LTD-ähnlicher Plastizität. Aus unseren Ergebnissen lässt sich ableiten, dass weder durch eine Erhöhung der Frequenz noch der Anzahl der Paarstimuli eine wesentliche Steigerung des LTD-ähnlichen Phänomens zu erzeugen ist. Diesen Umstand führen wir im Wesentlichen auf eine Art Grenzwert der Modulierbarkeit kortikomuskulärer Exzitabilität zurück. Die grundsätzliche Möglichkeit, dass mentale Konzentration auf die in das PAS-Protokoll involvierten Muskeln eine bedeutsamere Rolle für das Ausmaß der induzierten Plastizität spielen könnte als die Intensität der assoziativen Induktion, wurde erörtert. Durch einen Normierungsprozess auf die individuelle Körpergröße kristallisiert sich ein definiertes Fenster der zeitlichen Kopplung der beiden assoziativen Reize mit optimaler LTD-ähnlicher Plastizität heraus. Bei selektiver Betrachtung einer Subgruppe der Mapping-Untersuchung ergaben sich Hinweise darauf, dass die räumliche Verteilung der Exzitabilität durch ein optimiertes PAS-Protokoll verändert wird. Diese Hinweise sind mit der Annahme zu vereinbaren, dass durch ein exzitabilitätsminderndes PAS-Protokoll aktive Synapsen deaktiviert werden können. Mögliche Ursachen für die vergleichsweise schlechte Reproduzierbarkeit der Plastizitätsergebnisse bei kumulativer Betrachtung aller Mapping-Experimente wurden diskutiert. N2 - Neuronal plasticity is the prerequisite for learning and memory. It was demonstrated impressively in a series of experiments on human beings and animals. The basic principle of neuronal plasticity is that the efficiency of synaptic transmission can be modulated. It can be increased as in a long-term potentiation (LTP) and decreased as in a long-term depression (LTD). The principle of associative LTD is of special interest in general and for this study: if at first a strong depolarizing stimulus affects the postsynaptic neuron and then only a short time later a weak non-depolarizing stimulus affects the postsynaptic neuron, the transmission efficiency will be decreased. An experimental protocol has been developed for the human motor cortex that, by means of established neurophysiologic methods, causes a modification of the efficiency of synaptic transmission in terms of an LTD-similar phenomenon: an almost synchronous and repetitive coupling of peripheral N. medianus stimulation (corresponds to the non-depolarizing stimulus) and contralateral magnetic stimulation (corresponds to the depolarizing stimulus) leads to a significant reduction in amplitude of the motor-evoked potentials (MEP) of the M. abductor pollicis brevis (APB). For the effectiveness of the paired associative stimulation it is necessary that the depolarizing stimulus affects the synaptic connections of the central APB-representation area only a few milliseconds before the non-depolarizing stimulus. Initially, the purpose of this study was to enhance the robustness and the extent of the generated reduction in excitability in the APB-cortex area by optimizing the stimulation parameter established in the PAS protocol. First of all, the influence of the increase in frequency was analysed and then secondly, the absolute number of applied pair stimuli. By scaling to the individual body length, a synchronization of the interval between both pair stimuli leads to a constant reaction time interval within the synaptic connection of the central APB representation area. Thirdly, it was examined if there is an optimal reaction time interval between both associative stimuli: by scaling to the individual body length, a synchronization of the interval between both pair stimuli leads to a constant reaction time interval within the synaptic connection of the central APB representation area. This allows a systematic examination of the optimal reaction time interval of the associative pair stimuli regardless of the individual body size. The second part of the study was carried out using such an optimized PAS-protocol. During the pre-experiments that have just been described, the modification of the cortico-muscular excitability was determined by means of comparison of the average MEP-amplitudes from the point of the brain pan where the maximum answer on stimulus in the destination muscle could be generated. In order to be able to make a comprehensive statement about the cortico-muscular excitability an established mapping procedure was used that makes it possible to depict the APB-representation area as a two-dimensional map. By means of this mapping-examination, statements concerning the spatial dimension of the modifications of cortico-muscular excitability can be made, which exceed the simple comparison of amplitudes that have been generated at a certain point. In this study, the induction of cortical plasticity was realized as in associative LTD-similar plasticity. From our results, it can be deduced that neither the increase in frequency nor the number of pair stimuli causes an essential increase of the LTD-similar phenomenon. In our opinion this is due to the fact that there is a kind of limit value in the modulating capacity of cortico-muscular excitability. There was a discussion whether it was possible in principle that the mental concentration on the muscles involved in the PAS-protocol might play a more important role for the extent of the induced plasticity than the intensity of the associative induction. By means of a standardization process to the individual body size it emerges that both associative stimuli have to follow immediately within a defined, narrow time for a ‘window of opportunity’. Looking at a subgroup of the mapping-examination in a selective way it came out that the spatial distribution of the excitability is being modified by an optimized PAS-Protocol. These hints coincide with the assumption that active synapses can be deactivated by means of a PAS-protocol, which minimizes the excitability. Regarding all mapping-experiments in a cumulative way, a discussion ensued about the possible reasons for the comparatively bad reproducibility of the plasticity results. KW - Mapping KW - Motorischer Cortex KW - Neuronale Plastizität KW - LTD KW - Langzeitdepression KW - assoziative Paarstimulation KW - neuronal plasticity KW - long-term depression KW - motor cortex KW - mapping KW - paired associative stimulation Y1 - 2008 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-36245 ER -