TY - THES A1 - Schott, Gisela Marieluise T1 - Molekularstrahlepitaxie und Charakterisierung von (Ga,Mn)As Halbleiterschichten T1 - Molecular beam eptiaxy and characterisation of (Ga,Mn)As semiconductor layers N2 - In der Spintronik bestehen große Bemühungen Halbleiter und ferromagnetische Materialien zu kombinieren, um die Vorteile der hoch spezialisierten Mikroelektronik mit denen der modernen magnetischen Speichertechnologie zu verbinden. In vielen Bereichen der Elektronik wird bereits der III-V Halbleiter GaAs eingesetzt und ferromagnetisches (Ga,Mn)As könnte in die vorhandenen optischen und elektronischen Bauteile integriert werden. Deshalb ist eine intensive Erforschung der kristallinen Qualität, der elektrischen und magnetischen Eigenschaften von (Ga,Mn)As-Legierungsschichten von besonderem Interesse. Wegen der niedrigen Löslichkeit der Mangan-Atome in GaAs, muss (Ga,Mn)As außerhalb des thermodynamischen Gleichgewichtes mit Niedertemperatur-Molekularstrahl-Epitaxie hergestellt werden, um eine ausreichend hohe Konzentration an magnetischen Ionen zu erreichen. Dieses Niedertemperatur-Wachstum von Galliumarseniden verursacht Schwierigkeiten, da unerwünschte Defekte eingebaut werden können. Die Art der Defekte und die Anzahl ist abhängig von den Wachstumsparametern. Vor allem das überschüssige Arsen beeinflusst neben dem Mangan-Gehalt die Gitterkonstante und führt zu einer starken elektrischen und magnetischen Kompensation des (Ga,Mn)As Materials. Abhängig von den Wachstumsparametern wurden Eichkurven zur Kalibrierung des Mangan-Gehaltes aus Röntgenbeugungsmessungen, d. h. aus der (Ga,Mn)As-Gitterkonstanten bestimmt. Um ein besseres Verständnis über die Einflüsse der Wachstumsparameter neben dem Mangan-Gehalt auf die Gitterkonstante zu bekommen, wurden Probenserien gewachsen und mit Röntgenbeugung und Sekundärionen-Massenspektroskopie untersucht. Es wurde festgestellt, dass der Mangan-Gehalt, unabhängig von den Wachstumsparametern, allein vom Mangan-Fluss bestimmt wird. Die Gitterkonstante hingegen zeigte eine Abhängigkeit von den Wachstumsparametern, d. h. von dem eingebauten überschüssigen Arsen in das (Ga,Mn)As-Gitter. Im weiteren wurden temperaturabhängige laterale Leitfähigkeitsmessungen an verschiedenen (Ga,Mn)As-Einzelschichten durchgeführt. Es ergab sich eine Abhängigkeit nicht nur von dem Mangan-Gehalt, sondern auch von den Wachstumsparametern. Neben den Leitfähigkeitsmessungen wurden mit Kapazitäts-Messungen die Ladungsträgerkonzentrationen an verschiedenen (Ga,Mn)As-Schichten bestimmt. Es konnten Wachstumsbedingungen gefunden werden, bei der mit einem Mangan-Gehalt von 6% eine Ladungsträgerkonzentration von 2 · 10^(21) cm^(-3) erreicht wurde. Diese Schichten konnten reproduzierbar mit einer Curie-Temperatur von 70 K bei einer Schichtdicke von 70 nm hergestellt werden. Mit ex-situ Tempern konnte die Curie-Temperatur auf 140 K erhöht werden. Neben (Ga,Mn)As-Einzelschichten wurden auch verschiedene (GaAs/MnAs)- Übergitterstrukturen gewachsen und mit Röntgenbeugung charakterisiert. Ziel was es, Übergitter herzustellen mit einem hohen mittleren Mangan-Gehalt, indem die GaAs-Schichten möglichst dünn und die MnAs-Submonolagen möglichst dick gewachsen wurden. Dünnere GaAs-Schichten als 10 ML Dicke führten unabhängig von der Dicke der MnAs-Submonolage und den Wachstumsparametern zu polykristallinem Wachstum. Die dickste MnAs-Submonolage, die in einer Übergitterstruktur erreicht wurde, betrug 0.38 ML. Übergitterstrukturen mit nominell sehr hohem Mangan-Gehalt zeigen eine reduzierte Intensität der Übergitterreflexe, was auf eine Diffusion der Mangan-Atome hindeutet. Der experimentelle Wert der Curie-Temperatur von (Ga,Mn)As scheint durch die starke Kompensation des Materials limitiert zu sein. Theoretische Berechnungen auf der Grundlage des ladungsträgerinduzierten Ferromagnetismus besagen eine Erhöhung der Curie-Temperatur mit Zunahme der Mangan-Atome auf Gallium-Gitterplätzen und der Löcherkonzentration proportional [Mn_Ga] · p^(1/3). Zunächst wurden LT-GaAs:C-Schichten mit den Wachstumsbedingungen der LT-(Ga,Mn)As-Schichten gewachsen, um bei diesen Wachstumsbedingungen die elektrische Aktivierung der Kohlenstoffatome zu bestimmen. Es konnte eine Löcherkonzentration von 5 · 10^19 cm^(-3) verwirklicht werden. Aufgrund der erfolgreichen p-Dotierung von LT-GaAs:C wurden (Ga,Mn)As-Einzelschichten zusätzlich mit Kohlenstoff p-dotiert. Abhängig von den Wachstumsbedingungen konnte eine Erhöhung der Ladungsträgerkonzentration im Vergleich zu den (Ga,Mn)As-Schichten erreicht werden. Trotzdem ergaben magnetische Messungen für alle (Ga,Mn)As:C-Schichten eine Abnahme der Curie-Temperatur. Der Einfluss der Kohlenstoff-Dotierung auf die Gitterkonstante, die elektrische Leitfähigkeit und die Magnetisierung ließ auf einen veränderten Einbau der Mangan-Atome verursacht durch die Kohlenstoff-Dotierung schließen. N2 - In the field of spintronics there are efforts to combine semiconductors and ferromagnetic materials in order to merge the advantages of highly specialised microelectronics with modern magnetic hard disk technology. The III-V semiconductor GaAs is employed in many electronic circuits and the ferromagnetic (Ga,Mn)As could be integrated in current optical and electronic devices. Therefore an intensive investigation of its crystalline quality and its electrical and magnetic properties is of particular interest. Because of the low solubility of manganese atoms in GaAs, (Ga,Mn)As must be fabricated far from thermal equilibrium with low-temperature molecular beam epitaxy in order to achieve a high concentration of magnetic ions and holes. This low-temperature growth of gallium-arsenide compounds creates difficulties because undesirable defects are built into the host lattice. The type and quantity of defects is dependent on growth parameters. The lattice constant is influenced not only by the manganese concentration, but also by the arsenic excess, which causes a high electrical and magnetic compensation of the (Ga,Mn)As material. Depending on the growth parameters, calibration curves for manganese incorporation were determined from x-ray diffraction, i. e. from the lattice constant of (Ga,Mn)As. To get a better understanding about the influence of growth parameters other than manganese concentration on the lattice constant, we grew several series of samples for investigation by x-ray diffraction and secondary ion mass spectroscopy. It was shown that the manganese concentration is determined only by the manganese flux and is independent of other growth parameters. However the lattice constant shows a dependence on the growth parameters, i. e., on the excess arsenic build into the host lattice (Ga,Mn)As. Furthermore the temperature dependence of the lateral conductivity of different (Ga,Mn)As layers was investigated. A dependence on growth parameters in addition to a dependence on the manganese concentration was observed. Beside these conductivity measurements, capacitance measurements were carried out in order to determine the carrier concentration of various (Ga,Mn)As layers. Growth parameters yielding were determined which resulted in a carrier concentration of 2 × 1021 cm-3 for a manganese concentration of 6 %. Such layers were reproducibly fabricated, with a Curie temperature of 70 K, for a layer thickness of 70 nm. With ex situ annealing it was possible to raise the Curie temperature to 140 K. In addition to (Ga,Mn)As single layers, several (GaAs/MnAs) superlattices were grown and characterized by x-ray diffraction. The aim was to grow superlattices with a high average manganese concentration consisting of thin GaAs layers and thick MnAs submonolayers. GaAs layers thinner than 10 ML lead to polycrystalline growth independent of the thickness of the MnAs submonolayer. The thickest MnAs submonolayer which could be realized was 0.38 ML. Superlattices with a nominally high manganese concentration have reduced satellite peak intensities in x-ray diffraction, indicating a diffusion of the manganese atoms. The experimental value of the (Ga,Mn)As Curie temperature seems to be limited due to strong compensation of the material. Theoretical calculations based on the carrier induced ferromagnetism model predict an increase of the Curie temperature with increasing manganese atoms on gallium sites and with hole concentration following ~ [Mn_Ga] × p^(1/3). Initially, LT-GaAs:C layers were grown with the same parameters as LT-(Ga,Mn)As layers in order to determine the electrical activation of the carbon atoms with these growth parameters. A hole concentration of 5 × 10^(19) cm^(-3) was achieved. Because of the promising p-doping of the LT-GaAs:C several (Ga,Mn)As layers were additionally doped with carbon. Depending on growth parameters, an increase in the hole concentration could be achieved compared to the intrinsic (Ga,Mn)As layers. However magnetisation measurements show a decrease in the Curie temperature for all (Ga,Mn)As:C layers. The influence of the carbon doping on the lattice constant, the electrical conductivity, and the magnetism indicates that the manganese atoms are incorporated into the lattice host differently as result of the carbon doping. KW - Galliumarsenid KW - Manganarsenide KW - Ferromagnetische Heterostruktur KW - Molekularstrahlepitaxie KW - (Ga KW - Mn)As KW - Ferromagnetismus KW - III - V Halbleiter KW - molecular beam epitaxy KW - (Ga KW - Mn)As KW - ferromagnetism KW - III - V semiconductors Y1 - 2004 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-13470 ER - TY - THES A1 - Rüster, Christian T1 - Magnetotransport effects in lateral and vertical ferromagnetic semiconductor junctions T1 - Magnetotransport Effekte in lateralen und vertikalen ferromagnetischen Halbleiterdioden N2 - This work is an investigation of giant magnetoresistance (GMR), tunneling magnetoresistance (TMR) and tunneling anisotropic magnetoresistance (TAMR)effects in (Ga,Mn) based ferromagnetic semiconductor junctions. Detailed results are published in the following articles: [1] C. Rüster, T. Borzenko, C. Gould, G. Schmidt, L.W. Molenkamp, X. Liu, T.J.Wojtowicz, J.K. Furdyna, Z.G. Yu and M. Flatt´e, Very Large Magnetoresistance in Lateral Ferromagnetic (Ga,Mn)As Wires with Nanoconstrictions, Physical Review Letters 91, 216602 (2003). [2] C. Gould, C. Rüster, T. Jungwirth, E. Girgis, G.M. Schott, R. Giraud, K. Brunner, G. Schmidt and L.W. Molenkamp, Tunneling Anisotropic Magnetoresistance: A Spin-Valve-Like Tunnel Magnetoresistance Using a Single Magnetic Layer, Physical Review Letters 93, 117203 (2004). [3] C. Rüster, C. Gould, T. Jungwirth, J. Sinova, G.M. Schott, R. Giraud, K. Brunner, G. Schmidt and L.W. Molenkamp, Very Large Tunneling Anisotropic Magnetoresistance of a (Ga,Mn)As/GaAs/(Ga,Mn)As Stack, Physical Review Letters 94, 027203 (2005). [4] C. Rüster and C. Gould, T. Jungwirth, E. Girgis, G.M. Schott, R. Giraud, K. Brunner, G. Schmidt and L.W. Molenkamp, Tunneling anisotropic magnetoresistance: Creating a spin-valve-like signal using a single ferromagnetic semiconductor layer, Journal of Applied Physics 97, 10C506 (2005). N2 - Diese Arbeit enthält Untersuchungen von Magnetowiderstandseffekten in (Ga,Mn)As basierten ferromagnetischen Halbleiterdioden. Die Resultate wurden in den folgenden Artikeln veröffentlicht: [1] C. Rüster, T. Borzenko, C. Gould, G. Schmidt, L.W. Molenkamp, X. Liu, T.J.Wojtowicz, J.K. Furdyna, Z.G. Yu and M. Flatt´e, Very Large Magnetoresistance in Lateral Ferromagnetic (Ga,Mn)As Wires with Nanoconstrictions, Physical Review Letters 91, 216602 (2003). [2] C. Gould, C. Rüster, T. Jungwirth, E. Girgis, G.M. Schott, R. Giraud, K. Brunner, G. Schmidt and L.W. Molenkamp, Tunneling Anisotropic Magnetoresistance: A Spin-Valve-Like Tunnel Magnetoresistance Using a Single Magnetic Layer, Physical Review Letters 93, 117203 (2004). [3] C. Rüster, C. Gould, T. Jungwirth, J. Sinova, G.M. Schott, R. Giraud, K. Brunner, G. Schmidt and L.W. Molenkamp, Very Large Tunneling Anisotropic Magnetoresistance of a (Ga,Mn)As/GaAs/(Ga,Mn)As Stack, Physical Review Letters 94, 027203 (2005). [4] C. Rüster and C. Gould, T. Jungwirth, E. Girgis, G.M. Schott, R. Giraud, K. Brunner, G. Schmidt and L.W. Molenkamp, Tunneling anisotropic magnetoresistance: Creating a spin-valve-like signal using a single ferromagnetic semiconductor layer, Journal of Applied Physics 97, 10C506 (2005). KW - Galliumarsenid KW - Manganarsenide KW - Halbleiterdiode KW - Ferromagnetische Schicht KW - Magnetowiderstand KW - Spintronics KW - Ferromagnetische Halbleiter KW - Magnetotransport KW - Tunneldioden KW - Spintronics KW - ferromagnetic semiconductors KW - magnetotransport KW - tunneling diodes Y1 - 2005 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-15554 ER - TY - THES A1 - Schmid, Benjamin T1 - Surface preparation and Mn states of (Ga,Mn)As investigated by means of soft- and hard x-ray photoemission spectroscopy T1 - Oberflächenpräparation und Untersuchung der Mn Zustände in (Ga,Mn)As mit Hilfe von Photoemissionsspektroskopie im weichen und harten Röntgenbereich N2 - The present thesis deals with surface treatment, material improvement, and the electronic structure of the diluted magnetic semiconductor (Ga,Mn)As. The two key issues are the preparation of clean surfaces and the observation of potential valence hybridizations in (Ga,Mn)As by means of photoemission spectroscopy. Several cleaning methods are applied individually to (Ga,Mn)As and their e ects are compared in detail by various methods. Based on the results of each method, a sophisticated recipe has been elaborated, which provides clean, stoichiometric, and reconstructed surfaces, even if the sample was exposed to air prior to preparation. Moreover, the recipe works equally well for intentionally oxidized surfaces. The individual advantages of ex-situ wet- chemical etching and in situ ion-milling and tempering can be combined in an unique way. In regard to the post-growth annealing in order to optimize the electronic and magnetic properties of (Ga,Mn)As, the effect of surface segregation of interstitial Mn was quantifed. It turns out that the Mn concentration at the surface increases by a factor 4.3 after annealing at 190 C for 150 h. The removal of the segregated and oxidized species by wet-chemical etching allows a tentative estimate of the content of interstitial Mn. 19-23% of the overall Mn content in as-grown samples resides on interstitial positions. The complementary results of core level photoemission spectroscopy and resonant photoemission spectroscopy give hints to the fact that a sizeable valence hybridization of Mn is present in (Ga,Mn)As. This outlines that the simple Mn 3d5-con guration is too naive to refect the true electronic structure of substitutional Mn in (Ga,Mn)As. Great similarities in the core level spectra are found to MnAs. The bonding is thus dominantly of covalent, not ionic, character. Transport measurements, in particular for very low temperatures (<10 K), are in agreement with previous results. This shows that at low temperature, the conduction is mainly governed by variable-range hopping which is in line with the presence of an impurity band formed by substitutional Mn. In the light of the presented results, it is therefore concluded that a double-exchange interaction is the dominant mechanism leading to ferromagnetic coupling in (Ga,Mn)As. The valence hybridization and the presents of an impurity band, both of which are inherent properties of substitutional Mn, are indications for a double-exchange scenario, being at variance to a RKKY-based explanation. Contributions from a RKKY-like mechanism cannot definitely be excluded, however, they are not dominant. N2 - Die vorliegende Arbeit befasst sich mit der Oberflächenbehandlung, der Materialoptimierung und der elektronischen Struktur des verdünnten magnetischen Halbleiters (Ga,Mn)As. Die beiden Hauptaspekte sind dabei die Präparation sauberer Oberflächen und die Identifikation einer möglichen Valenzhybridisierung in (Ga,Mn)As mithilfe von Photoemissionspektroskopie. Mehrere Reinigungsmethoden wurden einzeln auf (Ga,Mn)As Oberflächen angewandt und deren Wirkung anhand mehrerer Untersuchungsmethoden verglichen. Basierend auf den Einzelergebnissen wurde eine spezielle Reinigungsprozedur ausgearbeitet, welche stöchiometrische, reine und wohldefinierte Oberflächen liefert, selbst wenn die Proben Umgebungsluft ausgesetzt wurde. Die beschriebene Vorgehensweise funktioniert des Weiteren auch bei absichtlich oxidierten Proben. Hierbei werden die individuellen Vorteile von ex situ nass-chemischen Ätzen, in situ Ionenstrahlätzen und Erhitzen auf besondere Art und Weise kombiniert. Im Hinblick auf das Ausheilen nach dem Wachstum konnte die Oberflächensegregation von interstitiellem Mangan quantifiziert werden, wobei sich zeigte, dass die Mangankonzentration an der Oberfläche um einen Faktor 4.3 nach 150 Stunden Ausheilen an Luft zunahm. Ein Vergleich zwischen ausgeheilten und anschließend geätzen Proben lässt eine vorsichtige Abschätzung des Anteils an interstitiellem Mangan in nicht ausheilten Proben zu. Hierbei zeigt sich, dass sich 19-23% das Gesamtgehalts an Mangan auf interstitiellen Gitterplätzen befindet. Komplementäre Untersuchungen mit Photoemissionsmethoden an Rumpfniveaus und mithilfe resonanter Photoemission geben Hinweis darauf, dass für Mangan in (Ga,Mn)As eine Valenzhybridisierung vorliegt. Dies führt zu dem Schluss, dass die simple Annahme eines zweifach positiv geladenen Mn-Atoms in 3d5-Kon guration zu pauschal ist, um die tatsächliche elektronische Struktur von substitutionellem Mn in (Ga,Mn)As widerzuspiegeln. Die Spektren zeigen eine große Ähnlichkeit zu Manganarsenid, was beweißt, dass die Bindung vorherrschend kovalenter und nicht ionischer Natur ist. Darüber hinaus sind ebenfalls durchgeführte Transportmessungen im Einklang mit bereits veröffentlichten Ergebnissen aus der Literatur. Dabei zeigt sich, dass der Ladungstransport, vor allem bei tiefen Temperaturen unterhalb von 10 K, durch variable range hopping statt findet. Dieses Verhalten steht im Einklang mit dem Vorhandensein eines Störstellenbandes, welches von substitutionellem Mn gebildet wird. Angesichts der hier gezeigten Daten kann gefolgert werden, dass ein Doppelaustausch der ausschlaggebende Mechanismus für das Auftreten ferromagnetischer Kopplung in (Ga,Mn)As ist. Sowohl die Valenzhybridisierung substitutionellem Mn als auch die Ausbildung eines Störstellenbandes durch selbiges, deuten auf einen Doppelaustausch in, was im Gegensatz zu einer RKKY-basierten Erklärung steht. Hierbei kann ein gewisse Bedeutung des RKKY-Modells nicht vollständig ausgeschlossen werden, jedoch ist diese definitiv nicht dominant. KW - Photoelektronenspektroskopie KW - Galliumarsenid KW - Manganarsenide KW - Magnetischer Halbleiter KW - Ferromagnetische Halbleiter KW - (Ga KW - Mn)As KW - Oberflächenpräparation KW - Photoemission spectroscopy KW - ferromagnetic semiconductors KW - (Ga KW - Mn)As KW - surface preparation Y1 - 2010 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-50057 ER - TY - THES A1 - Ebel, Lars Frederik T1 - Molecular Beam Epitaxy and Characterization of Ferromagnetic Bulk and Thin (Ga,Mn)As Layers/Heterostructures T1 - Molekularstrahlepitaxie und Charakterisierung von dicken und dünnen ferromagnetischen (Ga,Mn)As Schichten/Heterostrukturen N2 - Die vorgelegte Arbeit untersucht den ferromagnetischen Halbleiter (Ga,Mn)As mit seinen komplexen Eigenschaften im Hinblick auf die Optimierung der Materialeigenschaften sehr dünner (4 nm) (Ga,Mn)As Schichten, welche mit der Technologie der Molekularstrahlepitaxie (MBE) hergestellt wurden. Zuerst werden die strukturellen, ferromagnetischen und elektrischen Eigenschaften von (Ga,Mn)As vorgestellt. Die Einflüsse von Punktdefekten, Grenzflächen- und Oberflächen-Effekten auf dicke und dünne (Ga,Mn)As Schichten werden mit Hilfe von vereinfachten, selbstkonsistenten Berechnungen der Bandkantenverläufe diskutiert. Der Experimental-Teil ist in drei Teile unterteilt: Der erste Teil untersucht den Einfluss der epitaktischen Wachstumsbedingungen auf die elektrischen und magnetischen Eigenschaften von dicken (70 nm) (Ga,Mn)As Schichten. Der zweite Teil führt ein alternatives, parabolisches Mn-Dotierprofil mit effektiver Schichtdicke von 4 nm ein im Vergleich zu einer gleich dünnen Schicht mit homogenem Mn-Dotierprofil. Es konnten einerseits verbesserte Eigenschaften dieser parabolischen Schicht erreicht werden, anderseits sind die magnetischen und elektrischen Eigenschaften vergleichbar zu dicken (Ga,Mn)As Schichten mit gleichem Mn-Gehalt von 4%. MBE Wachstumsbedingungen für (Ga,Mn)As Schichten mit parabolischem Mn-Dotierprofil und verringertem nominellem Mn-Gehalt von 2.5% wurden ebenfalls untersucht. Ein schmales Wachstumsfenster wurde hierbei ermittelt, in dem die Tieftemperatur-Eigenschaften verbessert sind. Der letzte Teil der Arbeit präsentiert eine Anwendung der magnetischen Anisotropiekontrolle einer dicken (Ga,Mn)As Schicht. N2 - The present thesis studies the (Ga,Mn)As material in terms of optimization of very thin (4 nm) (Ga,Mn)As layers, epitaxially fabricated by the molecular beam epitaxy (MBE) technology. First of all, the ferromagnetic semiconductor (Ga,Mn)As with its structural, magnetic and electrical properties is introduced. The influences of point defects, interface and surface effects on bulk and thin (Ga,Mn)As layers are discussed by simplified self-consistent band alignment calculations. The experimental part is divided in three blocks: The first part studies the influence of epitaxial growth parameter conditions on electrical and magnetic properties of bulk (70 nm) (Ga,Mn)As layers. The second part introduces an alternative, parabolical Mn doping-profile instead of a 4 nm layer with a homogeneous Mn doping-profile. Improved properties of the parabolic layer have been observed as well as comparable magnetic and electrical properties to bulk (Ga,Mn)As layers, both with a Mn content of 4%. MBE growth parameters for the (Ga,Mn)As layers with a parabolically graded Mn profile and lowered nominal Mn content of 2.5% have been investigated. A narrow growth window has been found in which low-temperature (LT) layer properties are improved. The last part of this thesis presents an application of magnetic anisotropy control of a bulk (Ga,Mn)As layer. KW - Molekularstrahlepitaxie KW - ferromagnetische Halbleiter KW - magnetische Anisotropie KW - GaMnAs KW - Molecular Beam Epitaxy KW - Ferromagnetic Semiconductors KW - Magnetic Anisotropy KW - GaMnAs KW - Galliumarsenid KW - Manganarsenide KW - Magnetischer Halbleiter Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-83942 ER - TY - THES A1 - Constantino, Jennifer Anne T1 - Characterization of Novel Magnetic Materials: Ultra-Thin (Ga,Mn)As and Epitaxial-Growth MnSi Thin Films T1 - Charakterisierung von neuen magnetischen Materialien: ultradünne (Ga,Mn)As und epitaktisch gewachsene MnSi Dünnschichten N2 - The study of magnetic phases in spintronic materials is crucial to both our fundamental understanding of magnetic interactions and for finding new effects for future applications. In this thesis, we study the basic electrical and magnetic transport properties of both epitaxially-grown MnSi thin films, a helimagnetic metal only starting to be developed within our group, and parabolic-doped ultra-thin (Ga,Mn)As layers for future studies and applications. N2 - Um einerseits ein fundamentales Verständnis magnetischer Wechselwirkungen zu erhalten und andererseits neue Effekte für zukünftige Anwendungen zu finden, ist es entscheidend, magnetische Phasen spintronischer Materialien zu untersuchen. In dieser Arbeit fokussieren wir uns auf grundlegende elektrische und magnetische Transporteigenschaften zweier Materialsysteme. Das sind zum Ersten ultradünne (Ga,Mn)As Filme mit parabolischen Dotierprofilen, und zum Zweiten epitaktisch gewachsene Dünnschichten aus MnSi, einem helimagnetischen Metal, dessen Entwicklung seit Kurzem in unserer Gruppe vorangetrieben wird. KW - Galliumarsenid KW - Manganarsenide KW - Dünne Schicht KW - Magnetischer Halbleiter KW - Helimagnetism KW - Manganese Silicide KW - Gallium Manganese Arsenide KW - Ferromagnetic Semiconductors KW - Magnetic Anisotropy KW - Mangansilicide KW - Magnetotransport KW - Mangan KW - Halbleiter KW - Herstellung Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-90578 ER -