TY - THES A1 - Song, Boyuan T1 - Structural and functional studies of \(Saccharomyces\) \(cerevisiae\) Ccr4-Not complex with Electron microscopy T1 - Strukturelle und funktionelle Untersuchungen von \(Saccharomyces\) \(cerevisiae\) Ccr4-Not Komplexen mittels Elektronenmikroskopie N2 - The degradation of poly-adenosine tails of messenger RNAs (mRNAs) in the eukaryotic cells is a determining step in controlling the level of gene expression. The highly conserved Ccr4-Not complex was identified as the major deadenylation complex in all eukaryotic organisms. Plenty of biochemical studies have shown that this complex is also involved in many aspects of the mRNA metabolism, but we are still lacking the detailed structural information about its overall architecture and conformational states that could help to elucidate its multifunction and the way it is coordinated in the cells. Such information can also provide a basis to finding a possible way of intervention since the complex is also involved in some diseases such as cancer and cardiovascular disorders in humans. Meanwhile, the single particle Cryo-EM method has been through a “resolution revolution” recently due to the use of the newly developed direct electron detectors and has since resolved the high-resolution structures of many macromolecular protein complexes in their near-native state. Therefore, it was employed as a suitable method for studying the Ccr4-Not complex here. In this work, the Falcon 3EC direct detector mounted on the 300kV Titan Krios G3i Cryo-EM was evaluated for its practical performance at obtaining high-quality Cryo-EM data from protein samples of different molecular sizes. This served as a proof of principle for this detector’s capabilities and as a data collection guidance for studying the macromolecular complexes, such as the Ccr4-Not, when using an advanced high-performance microscope system. Next, the endogenous yeast Ccr4-Not complex was also purified via the immunoaffinity purification method and evaluated using negative staining EM to assess the conditions of the complex before proceeding to sample preparation for Cryo-EM. This has shown that the complex had an unexpected inherently dynamic property in vitro and extra optimisation procedures were needed to stabilise the complex during the purification and sample preparation. In addition, by using the label-free quantitative Mass spectrometry to examine the coimmunoprecipitated complex via different tagged subunits, it was deduced that two of the subunits (Not3/Not5) that shared some sequence similarity might compete for association with the scaffold subunit of the complex. An uncharacterised protein was also identified coimmunoprecipitating with the Caf130 subunit of the yeast complex. Cryo-EM data from the purified complex provided a low-resolution map that represents a surprisingly smaller partial complex as compared to 3D structures from previous studies, although gel electrophoresis and Mass spectrometry data have identified all of the nine subunits of the Ccr4-Not core complex in the sample. It was concluded that due to the presence of many predicted unstructured regions VI in the subunits and their dynamic composition in solution, the native complex could have been spontaneously denatured at the air/water interface during the sample preparation thus limiting the resolution of the Cryo-EM reconstruction. The purified complex was also examined for its deadenylase and ubiquitin ligase activity by in vitro assays. It was shown that the native complex has a different rate of activity and possibly also a different mode of action compared to the recombinant complexes from other species under similar reaction conditions. The Not4 E3 ligase was also shown to be active in the complex and was likely auto-ubiquitinated in the absence of a substrate. Both types of assays have also shown that the conformational flexibility does not seem to affect the enzymatic reactions when using a chemically crosslinked form of the complex for the assay, which implies that there can be other underlying mechanisms coordinating its structural and functional relationship. The findings from this work have therefore moved our understanding of the Ccr4-Not complex forward by looking at the different structural and functional behaviours of the endogenous complex, especially highlighting the obstacles in sample preparation for the native complex in high-resolution Cryo-EM. This would serve as foundation for future studies on the mechanism of this complex’s catalytic functions and also for optimising the Cryo-EM sample to generate better data that could eventually resolve the structure to a high-resolution. N2 - Der Abbau des Poly(A)-Schwanzes von Messenger-RNAs (mRNA) in den eukaryotischen Zellen ist ein entscheidender Schritt bei der Kontrolle des Niveaus der Genexpression. Der hochkonservierte Ccr4-Not-Komplex wurde in allen eukaryotischen Organismen als der Hauptdeadenylierungskomplex identifiziert. Zahlreiche biochemische Studien haben gezeigt, dass dieser Komplex auch an vielen Aspekten des mRNA-Metabolismus beteiligt ist. Uns fehlen jedoch noch die detaillierten Strukturinformationen über seine Gesamtarchitektur und seine Konformationszustände, die zur Aufklärung seiner Multifunktion und seiner Koordinierung in den Zellen beitragen könnten. Solche Informationen können auch Grundlage für die Suche nach einem möglichen Interventionsweg bieten, da der Komplex auch an einigen Krankheiten wie Krebs und Herz-Kreislauf-Erkrankungen des Menschen beteiligt ist. In der Zwischenzeit hat die Einzelpartikel-Kryo-EM-Methode aufgrund der Verwendung der neu entwickelten direkten Elektronendetektoren kürzlich eine „Auflösungsrevolution“ durchlaufen und seitdem die hochauflösenden Strukturen vieler makromolekularer Proteinkomplexe in ihrem nahezu nativen Zustand aufgelöst. Daher wurde es hier als geeignete Methode zur Untersuchung des Ccr4-Not-Komplexes eingesetzt. In dieser Arbeit wurde der Falcon 3EC-Direktdetektor, der an das 300-kV-Titan Krios G3i Kryo-EM montiert ist, auf seine praktische Leistung bei der Gewinnung hochwertiger Kryo-EM-Daten aus Proteinproben unterschiedlicher Molekülgröße untersucht. Dies diente als Grundsatznachweis für die Fähigkeiten des Detektors und als Leitfaden für die Datenerfassung zur Untersuchung der makromolekularen Komplexe wie Ccr4-Not bei Verwendung eines fortschrittlichen Hochleistungsmikroskopsystems. Als nächstes wurde der endogene Hefe-Ccr4-Not-Komplex auch über das Immunaffinitäts-Reinigungsverfahren gereinigt und unter Verwendung einer negativ gefärbten EM bewertet, um die Bedingungen des Komplexes zu bewerten, bevor mit der Probenvorbereitung für Kryo-EM fortgefahren wurde. Dies hat gezeigt, dass der Komplex in vitro eine unerwartete inhärent dynamische Eigenschaft aufwies und zusätzliche Optimierungsverfahren erforderlich waren, um den Komplex während der Reinigung und Probenvorbereitung zu stabilisieren. Darüber hinaus wurde unter Verwendung der markierungsfreien quantitativen Massenspektrometrie zur Untersuchung des co-immunpräzipitierten Komplexes über verschiedene markierte Untereinheiten abgeleitet, dass zwei der Untereinheiten (Not3 / Not5), die eine gewisse Sequenzähnlichkeit teilen, um die Verbindung mit der Gerüstuntereinheit des Komplexes konkurrieren könnten. Es wurde auch ein nicht charakterisiertes Protein identifiziert, das zusammen mit der Caf130-Untereinheit des Hefekomplexes immunpräzipitiert. Kryo-EM-Daten aus dem gereinigten Komplex lieferten eine Karte mit niedriger Auflösung, die im Vergleich zu 3D-Strukturen aus früheren Studien einen überraschend kleineren Teilkomplex darstellt, obwohl Gelelektrophorese- und Massenspektrometriedaten gezeigt haben, dass alle neun Untereinheiten des Ccr4-Not Kernkomplexware in der Probe vorhanden waren. Daraus kann man schließen, dass aufgrund des Vorhandenseins vieler vorhergesagter unstrukturierter Regionen in den Untereinheiten und ihrer dynamischen Zusammensetzung in Lösung der native Komplex während der Probenvorbereitung an der Luft / Wasser-Grenzfläche spontan denaturiert werden konnte, wodurch die Auflösung des Kryo-EM Wiederaufbaus begrenzt wurde. Der gereinigte Komplex wurde auch durch In-vitro-Tests auf seine Deadenylase- und Ubiquitin-Ligase-Aktivität untersucht. Es wurde aufgezeigt, dass der native Komplex eine andere Aktivitätsrate und möglicherweise auch eine andere Wirkungsweise aufweist als die rekombinanten Komplexe anderer Spezies unter ähnlichen Reaktionsbedingungen. Es wurde auch dargestellt, dass die Not4 E3-Ligase in dem Komplex aktiv ist und wahrscheinlich in Abwesenheit eines Substrats automatisch ubiquitiniert wird. Beide Arten von Assays haben auch gezeigt, dass die Konformationsflexibilität die enzymatischen Reaktionen bei Verwendung einer chemisch vernetzten Form des Komplexes für den Assay nicht zu beeinflussen scheint, was impliziert, dass es andere zugrunde liegende Mechanismen geben kann, die seine strukturelle und funktionelle Beziehung koordinieren. Die Ergebnisse dieser Arbeit haben daher unser Verständnis des Ccr4-Not-Komplexes weiterentwickelt, indem wir die unterschiedlichen strukturellen und funktionellen Verhaltensweisen des endogenen Komplexes untersucht und insbesondere die Hindernisse bei der Probenvorbereitung für den nativen Komplex im hochauflösendem Kryo-EM hervorgehoben haben. Dies würde als Grundlage für zukünftige Forschungen dienen, die Mechanismen seiner katalytischen Funktionen weiter zu untersuchen und auch die Kryo-EM-Probe zu optimieren, um bessere Daten zu generieren, die die Struktur schließlich in eine hohe Auflösung auflösen könnten. KW - CCR4 KW - Ccr4-Not KW - biochemistry KW - electron microscopy Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-216527 ER - TY - THES A1 - Flegler, Vanessa Judith T1 - Application of electron cryomicroscopy for structural and functional studies on the mechanosensitive channels of small conductance T1 - Kryoelektronenmikroskopie zur strukturellen und funktionellen Untersuchung der mechanosensitiven Kanäle kleiner Leitfähigkeit N2 - Bacteria thrive and survive in many different environments, and as a result, they have developed robust mechanisms to adapt rapidly to alterations in their surroundings. The protection against osmotic forces is provided by mechanosensitive channels: their primary function is to maintain the integrity of the cell upon a hypoosmotic shock. The mechanosensitive channel of small conductance (MscS) is not only the smallest common structural unit of a diverse family that allows for a tailored response in osmoregulation; it is also the most intensively studied homologue. Mechanosensitive channels directly sense elevated membrane tension levels generated by increased pressure within the cell and open transiently. Escherichia coli has six paralogues that differ in their gating properties and the number of additional transmembrane (TM) helices. These TM helices, termed sensor paddles, are essential for sensing, as they directly contact the surrounding membrane; however, the role of the additional TM helices is still unclear. Furthermore, lipids occupy hydrophobic pockets far away from the membrane plane. A recent gating model for MscS states that increased membrane tension triggers the expulsion of lipids out of those pockets, modulating different conformational states of MscS. This model focuses on bound lipids, but it is still unclear to what extent the direct interaction with the membrane influences sensing and how relevant it is for the larger paralogues. In the herein described work, structural studies on two larger paralogues, the medium-sized channel YnaI and the large channel YbiO were realised using electron cryomicroscopy (cryo-EM). Lipids were identified in YnaI in the pockets in a similar position and orientation as in MscS, suggesting a conserved sensing mechanism. Moreover, the copolymer diisobutylene/maleic acid (DIBMA) allowed the extraction of artificially activated YnaI from plasma membranes, leading to an open-like form of this channel. This novel conformation indicated that the pore helices bend at a GGxGG motif during gating, which is unique among the Escherichia coli paralogues, concomitant with a structural reorganisation of the sensor paddles. Thus, despite a high similarity of their closed states, the gating mechanisms of MscS and YnaI are surprisingly different. Furthermore, the comparison of MscS, YnaI, and YbiO accentuates variations and similarities between the differently sized family members, implying fine-tuning of channel properties in the pore regions and the cytosolic lateral entry sides into the channel. Structural analyses of MscS reconstituted into different systems showed the advantages and disadvantages of certain polymers and detergents. The novel DIBMA copolymer and the more conventional amphiphilic polymers, so-called Amphipols, perturb contacting transmembrane helices or lead to their denaturation. Due to this observation, the obtained structures of YnaI must also be cautiously considered. The structures obtained in detergents resulted in unaffected channels; however, the applicability of detergents for MscS-like channels is limited by the increased required sample concentration. The role of lipids for gating MscS in the absence of a membrane was examined by deliberately removing coordinated lipid molecules from MscS using different amounts and kinds of detergent. The effects on the channel were inspected by cryo-EM. These experiments showed that closed MscS adopts the open conformation when it is enough delipidated by incubation with the detergent n-dodecyl-β-D-maltoside, and adding lipids to the open channel reverses this process. The results agree with the state-of-the-art model that the amount of lipid molecules in the pockets and grooves is responsible for the conformational state of MscS. Furthermore, incubation with the detergent lauryl maltose neopentyl glycol, which has stabilising and delipidating characteristics, resulted in a high-resolution structure of open MscS exhibiting an intricate network of ligands. Based on this structure, an updated gating model is proposed, which states that upon opening, lipids from the pockets migrate into the cytosolic membrane leaflet, while lipids from the periplasmic leaflet enter the grooves that arise between the sensor paddles. N2 - Bakterien gedeihen und überleben in vielen unterschiedlichen Umgebungen. Daher haben sie robuste Mechanismen entwickelt, um sich rasch an Veränderungen in ihrer Umgebung anzupassen. Den Schutz vor osmotischen Kräften gewährleisten mechanosensitive Kanäle: Ihre Hauptfunktion besteht darin, die Unversehrtheit der Zelle bei einem hypoosmotischen Schock zu erhalten. Der mechanosensitive Kanal geringer Leitfähigkeit (mechanosensitive channel of small conductance, MscS) stellt nicht nur die kleinste gemeinsame Struktureinheit einer Familie von Kanälen dar, die eine maßgeschneiderte Antwort auf hypoosmotischen Stress ermöglicht; er ist auch das intensivste untersuchte Familienmitglied. Mechanosensitive Kanäle registrieren erhöhte Membranspannungen, die durch steigenden Druck innerhalb der Zelle entstehen, und öffnen vorübergehend. In Escherichia coli gibt es sechs paraloge Kanäle, die sich in ihren Öffnungs-Eigenschaften und der Anzahl zusätzlicher transmembranen Helices unterscheiden. Diese Helices, die als sensor paddles bezeichnet werden, sind für das Erfassen ansteigender Membranspannung unerlässlich, da sie direkt mit der umgebenden Membran in Kontakt stehen; die Rolle der zusätzlichen transmembranen Helices ist jedoch noch nicht geklärt. Außerdem sitzen Lipide in hydrophoben Taschen weit entfernt von der Membran. Ei kürzlich vorgeschlagenes Öffnungs-Modell für MscS besagt, dass eine erhöhte Membranspannung zum Ausstoß der Lipide aus diesen Taschen führt, wodurch verschiedene Konformationszustände von MscS moduliert werden. Dieses Modell konzentriert sich auf die Rolle der Lipide, aber es ist noch immer unklar, inwieweit die direkte Wechselwirkung mit der Membran das Wahrnehmen der Membranspannung beeinflusst und welche Bedeutung sie für die größeren paralogen Kanäle hat. In der vorliegenden Arbeit wurden Strukturstudien an zwei größeren paralogen Kanälen, dem mittelgroßen Kanal YnaI und dem großen Kanal YbiO, mittels Kryoelektronenmikroskopie (Kryo-EM) durchgeführt. In YnaI wurden Lipide in den Taschen in ähnlicher Position und Ausrichtung wie in MscS gefunden, was auf einen konservierten Mechanismus zur Wahrnehmung der Membranspannung schließen lässt. Darüber hinaus ermöglichte das Copolymer Diisobutylen/Maleinsäure (DIBMA) die Isolation von artifiziell aktiviertem YnaI aus Plasmamembranen, was zur Struktur einer anscheinend offenen Form dieses Kanals führte. Diese neuartige Konformation deutet darauf hin, dass sich die Porenhelices während des Öffnens im Bereich eines GGxGG-Motiv biegen, das unter den paralogen Kanälen von Escherichia coli einzigartig ist und mit einer strukturellen Reorganisation der sensor paddles einhergeht. Trotz der großen Ähnlichkeit ihrer geschlossenen Zustände sind die Öffnungs-Mechanismen von MscS und YnaI also überraschend unterschiedlich. Darüber hinaus zeigte der Vergleich von MscS, YnaI und YbiO Unterschiede und Gemeinsamkeiten zwischen den unterschiedlich großen Familienmitgliedern. Diese Erkenntnissse deuten auf eine Feinabstimmung der Kanaleigenschaften im Bereich der Pore und an den zytosolischen seitlichen Eingängen der Kanäle hin. Strukturanalysen von MscS, in verschiedene Systeme rekonstituiert, zeigten die Vor- und Nachteile von ausgewählten Polymeren und Detergenzien. Das neuartige DIBMA-Copolymer und herkömmlichere amphiphile Polymere, die sogenannten Amphipole, stören die kontaktierenden transmembranen Helices oder führen zu deren Denaturierung. Im Zuge dieser Beobachtung müssen auch die erhaltenen Strukturen von YnaI vorsichtig betrachtet werden. Die in Detergenzien erhaltenen Strukturen zeigen unbeeinträchtigte Kanäle; die Anwendbarkeit von Detergenzien für MscS-ähnliche Kanäle wird jedoch durch die erhöhte erforderliche Proteinkonzentration eingeschränkt. Die Rolle der Lipide für das Öffnen von MscS wurde in Abwesenheit einer Membran untersucht, indem koordinierte Lipidmoleküle mit verschiedenen Mengen und Arten von Detergenzien bewusst von MscS entfernt wurden. Die Auswirkungen auf den Kanal wurden mittels Kryo-EM untersucht. Dabei zeigte sich, dass die geschlossene Form von MscS in die offene Konformation übergeht, wenn es durch Inkubation mit dem Detergenz n-Dodecyl-β-D-Maltosid ausreichend delipidiert wird, und dass die Zugabe von Lipiden zum offenen Kanal diesen Prozess wieder umkehrt. Die Ergebnisse stimmen mit dem Öffnungs-Modell überein, das besagt, dass die Menge der Lipidmoleküle in den Taschen und Furchen für den Konformationszustand von MscS verantwortlich ist. Darüber hinaus führte die Inkubation mit dem Detergenz Laurylmaltose-neopentylglykol, das sowohl stabilisierende als auch delipidierende Eigenschaften hat, zu einer hochaufgelösten Struktur des offenen MscS, die ein ausgeprägtes Netzwerk von Liganden zeigt. Auf der Grundlage dieser Struktur wird ein aktualisiertes Öffnungs-Modell vorgeschlagen, das besagt, dass bei der Öffnung Lipide aus den Taschen in die zytosolische Lipidschicht der Membran wandern, während Lipide aus der periplasmatischen Lipidschicht in die Furchen gelangen, die zwischen den sensor paddles entstehen. KW - mechanosensitive channels KW - electron cryomicroscopy KW - MscS KW - YnaI KW - protein-lipid interactions KW - delipidation KW - mechanosensing KW - electron microscopy Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-268979 ER -