TY - THES A1 - Knochenhauer, Tim T1 - Die Rolle von HIF-1α in T-Zellen bei kardiovaskulären Erkrankungen T1 - Role of HIF-1α in T cells in cardiovascular diseases N2 - Die Atherosklerose ist als Ursache kardiovaskulärer Erkrankungen, welche die häufigste Todesursache weltweit darstellen, von großer klinischer und wissenschaftlicher Relevanz. Atherosklerose ist charakterisiert durch Einlagerungen von Lipiden in die Gefäßwand, welche zur Ausbildung von Plaques führen. Als Folge wird eine chronische Entzündungsreaktion eingeleitet, die durch spezifische Immunzellen, unter anderem T-Lymphozyten, und komplexe molekulare Prozesse aufrechterhalten wird. Durch eine verminderte Sauerstoffdiffusionskapazität und eine hohe Zelldichte ist das Milieu in den Plaques hypoxisch. Zur zellulären Anpassung an ein solches hypoxisches Milieu werden Hypoxie-induzierbare Faktoren (HIF) in den Immunzellen stabilisiert. Der Transkriptionsfaktor HIF-1 ist ein heterodimeres Protein, welches die Transkription bestimmter Zielgene initiiert, die den Zellen notwendige Adaptationen des Zellstoffwechsels an ein vermindertes Sauerstoffangebot ermöglichen. Das Ziel der vorliegenden Arbeit bestand darin zu untersuchen, inwiefern sich ein Ausschalten des Transkriptionsfaktor HIF-1α selektiv in T-Lymphozyten auf Atherosklerose und Myokardinfarkt auswirkt. Die funktionelle Bedeutung von HIF-1α in T-Zellen in der Pathogenese dieser Erkrankungen wurde an zwei Mausmodellen untersucht. Im Atherosklerose Modell wurde Biomaterial von LDLR-/- Mäusen mit T-Zell spezifischem Knockout von HIF-1α nach achtwöchiger fettreicher Western-Typ Diät untersucht. Histologisch zeigte sich eine vermehrte Plaqueausprägung und ein verminderter Makrophagenanteil in den Plaques. Durchflusszytometrisch und mittels qPCR konnten keine Unterschiede in der Lymphozytendifferenzierung in Milz und Lymphknoten dieser Mäuse nachgewiesen werden. Im Myokardinfarkt-Modell mit T-Zell spezifischem HIF-1α Knockout konnte in früheren Untersuchungen der Arbeitsgruppe eine vergrößerte Infarktzone mit eingeschränkter kardialer Funktion nachgewiesen werden. Histologisch konnte im Rahmen dieser Arbeit hierfür kein zellmorphologisches Korrelat in Kardiomyozytengröße oder der Vaskularisation des Myokards gefunden werden. In Zukunft könnte HIF-1α in T-Lymphozyten ein möglicher Angriffspunkt zur medikamentösen Prävention oder Therapie kardiovaskulärer Erkrankungen sein. N2 - Atherosclerosis is of great clinical and scientific relevance as a cause of cardiovascular disease, which is the most common cause of death worldwide. Atherosclerosis is characterized by deposition of lipids in the vessel wall, which leads to the formation of plaques. As a consequence, a chronic inflammatory response is initiated, which is maintained by specific immune cells, including T lymphocytes, and complex molecular processes. Due to a reduced oxygen diffusion capacity and a high cell density, the environment in the plaques is hypoxic. For cellular adaptation to such a hypoxic milieu, hypoxia-inducible factors (HIF) are stabilized in immune cells. The transcription factor HIF-1 is a heterodimeric protein that initiates the transcription of specific target genes that enable cells to make necessary adaptations of cellular metabolism to a reduced oxygen supply. The aim of the present work was to investigate the extent to which silencing of the transcription factor HIF-1α selectively in T lymphocytes affects atherosclerosis and myocardial infarction. The functional significance of HIF-1α in T cells in the pathogenesis of these diseases was investigated in two mouse models. In the atherosclerosis model, biomaterial from LDLR-/- mice with T-cell specific knockout of HIF-1α was examined after an eight-week high-fat Western-type diet. Histologically, there was increased plaque expression and decreased macrophage content in plaques. Flow cytometry and qPCR did not detect differences in lymphocyte differentiation in the spleen and lymph nodes of these mice. In the myocardial infarction model with T-cell specific HIF-1α knockout, an enlarged infarct zone with impaired cardiac function could be detected in previous studies of the research group. Histologically, no cell morphological correlate for this in cardiomyocyte size or myocardial vascularization could be found in this work. In the future, HIF-1α in T lymphocytes could be a potential target for drug prevention or therapy of cardiovascular diseases. KW - Hypoxie-induzierbarer Faktor KW - Arteriosklerose KW - T-Lymphozyt KW - Herzinfarkt KW - HIF-1α KW - HIF-1α KW - T-Lymphozyten KW - T cell KW - Atherosklerose KW - Atherosclerosis KW - CVD KW - Kardiovaskuläre Erkrankungen Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-322758 ER - TY - THES A1 - Rizzo, Giuseppe T1 - Determinants of macrophage and neutrophil heterogeneity in cardiac repair after myocardial infarction T1 - Determinante der Makrophagen- und Neutrophilien-Heterogenität bei der Herzreparatur nach Myokardinfarkt N2 - Current therapeutic strategies efficiently improve survival in patients after myocardial infarction (MI). Nevertheless, long-term consequences such as heart failure development, are still one of the leading causes of death worldwide. Inflammation is critically involved in the cardiac healing process after MI and has a dual role, contributing to both tissue healing and tissue damage. In the last decade, a lot of attention was given to targeting inflammation as a potential therapeutic approach in MI, but the poor understanding of inflammatory cell heterogeneity and function is a limit to the development of immune modulatory strategies. The recent development of tools to profile immune cells with high resolution has provided a unique opportunity to better understand immune cell heterogeneity and dynamics in the ischemic heart. In this thesis, we employed single-cell RNA-sequencing combined with detection of epitopes by sequencing (CITE-seq) to refine our understanding of neutrophils and monocytes/macrophages heterogeneity and dynamic after experimental myocardial infarction. Neutrophils rapidly invade the infarcted heart shortly after ischemic damage and have previously been proposed to display time-dependent functional heterogeneity. At the single-cell level, we observed dynamic transcriptional heterogeneity in neutrophil populations during the acute post-MI phase and defined previously unknown cardiac neutrophil states. In particular, we identified a locally acquired SiglecFhi neutrophil state that displayed higher ROS production and phagocytic ability compared to newly recruited neutrophils, suggesting the acquisition of specific function in the infarcted heart. These findings highlight the importance of the tissue microenvironment in shaping neutrophil response. From the macrophage perspective, we characterized MI-associated monocyte-derived macrophage subsets, two with a pro-inflammatory gene signature (MHCIIhiIl1βhi) and three Trem2hi macrophage populations with a lipid associated macrophage (LAM) signature, also expressing pro-fibrotic and tissue repair genes. Combined analysis of blood monocytes and cardiac monocyte/macrophages indicated that the Trem2hi LAM signature is acquired in the infarcted heart. We furthermore characterized the role of TREM2, a surface protein expressed mainly in macrophages and involved in macrophage survival and function, in the post-MI macrophage response and cardiac repair. Using TREM2 deficient mice, we demonstrate that acquisition of the LAM signature in cardiac macrophages after MI is partially dependent on TREM2. While their cardiac function was not affected, TREM2 deficient mice showed reduced collagen deposition in the heart after MI. Thus, our data in Trem2-deficient mice highlight the role of TREM2 in promoting a macrophage pro-fibrotic phenotype, in line with the pro-fibrotic/tissue repair gene signature of the Trem2hi LAM-signature genes. Overall, our data provide a high-resolution characterization of neutrophils and macrophage heterogeneity and dynamics in the ischemic heart and can be used as a valuable resource to investigate how these cells modulate the healing processes after MI. Furthermore, our work identified TREM2 as a regulator of macrophage phenotype in the infarcted heart N2 - Die derzeitigen therapeutischen Ansätze verbessern die Überlebenschancen von Patienten nach einem Myokardinfarkt wirksam, dennoch sind Langzeitfolgen wie die Entwicklung einer Herzinsuffizienz immer noch eine der häufigsten Todesursachen weltweit. An den Heilungsprozessen nach einem Herzinfarkt sind Entzündungreaktionen beteiligt, die sowohl zur Gewebeheilung als auch zur Gewebeschädigung beitragen. In den letzten zehn Jahren wurde besondere Aufmerksamkeit auf die gezielte Beeinflussung von Entzündungen als potenzieller therapeutischer Ansatz gewidmet, allerdings stellt die Komplexität der Entzündungszellen bezüglich Heterogenität und Funktion eine Herausforderung für die Entwicklung von Strategien zur Immunmodulation dar. Aus diesem Grund ist die Entwicklung von Methoden, mit denen Immunzellen mit hoher Auflösung charakterisiert werden können, für ein besseres Verständnis der Heterogenität und Dynamik von Immunzellen im ischämischen Herzen unerlässlich. In dieser Arbeit haben wir scRNA-seq eingesetzt, um die Heterogenität und Dynamik von Neutrophilen und Monozyten/Makrophagen nach einem experimentell-induzierten Myokardinfarkt zu bestimmen. Neutrophile dringen unmittelbar nach der ischämischen Schädigung in das infarzierte Herz ein wo ihre Zahl innerhalb der ersten Tage abnimmt. Zudem konnten wir eine transkriptionelle Heterogenität in neutrophilen Populationen während der akuten Entzündungsphase beobachten. Insbesondere konnten wir ab dem 3. Tag nach Infarkt einen SiglecFhi-Neutrophilenstatus identifizieren, der sich unseren Daten zufolge im betroffenen Gewebe entwickelt hat. SiglecFhi-Neutrophile zeigten im Vergleich zu neu rekrutierten Neutrophilen eine höhere ROS-Produktion und phagozytische Fähigkeit, was auf den Erwerb einer spezifischen Funktion im infarzierten Herzen hindeutet. Diese Ergebnisse unterstreichen die Wichtigkeit der unmittelbaren Umgebung des Gewebes für die Reaktion der Neutrophilen. Weiterhin zeigten unsere scRNA-seq-Daten eine erhebliche Heterogenität in der Monozyten-/Makrophagenpopulation. Durch die Kombination der scRNA-seq-Analyse von kardialen und zirkulierenden Leukozyten, konnten wir eine durch ischämische Verletzungen induzierte Monozytenpopulation mit einer "neutrophilenähnlichen" Gensignatur identifizieren. Aus der Makrophagenperspektive beobachteten wir verschiedene MI-assoziierte Makrophagenuntergruppen, zwei mit einer pro-inflammatorischen Gensignatur (MHCIIhiIl1βhi) und drei Trem2hi-Makrophagenpopulationen mit einer Lipid-assoziierten Makrophagensignatur (LAM), welche auch pro-fibrotische/Gewebereparaturgene exprimieren. Darüber hinaus entdeckten wir eine kleine Population von Fn1hiLtc4shi-Makrophagen mit unbekannter Funktion, die mit einigen cRTMs-Markern angereichert sind. CCR2-Depletion und Fate-Mapping-Studien zeigten einen eindeutigen monozytären Ursprung der MI-assoziierten Makrophagen-Untergruppen. TREM2 ist ein Oberflächenprotein, das hauptsächlich in Makrophagen exprimiert wird und an der Makrophagenfunktion beteiligt ist. Die Funktion von TREM2 in Makrophagen wird in verschiedenen Krankheitskontexten (z. B. Alzheimer-Krankheit, Fettleibigkeit, Atherosklerose usw.) eingehend untersucht, und ist für den Erwerb der LAM-Signatur wesentlich. In unserem Herzinfarkt-Mausmodell beobachteten wir die Expression von Genen der LAM-Signatur im infarzierten Herzen und dass TREM2 für diese Hochregulation der LAM-Gene in vivo erforderlich ist. Unsere vorläufigen Daten in Trem2-defizienten Mäusen unterstreichen die Rolle von TREM2 zur Förderung eines pro-fibrotischen Makrophagen-Phänotyps und dementsprechend für die pro-fibrotischen/Gewebereparatur-Gensignatur der Trem2-LAM-Signaturgene. Insgesamt liefern unsere Daten eine hochauflösende Charakterisierung der Heterogenität und Dynamik von Neutrophilen und Makrophagen im ischämischen Herzen und können als wertvolle Grundlage für die Untersuchung der Frage dienen, wie diese Zellen die Heilungsprozesse nach einem Herzinfarkt modulieren. KW - Macrophages KW - Neutrophils KW - Myocardial infarction KW - Makrophage KW - Herzinfarkt Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-310680 ER - TY - THES A1 - Büchner, Lotte T1 - Charakterisierung der CD4+- und CD8+-T-Zell-Immunantwort nach Myokardinfarkt im Mausmodell T1 - Characterisation of the CD4+ and CD8+ T-cell immune response after myocardial infarction in the mouse model N2 - Die Rolle des Immunsystems nach MI hat innerhalb der letzten Jahrzehnte immer mehr Aufmerksamkeit erfahren, trotzdem herrschen weiterhin einige Unklarheiten. Daher war es Ziel dieser Arbeit, das Verhalten der T-Zellen nach MI im Mausmodell näher zu betrachten und zu analysieren. Dafür wurde einerseits mittels Durchflusszytometrie die T-Zell-Immunantwort im Herzen und in verschiedenen lymphatischen Organen mit Fokus auf pro- und antiinflammatorische Zytokine und deren Transkriptionsfaktoren genauer analysiert und andererseits ein Protokoll etabliert, um die T-Zellen im Herzen und in den Lymphknoten mittels Lichtblattmikroskopie sichtbar zu machen. Dabei konnte festgestellt werden, dass die Expression von LAP, welches nicht-kovalent an das antiinflammatorische Zytokin TGF-ß1 gebunden ist und das wichtig für eine ausgeglichene Immunantwort ist, indem es überschießende Entzündungsreaktionen verhindert, in T-Zellen im Herzen nach MI im Vergleich zu naiven und scheinoperierten Mäusen signifikant hochreguliert war. Dieses Ergebnis konnte nur im Herzen und in keinem anderen der untersuchten Organe erzielt werden, weshalb es sich somit um eine lokale Immunreaktion handeln muss, die nur im Herzen nach MI stattfindet. Eine weitere Besonderheit war, dass die Häufigkeit des Vorkommens an Foxp3+ Treg im Herzen im Vergleich zu den anderen untersuchten Organen durchgehend am höchsten war, sowohl bei den Mäusen nach MI als auch bei naiven und scheinoperierten Mäusen. Dies unterstreicht, dass Foxp3+ Treg im Herzen eine wichtige Rolle spielen. Dank der Verbesserung des Protokolls zur bildlichen Darstellung von T-Zellen im Herzen konnte gezeigt werden, dass sich diese nach MI insbesondere im Infarktgewebe befinden und dort relativ gleichmäßig verteilt sind. Außerdem konnten die mediastinalen Lymphknoten im Ganzen dargestellt und die einzelnen T-Zellen sichtbar gemacht werden. Insgesamt lässt sich sagen, dass durch die vorliegende Arbeit neue Erkenntnisse zur Charakterisierung der T-Zell-Immunantwort nach MI im Mausmodell hinzugewonnen werden konnten. Die LAP+ T-Zellen scheinen nach MI im Herzen eine wichtige Rolle zu spielen, weshalb die Funktion dieser Zellen im Reparaturprozess nach MI in zukünftigen Versuchen genauer betrachtet werden sollte. Außerdem wurde der Grundstein zur Anfärbung und Darstellung von T-Zellen in Herzen und in Lymphknoten mittels Lichtblattmikroskopie gelegt, weshalb daran weitergearbeitet werden sollte, um auch andere Immunzellen neben den T-Zellen zeigen zu können. Dadurch können weitere Hinweise auf das Zusammenspiel der Immunzellen nach MI erhalten werden, um die immunologischen Vorgänge immer besser verstehen zu können. N2 - The role of the immune system after MI has received more and more attention within the last decades, yet there are still some uncertainties. Therefore, the aim of this work was to take a closer look at and analyse the behaviour of T cells after MI in a mouse model. For this purpose, on the one hand, the T cell immune response in the heart and in various lymphatic organs was analysed in more detail by means of flow cytometry with a focus on pro- and anti-inflammatory cytokines and their transcription factors and, on the other hand, a protocol was established to visualise the T cells in the heart and in the lymph nodes by means of light sheet microscopy. It was found that the expression of LAP, which is non-covalently bound to the anti-inflammatory cytokine TGF-ß1 and which is important for a balanced immune response by preventing excessive inflammatory reactions, was significantly upregulated in T cells in the heart after MI compared to naïve and sham-operated mice. This result could only be obtained in the heart and in none of the other organs studied, so it must therefore be a local immune response that only occurs in the heart after MI. Another peculiarity was that the frequency of occurrence of Foxp3+ Treg was consistently highest in the heart compared to the other organs studied, both in the mice after MI and in naïve and sham-operated mice. This underlines that Foxp3+ Treg play an important role in the heart. Thanks to the improvement of the protocol for imaging T cells in the heart, it was possible to show that after MI they are located in particular in the infarct tissue and are relatively evenly distributed there. In addition, the mediastinal lymph nodes could be depicted as a whole and the individual T cells made visible. Overall, it can be said that the present work has added new insights into the characterisation of the T-cell immune response after MI in the mouse model. The LAP+ T cells seem to play an important role after MI in the heart, which is why the function of these cells in the repair process after MI should be examined more closely in future experiments. In addition, the foundation was laid for staining and visualising T cells in hearts and in lymph nodes using light sheet microscopy, which is why further work should be done on this in order to be able to show other immune cells besides T cells. This can provide further clues to the interplay of immune cells after MI in order to understand the immunological processes better and better. KW - Herzinfarkt KW - Immunreaktion KW - Myokardinfarkt KW - Immunantwort KW - Mausmodell KW - myocardial infarction KW - immune response Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-320530 ER -