TY - THES A1 - Liaqat, Anam T1 - Artificial Evolution of Nucleic Acid Catalysts and their Use for Studying RNA T1 - Artifizielle Evolution von katalytischen Nucleinsäuren und deren Anwendung für die Untersuchung von RNA N2 - RNA molecules play diverse roles in biological systems. Post-transcriptional RNA modifications and dynamic structures enhance the functional diversity of RNA. A prerequisite for studying their biological significance is the availability of reliable methods for the detection of RNA modifications and structures. Several promising approaches have been developed in the last few decades; however, efficient, and versatile tools are still required to study the dynamic features of RNA. This thesis focuses on the development of nucleic acid catalysts as a tool to address the current needs in studying RNA. The major part of this thesis aimed at the development of deoxyribozymes as a tool for the detection of RNA modifications. Using in vitro selection from a random DNA library, we found deoxyribozymes that are sensitive to N 6 -isopentenyladenosine (i6A), a native tRNA modification and structural analogue of m6A. The in vitro evolution identified three classes of DNA enzymes: AA, AB08, and AC17 DNAzymes that showed distinct response to i6A modification and showed strong discrimination between structural analogues, i.e., m6A and i6A. In the continuation of the project, we attempted to develop RNA-cleaving deoxyribozymes that differentially respond to monomethylated cytidine isomers, 3-methylcytidine (m3C), N4 - methylcytidine (m4C), and 5-methylcytidine (m5C). Several deoxyribozymes were identified from in vitro selection, which are selective for a specific methylated cytidine isomer. The characterization of AL112, AM101, AN05, and AK104 catalysts confirmed the successful evolution of modification-specific and general deoxyribozymes that showed a broad substrate scope. In order to accelerate the DNAzymes discovery, a high throughput sequencing method (DZ-seq) was established that directly quantifies the RNA cleavage activity and cleavage site from deep sequencing data. The libraries contained information about cleavage status, cleavage site and sequence of deoxyribozymes and RNA substrate. The fraction cleaved (FC) data obtained from Dz-seq was validated for a subset of deoxyribozmes using conventional gel based kinetic assay and showed a good linear correlation (R2 = 0.91). Dz-seq possesses a great potential for the discovery of novel deoxyribozymes for the analysis of various RNA modifications in the future. The second objective of the current study was the development of structure-specific RNA labeling ribozymes. Here, we attempted to develop ribozymes that targets RNA of interest by structure-specific interaction rather than base-pairing and focused on a specific RNA G-quadruplex as the target. Two subsequent selection experiments led to the identification of the adenylyltransferase ribozymes AO10.2 and AR9. The partial characterization of these catalysts showed that A010.2 was unable to recognize intact BCL2 structure, but it turned out as the first reported trans-active ribozyme that efficiently labeled uridine in a defined substrate RNA hybridized to the ribozyme. The other ribozyme AR9 was shown to serve as a trans-active, self-labeling ribozyme that catalyzed adenylyl transferase reaction in the presence of the intact BCL2 sequence. Based on these preliminary findings, we envision that AR9 could potentially serve as a reporter RNA by self-labeling in the presence of an RNA G-quadruplex. However, both AO10.2 and AR9 still require more detailed characterization for their potential applications. N2 - RNA hat zahlreiche Funktionen in verschiedensten biologischen Systemen. Sowohl posttranskriptionelle Modifikationen als auch die Dynamik der dreidimensionalen Struktur von RNA trägt zu deren funktionalen Diversität bei. Eine Voraussetzung, um die biologische Bedeutung von RNA genauer zu untersuchen, ist die Verfügbarkeit zuverlässiger Methoden zur Detektion von RNA-Modifikationen und -Strukturen. In den letzten Jahrzenten wurden hierfür zahlreiche vielversprechende Ansätze entwickelt und berichtet. Allerdings besteht weiterhin der Bedarf an effizienten und vielseitig einsetzbaren Hilfsmitteln, um die Dynamik von RNA weiter zu erforschen. Diese Arbeit konzentriert sich auf die Entwicklung von Nucleinsäure basierten Katalysatoren, die in Zukunft als Werkzeug zur Untersuchung von RNA eingesetzt werden können. Der Großteil dieser Arbeit strebte die Entwicklung von Desoxyribozymen als Werkzeug für die Detektion von RNA-Modifikation an. Vor kurzem wurden m6A-sensitive DNA-Enzyme berichtet, die RNA schneiden können und damit Auskunft über deren Methylierungs-Status geben können. Diese sind auch in der Lage m6A in natürlichen RNAs wie lncRNAs und C/D box snoRNAs zu detektieren. Allerdings fehlen detaillierten strukturelle und mechanistische Erkenntnissen darüber, wie Desoxyribozyme solche Modifikationen detektieren. Deshalb ist es noch nicht möglich bereits vorhandene DNA-Enzyme umzuarbeiten, damit diese auch andere RNA-Modifikationen erkennen können. Aus diesem Grund fokussierten wir uns hier auf die Entwicklung neuer DNA-Enzyme für die Detektion von RNA-Modifikationen über m6A hinaus. Mit Hilfe von in vitro Selektion konnten wir ausgehend von einer randomisierten DNA-Bibliothek, Desoxyribozyme finden, die sensitiv gegenüber N6-Isopentenyladenosin (i6A) sind. Bei dieser Modifikation handelt es sich um ein strukturelles Analogon von m6A, die natürlicherweise in tRNA vorkommt. Als Ergebnis der in vitro Selektion konnten drei Klassen an DNA-Enzymen identifiziert werden: AA, AB08 und AC17 Desoxyribozyme. AA DNA-Enzyme spalteten unmodifizierte RNA und wurden durch i6A stark inhibiert. AB08 schnitten i6A-modifizierte RNA signifikant schneller als unmodifizierte RNA. Im Gegensatz hierzu zeigte AC17 ein einzigartiges Verhalten, indem es die Schneide-Position innerhalb der RNA um ein Nukleotid Richtung 5‘-Ende verschob, wenn eine i6A-Modifikation vorhanden war. Des weiteren konnten alle drei Klassen an DNA-Enzymen eindeutig zwischen m6A und i6A unterscheiden. Im weiteren Verlauf des Projektes strebten wir an RNA-schneidente Desoxyribozyme zu entwickeln, die die mono-methylierten Cytidin-Isomere 3-Methylcytidin (m3C), N4-Methylcytidin (m4C) und 5-Methylcytidine (m5C) voneinander unterscheiden können. Um vielseitigere DNA-Enzyme zu erhalten, benutzten wir RNA-Substrate, die ein randomisiertes Nukleotid in 5‘-Richtung neben dem methylierten Cytidin besaßen. Mehrere Desoxyribozyme konnten identifiziert werden, die selektiv und spezifisch für eines der methylierten Cytidin Isomere waren. Die Charakterisierung der DNA-Enzyme AL112, AM101, AN05 und AK104 bestätigte die erfolgreiche Evolution von einerseits modifikations-spezifischen sowie aber auch generellen DNA-Enzymen, die einen großen Substrat-Bereich abdecken. Zudem konnte gezeigt werden, dass AL112, AN05 und AK104 als programmierbare Werkzeuge zur Bestätigung von m3C- und m5C-Modifikationen in menschlicher mitochondrialen tRNA eingesetzt werden können. Um die Entdeckung von DNA-Enzymen weiter zu beschleunigen, wurde eine Hochdurchsatz-Sequenzierungsmethode (DZ-seq) entwickelt. Diese nutzt die Sequenzierungsdaten, um direkt die Schneideaktivität einzelner Desoxyribozyme zu quantifizieren sowie die genaue Stelle der RNA-Spaltung festzustellen. Illumina Sequenzierungsbibliotheken wurden ausgehend von aktiven DNA-Pools hergestellt, welche an bestimmte RNA-Substrate ligiert wurden. Nachdem die Schneide-Reaktion stattgefunden hatte, wurden sowohl die geschnittenen als auch die ungeschnittenen Fraktionen mit Hilfe von Poly(A)-Polymerase verlängert, woraufhin eine reverse Transkription mit Oligo-dT Primern folgte. Zu diesem Zeitpunkt beinhalteten die Bibliotheken bereits Informationen über den Schneide-Status, die exakte Schnittstelle innerhalb der RNA sowie über die Sequenzen des entsprechenden DNA-Enzyms und der Substrat-RNA. Die Daten, die durch Dz-Seq über die Schneideaktivität der einzelnen Desoxyribozyme erhalten wurden, wurde für einen Teil der Enzyme anhand konventioneller, gel-basierter kinetischer Assays validiert. Diese zeigten eine gute lineare Korrelation (R2 = 0.91). Interessanterweise zeigte Dz-Seq aber nur eine schwache Korrelation zwischen der Schneideaktivität und der Häufigkeit der Desoxyribozyme in der letzten Runde der in vitro Selektion. Zum Beispiel war AM301 nur zu einem geringen Anteil im DZ-seq Datensatz zu finden, war jedoch sehr aktiv. Dies ist nur ein Beispiel des großen Potentials von DZ-seq für die Entdeckung neuer DNA-Enzyme, die für die zukünftige Analyse zahlreicher RNA-Modifikationen angewendet werden könnten. Der zweite Teil dieser Arbeit beschäftigte sich mit der Entwicklung von Ribozymen, die spezifisch eine Ziel-RNA anhängig von deren Struktur markieren können. Die Inspiration hierfür stammt von den kürzlich berichteten Ribozymen FH14 und FJ1. Hierbei handelt es sich um Ribozyme, die über Watson-Crick-Basenpaarung ihre Ziel-RNA erkennen und diese dann sequenz-spezifisch markieren. Unser Ziel war es nun Ribozyme zu entwickeln, die ihre Ziel-RNA über Struktur-spezifische Wechselwirkungen anstelle von Basenpaarung erkennen. Hierbei fokussierten wir uns auf einen RNA G-Quadruplex als entscheidendes Strukturelement. Bei der in vitro Selektion wurde eine RNA Bibliothek verwendet, die kovalent an ein Fragment der 5‘-UTR der BCL2 RNA gebunden war. Von dieser RNA ist bekannt, dass sie einen G-Quadruplex formt. Zwei aufeinanderfolgende Selektionen führten zur Identifikation der Adenylyltransferasen AO10.2 und AR9. Die vorläufige Charakterisierung dieser beiden Ribozyme zeigte, dass AO10.2 die intakte BCL2-Struktur nicht erkennen kann. Stattdessen stellte sich heraus, dass dies das erste trans-aktive Ribozym ist, das effizient Uridin markieren kann, welches sich in einer definierten RNA-Struktur befindet, die mit dem Ribozym hybridisiert ist. Demnach hat es großes Potential als Werkzeug für die spezifische Markierung von RNA eingesetzt werden zu können. Beim zweiten Ribozym AR9 stellte sich heraus, dass es sich um ein trans-aktives, selbst-markierendes RNA-Enzym handelt, welches die gewünschte Reaktion nur bei Vorhandensein der intakten BCL2-Sequenz katalysiert. Basierend auf diesen vorläufigen Ergebnissen könnte AR9 als Reporter-RNA dienen, die sich RNA G-Quadruplexes selbst markiert. Allerdings benötigen sowohl AO10.2 als auch AR9 noch eine detailliertere Charakterisierung, bevor sie für potenzielle Anwendungen eingesetzt werden können. KW - Deoxyribozymes KW - Ribozymes KW - RNA modifications KW - RNA structures KW - RNA G-quadruplex Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-283111 ER - TY - THES A1 - Fiore, Elisabetta T1 - Global mapping of pseudouridine in the transcriptomes of \(Campylobacter\) \(jejuni\) and \(Helicobacter\) \(pylori\) and functional characterization of pseudouridine synthases T1 - Globale Kartierung von Pseudouridin in den Transkriptomen von \(Campylobacter\) \(jejuni\) und \(Helicobacter\) \(pylori\) und funktionelle Charakterisierung von Pseudouridin-Synthasen N2 - More than 150 different RNA modifications have been detected in all kingdoms of life and 60 are known to decorate bacterial RNA. Among them, pseudouridine is universally conserved and one of the most abundant modifications present in bacterial stable RNAs such as tRNAs and rRNAs. In bacteria, the nucleotide is posttranscriptionally generated by dedicated enzymes called pseudouridine synthases (PUSs). With the advent of sophisticated deep-sequencing technologies, this modification has been identified in different types of RNA classes (tRNAs, rRNAs, mRNAs, snRNAs, and lncRNAs) in diverse eukaryotic organisms. However, these techniques have never been applied to bacteria, generating a knowledge gap about the location of the modified nucleotide in prokaryotic RNAs. Mutations or deletions of specific eukaryotic PUS enzymes are linked to human diseases and therefore their absence is deleterious for the correct function of the cell. However, deletion of tRNA or rRNA PUS enzymes in the bacterial model organism E. coli have not revealed any such drastic phenotypes, suggesting a different role and function of the modification itself and of the enzymes in different kingdoms of life. Since the roles of tRNA PUS enzymes in bacteria is still poorly understood, a functional characterization of these proteins is pursued in the Epsilonproteobacteria Campylobacter jejuni and Helicobacter pylori. While C. jejuni is the leading cause of bacterial foodborne gastroenteritis in humans, infection with H. pylori is associated with the development of gastric cancer. In particular, phenotypes were explored for the tRNA PUS enzymes TruA, TruB, and TruD in C. jejuni as well as TruA and TruD in H. pylori. Upon deletion of truD, a severe growth defect is observed for C. jejuni but not for H. pylori, highlighting a potential difference in function of the enzyme in the two related bacterial pathogens. Moreover, a genome-wide approach called Pseudo-seq is established and applied for RNA of these two pathogens, which allows, for the first time, the global identification of pseudouridine modifications at single-nucleotide resolution in the bacterial transcriptome. Applying Pseudo-seq in RNAs of wildtype and diverse PUS enzyme deletion mutants enabled the identification of the distinct RNA substrates of tRNA PUS enyzmes in C. jejuni and H. pylori. Hereby, the tRNA-Glu was determined to be the major tRNA substrate of TruD in C. jejuni. Interestingly, the tRNA-Glu is expressed as a single copy in the C. jejuni genome. To link the growth defect observed for a C. jejuni ∆truD mutant strain to the pseudouridine modification of the tRNA-Glu, a catalytically inactive TruD complementation was generated. This strain is unable to restore the tRNA-Glu modification but surprisingly, was able to complement the growth defect. The same observation was made for a cross-complementation with a copy of H. pylori TruD. This indicates that there is a potential additional function of the TruD PUS enzyme in C. jejuni that is independent of the pseudouridine modification. Using a combination of deep-sequencing technologies (RIP-seq, RNA-seq, Ribo-seq, and CLIP-seq), the dual function of TruD is investigated. Overall, this study provides the first in-depth investigation into pseudouridylation of bacteria in general and the bacterial pathogens C. jejuni and H. pylori in particular. The work presented in this thesis reveals not only a global map of pseudouridine in tRNAs and rRNAs of the two bacteria but it also explores the function of the responsible tRNA PUS enzymes. In addition, this study provides evidence for a dual function of the C. jejuni PUS enzyme TruD that goes beyond its RNA modifying function. Future research could focus on unravelling the function of TruD and its potential interaction partners and thus reveal new mechanisms of regulation of a protein previously only described as an RNA modification enzyme. N2 - Mehr als 150 verschiedene RNA-Modifikationen sind bislang in den unterschiedlichsten Organismen nachgewiesen worden, wovon 60 dieser Modifikationen in bakterieller RNA vorkommen. In Bakterien ist Pseudouridin eine der häufigsten Modifikationen, die in stabilen RNAs wie tRNAs und rRNAs zu finden sind. Hierbei wird das modifizierte Nukleotid auf posttranskriptioneller Ebene von speziellen Enzymen, den sogenannten Pseudouridin-Synthasen (PUS), generiert. Die Entwicklung und der Einsatz fortschrittlicher Deep-Sequencing Technologien ermöglichte es, Pseudouridin in unterschiedlichen RNA Klassen (tRNAs, rRNAs, mRNAs, snRNAs und lncRNAs) in verschiedenen eukaryotischen Organismen zu identifizieren. Diese Verfahren wurden jedoch noch nie auf Bakterien angewandt. Mutationen oder Deletionen spezifischer PUS Enzyme wurden im Menschen bereits mit der Entstehung von Krankheiten in Verbindung gebracht. Diese Enzyme sind daher für die korrekte Funktionsweise einer eukaryotischen Zelle unabdinglich. Nichtsdestotrotz führte die Deletion von tRNA oder rRNA PUS Enzymen im bakteriellen Modellorganismus Escherichia coli zu keinen solch drastischen Phänotypen. Dies wiederum deutet auf eine unterschiedliche Rolle und Funktion der Modifikation und der verantwortlichen Enzyme in verschiedenen Organismen hin. In der vorliegenden Arbeit werden tRNA PUS Enzyme der Epsilonproteobakterien Campylobacter jejuni und Helicobacter pylori funktionell charakterisiert. Der Lebensmittelkeim C. jejuni ist derzeit die häufigste Ursache für bakteriell verursachte Gastroenteritis im Menschen. Dahingegen wird eine H. pylori Infektion mit der Entwicklung von Magenkrebs in Verbindung gebracht. Insbesondere wurden die Funktionen der tRNA PUS Enzyme TruA, TruB und TruD in C. jejuni sowie TruA und TruD in H. pylori untersucht. Während die Deletion von TruD keine phänotypischen Auswirkungen in H. pylori hat, führt diese in C. jejuni zu einem Wachstumsdefekt. Dies weist auf eine möglicherweise unterschiedliche Funktion des Enzyms in den beiden verwandten bakteriellen Krankheitserregern hin. Zusätzlich beschreibt diese Arbeit die Etablierung und Anwendung von Pseudo-seq in C. jejuni und H. pylori, einem genomweiten Ansatz mittels dessen zum ersten Mal die globale Identifizierung von Pseudouridin Modifikationen auf Einzel-Nukleotid-Ebene im bakteriellen Transkriptom ermöglicht wird. Durch Pseudo-seq Analysen von wildtypischer RNA und RNA isoliert aus unterschiedlichen PUS Enzym Deletionen, konnten die RNA Substrate dieser Enzyme in C. jejuni und H. pylori ermittelt werden. Für TruD stellte sich dabei die tRNA-Glu als Hauptsubstrat heraus. Interessanterweise ist diese im Genom von C. jejuni nur als einzelne Kopie vorhanden. Da eine TruD Deletionsmutante in C. jejuni einen Wachstumsdefekt aufweist, wurde dieser Phänotyp in Zusammenhang mit dem Auftreten der Pseudouridin Modifikation an der tRNA-Glu untersucht. Zu diesem Zweck wurde ein TruD Komplementationsstamm generiert, der jedoch katalytisch inaktiv ist und somit nicht in der Lage ist die Modifikation der tRNA-Glu wiederherzustellen. Überraschenderweise komplementierte dieser Stamm dennoch den Wachstumsdefekt. Eine ähnliche Beobachtung wurde bei einer Kreuzkomplementation mit einer Kopie von H. pylori TruD gemacht. Dies deutet darauf hin, dass das TruD PUS Enzym in C. jejuni möglicherweise eine zusätzliche Funktion unabhängig von der Pseudouridin Modifikation hat. Diese potentiell duale Funktion von TruD wird in dieser Arbeit durch die Anwendung einer Kombination von Deep-Sequencing Technologien (RIP-seq, RNA-seq, Ribo-seq und CLIP-seq) untersucht. Insgesamt stellt diese Studie die erste eingehende Untersuchung von Pseudouridin Modifikationen in Bakterien im Allgemeinen, und in den Krankheitserregern C. jejuni und H. pylori im Speziellen, dar. Die in dieser Arbeit vorgelegten Ergebnisse beschreiben nicht nur eine globale Kartierung von Pseudouridin Modifikationen in bakteriellen tRNAs und rRNAs sondern erforschen auch die Funktionen der für die Modifikation verantwortlichen tRNA PUS Enzyme. Darüber hinaus liefert diese Arbeit Hinweise auf eine duale Funktion des C. jejuni PUS Enzyms TruD, die über die Funktion als RNA-modifizierendes Enzym hinausgeht. Zukünftige Untersuchungen könnten sich dementsprechend darauf konzentrieren, die Funktion von TruD und seinen potenziellen Interaktionspartnern zu entschlüsseln. Dies könnte neue Erkenntnisse über Mechanismen der Regulierung eines Enzyms/Proteins liefern, das bislang nur als RNA modifizierendes Enzym beschrieben war. KW - Pseudouridin KW - Campylobacter jejuni KW - Helicobacter pylori KW - TruD KW - Deep-sequencing KW - RNA modifications Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-288736 ER -