TY - THES A1 - Bothe, Sebastian Helmut T1 - Fragmentbasiertes Design von p97-Liganden: Identifizierung von Startstrukturen zur Entwicklung von Protein-Protein-Interaktionsinhibitoren für die SHP-Bindestelle der AAA+ ATPase p97 T1 - Fragment-based design of p97-ligands: Identification of starting points for the development of protein-protein-interaction inhibitors targeting the SHP-binding site of the AAA+ ATPase p97 N2 - Die AAA+ ATPase p97 ist ein essenzielles Protein, das an einer Vielzahl zellulärer Prozesse beteiligt ist und eine Schlüsselrolle in der Protein-Homöostase spielt. Die funktionale Diversität von p97 beruht auf der Interaktion zahlreicher unterschiedlicher Kofaktoren, die vorwiegend an die N-Domäne von p97 binden. Aufgrund seiner Bedeutung in der Regulierung diverser physiologischer und pathologischer Prozesse stellt p97 eine interessante Zielstruktur für die Entwicklung neuer Wirkstoffe dar, die insbesondere in der Krebstherapie von Bedeutung sein könnte. Bekannte p97-Inhibitoren greifen vor allem die ATPase-Funktion des Proteins an. Ein neuer pharmakologischer Ansatz stellt die Inhibierung der Kofaktorbindung an die N-Domäne dar. Ein solcher Protein-Protein-Interaktionsinhibitor wäre nicht nur von therapeutischem Interesse, sondern hätte auch einen besonderen Nutzen für die Entschlüsselung molekularer und zellulärer Funktionen von p97-Kofaktoren. In dieser Arbeit wurde ein fragmentbasierter Ansatz für die Identifizierung von chemischen Startstrukturen für die Entwicklung eines Protein-Protein- Interaktionsinhibitors verfolgt. Als Zielstruktur wurde die SHP-Bindestelle in der N-Domäne gewählt. Die Identifizierung von Liganden erfolgte sowohl durch computergestützte Methoden (insbesondere virtuelles Screening und Molekulardynamik-Simulationen) als auch experimentell durch biophysikalische Techniken (wie Biolayer-Interferometrie, Röntgenstrukturanalyse und ligandbasierte NMR-Techniken). Die Grundlage des computerbasierten Designs stellte eine Analyse der bekannten Kristallstrukturen der p97-Komplexe mit den SHP-Motiven der Kofaktoren UFD1 und Derlin-1 dar. Darüber hinaus dienten Molekulardynamik-Simulationen der Analyse der Wassereigenschaften innerhalb der SHP-Bindestelle. Darauf aufbauend wurden verschiedene Pharmakophormodelle entwickelt, die die Grundlage des im Anschluss durchgeführten virtuellen Screenings und Dockings bildeten. Anhand der Ergebnisse von Molekulardynamik-Simulationen wurden zehn Verbindungen für die experimentelle Validierung ausgewählt. Hiervon konnten zwei Fragmente in STD-NMR- und Biolayer-Interferometrie-Experimenten als Liganden bestätigt werden. In einem parallel durchgeführten biophysikalischen Fragmentscreening mittels Biolayer-Interferometrie wurden unter mehr als 650 Verbindungen 22 identifiziert, die an die N-Domäne binden. 15 dieser Fragmente wurden durch einen orthogonalen STD-NMR-Assay bestätigt. Fünf dieser Verbindungen zeigten Affinitäten mit KD-Werten kleiner 500μMund günstigen Ligandeffizienzen. Des Weiteren konnte die Bindungskinetik und Affinität des in der Literatur als p97-Inhibitor berichteten Naturstoffes Xanthohumol bestimmt und eine Bindung an die N-Domäne bestätigt werden. Zur Identifizierung möglicher Bindestellen dieser fünf Fragmente wurden mixed-solvent Molekulardynamik-Simulationen durchgeführt. Diese ergaben, dass alle Verbindungen die SHP-Bindestelle in der N-Domäne adressieren. Die Regionen fielen mit hot spots der Kofaktorwechselwirkungen zusammen und stellen somit mögliche Ankerpunkte für die Weiterentwicklung dar. Für zwei Fragmente konnten die postulierten Bindestellen mittels Röntgenstrukturanalyse bzw. STD-NMR-Messungen an p97-Alanin-Mutanten bestätigt werden. Die erhaltene Röntgenstruktur ist die erste p97-Struktur, die ein gebundenes Fragment an der N-Domäne zeigt. N2 - The AAA+ATPase p97 is an essential protein involved in numerous cellular pro-cesses and plays a key role in multiple aspects of protein homeostasis. Its functio-nal diversity is mediated through the interaction with a large number of distinctcofactors binding to the N-domain of p97. Due to its significant role in regulatinga variety of physiological responses, p97 has emerged as a potential therapeu-tic target. A small molecule inhibiting the cofactor binding would be importantto dissect the molecular and cellular functions of p97 cofactors, thus helping tounravel their specific role in controlling p97 activity. Such compounds may alsoopen routes to new cancer therapies.In this work, a fragment-based approach was pursued for the identification ofchemical starting points for the development of a protein-protein interaction in-hibitor addressing the SHP binding site. Therefore, computer-assisted methods,such as virtual screenings and molecular dynamics simulations, as well as bio-physical techniques including biolayer interferometry, X-ray crystallography, andligand-based NMR techniques, were applied.The computer-based design started with an analysis of the known p97 crystalstructures in complex with the SHP motifs of cofactors UFD1 and Derlin-1. In ad-dition, molecular dynamics simulations were used to analyze the water proper-ties within the SHP binding site. Based on these results, pharmacophore modelswere developed and utilized in the subsequent virtual screening and dockingprocess. With the help of molecular dynamics simulations, ten compounds wereselected for experimental validation. Two of these were confirmed as ligands inSTD-NMR and biolayer interferometry experiments.In parallel, a biophysical fragment screening of over 650 compounds was perfor-med using the biolayer interferometry method. This led to the identification of22 compounds binding to the N-domain. Fifteen of these fragments were con-firmed in an orthogonal STD-NMR assay. Five compounds showed affinities withKDvalues below 500 μM and favourable ligand efficiencies for further optimiza-tion. Furthermore, the binding kinetics and affinity of xanthohumol, a naturalproduct reported in the literature as a p97 inhibitor, were determined and bin-ding to the N-domain was confirmed. xToidentify possible binding sites of these five fragments, mixed solvent mole-cular dynamics simulations were performed. These revealed that all compoundsaddress the SHP binding site in the N-domain. The regions coincide with hotspots of the cofactor binding and, thus, represent potential anchor points for aprotein-protein interaction inhibitor. For two fragments, the postulated bindingsites were confirmed by X-ray crystallography and STD-NMR measurements onp97 alanine mutants, respectively. The X-ray structure obtained is the first p97structure showing a fragment bound to the N-domain. KW - Arzneimitteldesign KW - Fragmentscreening KW - p97 KW - Biolayerinterferometrie KW - Protein-Protein-Interaktion KW - Kofaktorbindung KW - fragment screening KW - p97 KW - biolayerinterferometry KW - protein-protein-interaction KW - cofactorbinding KW - Protein-Protein-Wechselwirkung KW - Wirkstoffdesign Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-239112 ER - TY - THES A1 - Diebold, Mathias T1 - Virtuelles Screening und Entwicklung selektiver Liganden des Aurora-A – MYCN Komplexes und computergestützte Methoden zur Analyse und Design von PROTACs T1 - Virtual screening and development of selective ligands for the Aurora-A - MYCN complex and computational methods for analysis and design of PROTACs N2 - Die Interaktion des onkogenen Transkriptionsfaktors MYCN mit der Ser/Thr Kinase Aurora-A verhindert dessen Abbau über das Ubiquitin Proteasomsystem indem die Rekrutierung des SCF FbxW7 Komplexes verhindert wird. Die Kinase nimmt mit der Bindung an MYCN eine aktive Konformation ein und erhält somit die Fähigkeit zur Kinaseaktivität ohne die sonst notwendige Phosphorylierung von Thr288 oder die Anwesenheit eines Aktivators wie TPX2. Da hohe MYCN Konzentrationen Tumore wie Neuroblastome antreiben, ist die Störung der Komplexbildung mit Aurora-A eine valide Strategie zur Entwicklung von Chemotherapeutika. Einige Inhibitoren von Aurora-A wie Alisertib (MLN8237) sind in der Lage, eine Konformationsänderung in der Kinase zu verursachen, die mit der Bindung von MYCN inkompatibel ist und auf diese Weise den Abbau des Transkriptionsfaktors induziert. Da Aurora-A wichtige Funktionen in der Mitose übernimmt, könnte eine direkte Adressierung des Komplexes anstelle einer systemischen Inhibition der Kinase vielversprechender sein. Ziel des Projektes war die Identifizierung von Molekülen, die selektiv an das Interface des Aurora-A – MYCN Komplexes binden und weiter optimiert werden können, um einen gezielten Abbau des Transkriptionsfaktors über einen PROTAC Ansatz zu ermöglichen. Virtuelle Screenings und molekulardynamische Simulationen wurden durchgeführt, um kommerziell erhältliche Verbindungen zu identifizieren, welche mit einer Bindetasche des Komplexes interagieren, die nur zustande kommt, wenn beide Proteine miteinander interagieren. Aus einem ersten Set von zehn potentiellen Liganden wurde für vier eine selektive Interaktion mit dem Protein – Protein Komplex gegenüber Aurora-A oder MYCN alleine in STD-NMR Experimenten bestätigt. Zwei der Hits besaßen ein identisches Grundgerüst und wurden als Ausganspunkt für die Optimierung zu potenteren Liganden genutzt. Das Gerüst wurde fragmentweise vergrößert und in Richtung besserer in-silico Ergebnisse und Funktionalisierung zur Anbringung von E3-Ligase-Liganden optimiert. Neun dieser Liganden der zweiten Generation wurden synthetisiert. Um quantitative Bindungsdaten zu erhalten, wurde ein kovalent verknüpftes Aurora-A – MYCN Konstrukt entworfen. Die strukturelle und funktionale Integrität wurde in STD-NMR und BLI Experimenten mit bekannten Aurora-A Inhibitoren bestätigt, sowie in NMR-basierten ATPase Assays. Zusätzlich konnte die Kristallstruktur des Konstrukts gelöst und damit die Validität des Designs bestätigt werden. Quantitative Messungen der synthetisierten Moleküle identifizierten HD19S als Hit mit einer zehnfach höheren Affinität für das Aurora-A – MYCN Konstrukt im Vergleich zu der Kinase allein. Zusätzlich wurden in-silico Untersuchungen zu PROTACs der Aurora-A Kinase durchgeführt. Interaktionen zwischen Aurora-A, der E3-Ligase Cereblon und den Liganden wurden modelliert und für die Erklärung unterschiedlicher Aktivitäten der eingesetzten PROTACs verwendet. Zudem zeigte das aktivste PROTAC eine hohe Selektivität für Aurora-A gegenüber Aurora-B, obwohl die verwendete Erkennungseinheit (Alisertib) an beide Aurora-Proteine bindet. Dieser Umstand konnte durch energetische Analysen von molekulardynamischen Simulationen der ternären Komplexe erklärt werden. Optimierungsmöglichkeiten für eine effizientere Degradation von Aurora-A durch die PROTACs wurden basierend auf modifizierten Erkennungseinheiten und verbesserten Linkern untersucht. N2 - The association of the oncogenic transcription factor MYCN with the Ser/Thr kinase Aurora-A prevents its degradation via the ubiquitin proteasome system by preventing the SCF FbxW7 complex from binding. The kinase adopts an active conformation when bound to MYCN, enabling kinase activity without prior phosphorylation on Thr288 or the presence of an activator like TPX2, and therefore at inappropriate times during the cell cycle. As high levels of MYCN have been shown to drive cancers like neuroblastoma, disrupting the complex formation is thought to be a viable development strategy for chemotherapeutics. Several small-molecule inhibitors of Aurora-A, like Alisertib (MLN8237), are able to induce a conformational change in the kinase, preventing the formation of the protein – protein complex and therefore promoting MYCN degradation. However, since Aurora-A has important roles during mitosis targeting only the complex could be a more promising approach than the systemic inhibition of the kinase. This project aimed to identify small molecules which selectively bind at the Aurora-A – MYCN interface and can be further optimized to induce targeted degradation via a PROTAC approach. Virtual screenings and molecular dynamics simulations were performed to identify commercially available compounds which should bind to a pocket formed only when the two proteins come together. Of a first set of ten potential binders, four showed binding to the Aurora-A – MYCN complex but not the individual proteins in STD-NMR experiments. Two of these hit molecules contained the same scaffold and were used as a starting point for optimization towards more potent ligands. In a fragment-based fashion, the scaffold was grown to achieve better affinity in-silico and provide linkage points for functionalization such as the attachment of E3 ligase ligands to create PROTACs. Nine of these second-generation compounds were then synthesized. In order to obtain quantitative binding data a covalently linked Aurora-A – MYCN construct was designed. Its structural and functional validity was shown in STD-NMR and BLI experiments with known Aurora-A inhibitors and in NMR-based ATPase assays. In addition, a crystal structure of the construct was solved, validating the designed structure. Quantitative measurements with the synthesized compounds revealed a positive hit (HD19S) with a ten-fold higher affinity to the covalently linked AuroraA – MYCN as compared to Aurora-A alone. Additionally, effects of PROTACs designed to degrade Aurora-A were studied in-silico. Interactions between Aurora-A, the E3-ligase Cereblon and small molecules were modelled and successfully used to explain the differences in activities observed with different PROTACs. The most active PROTAC also showed a high selectivity for Aurora-A over Aurora-B, even though the recognition unit (Alisertib) can bind both family members. Through energetic analysis of molecular dynamics simulations of the ternary complexes, these differences could be explained. Optimizations for a more efficient degradation of Aurora-A by the PROTACs were examined by changing the recognition unit and improving linkers. KW - Arzneimitteldesign KW - Protein-Protein-Wechselwirkung KW - Vernetzung KW - Wirkstoffdesign KW - PROTAC KW - Proteolysis-Targeting-Chimera KW - Aurora-A KW - MYCN KW - Aurora-A-MYCN-Komplex Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-317594 ER -