TY - THES A1 - Scheiderer, Philipp T1 - Spectroscopy of Prototypical Thin Film Mott Materials T1 - Spektroskopie prototypischer Mott-Materialien in dünnen Filmen N2 - The rich phase diagram of transition metal oxides essentially roots in the many body physics arising from strong Coulomb interactions within the underlying electron system. Understanding such electronic correlation effects remains challenging for modern solid state physics, therefore experimental data is required for further progress in the field. For this reason, spectroscopic investigations of prototypical correlated materials are the scope of this thesis. The experimental methods focus on photoelectron spectroscopy, and the test materials are the correlated metal SrVO\(_3\) and the Mott insulator LaTiO\(_3\), both of which are fabricated as high quality thin films. In SrVO\(_3\) thin films, a reduction of the film thickness induces a dimensional crossover from the metallic into the Mott insulating phase. In this thesis, an extrinsic chemical contribution from a surface over-oxidation is revealed that emerges additionally to the intrinsic change of the effective bandwidth usually identified to drive the transition. The two contributions are successfully disentangled by applying a capping layer that prevents the oxidation, allowing for a clean view on the dimensional crossover in fully stoichiometric samples. Indeed, these stoichiometric layers exhibit a higher critical thickness for the onset of the metallic phase than the bare and therefore over-oxidized thin films. For LaTiO\(_3\) thin films, the tendency to over-oxidize is even stronger. An uncontrolled oxygen diffusion from the substrate into the film is found to corrupt the electronic properties of LaTiO\(_3\) layers grown on SrTiO\(_3\). The Mott insulating phase is only detected in stoichiometric films fabricated on more suitable DyScO\(_3\) substrates. In turn, it is demonstrated that a \(controlled\) incorporation of excess oxygen ions by increasing the oxygen growth pressure is an effective way of \(p\) doping the material which is used to drive the band filling induced Mott transition. Gaining control of the oxygen stoichiometry in both materials allows for a systematic investigation of correlation effects in general and of the Mott transition in particular. The investigations are realized by various photoelectron spectroscopy techniques that provide a deep insight into the electronic structure. Resonant photoemission not only gives access to the titanium and vanadium related partial density of states of the valence band features, but also shows how the corresponding signal is enhanced by tuning the photon energy to the \(L\) absorption threshold. The enhanced intensity turns out to be very helpful for probing the Fermi surface topology and band dispersions by means of angular-resolved photoemission. The resulting momentum resolved electronic structure verifies central points of the theoretical description of the Mott transition, viz. the renormalization of the band width and a constant Luttinger volume in a correlated metal as the Mott phase is approached. N2 - Das reichhaltige Phasendiagramm von Übergansmetalloxiden ist im Wesentlichen auf Aspekte der Vielteilchenphysik zurückzuführen, welche durch starke Coulomb Wechselwirkungen im zugrundeliegenden Elektronensystem auftreten. Die Beschreibung solcher Korrelationseffekte stellt immernoch eine Herausforderung für die moderne Festkörperhysik dar, wobei für weitere Fortschritte experimentelle Daten nötig sind. Aus diesem Grund beschäftigt sich diese Arbeit mit spektroskopischen Untersuchungen an prototypischen korrelierten Materialien. Die experimentellen Methoden fokussieren sich dabei auf die Photoelektronenspektroskopie. Diese wird auf das korrelierte Metall SrVO\(_3\) und dem Mott Isolator LaTiO\(_3\) angewandt, welche beide als dünne Filme in hoher Qualität hergestellt werden. Eine Verkleinerung der Schichtdicke kann in SrVO\(_3\)-Dünnfilmen einen dimensionsgetriebenen Übergang von der metallischen in die Mott-isolierende Phase induzieren. In dieser Arbeit konnte der extrinsische Beitrag einer Oberflächenoxidation identifiziert werden, der zusätzlich zu den intrinsischen Veränderungen der effektiven Bandbreite, die für gewöhnlich als Grund für den Phasenübergang angeführt werden, auftritt. Durch das Aufbringen einer Deckschicht wird die Oxidation verhindert. So kann der dimensionsinduzierte Übergang ohne extrinsische Einflüsse in stöchiometrischen Proben untersucht werden, die tatsächlich eine höhere kritische Schichtdicke für das Einsetzen des metallischen Verhaltens aufweisen als die freiliegenden und damit überoxidierten Dünnfilme. Bei LaTiO\(_3\)-Dünnfilmen ist die Tendenz zur Überoxidation noch stärker. Eine unkontrollierte Diffusion von Sauerstoff aus dem Substrat in den Film verfälscht die elektronischen Eigenschaften von LaTiO\(_3\)-Schichten, die auf SrTiO\(_3\) gewachsen werden. Die Mott-isolierende Phase kann nur in stöchiometrischen Filmen stabilisiert werden, die auf geeigneteren DyScO\(_3\) Substraten hergestellt werden. Dahingegen kann eine \(kontrollierte\) \(p\)-Dotierung durch eine Erhöhung des Sauerstoffdrucks während des Wachstumsprozesses angewendet werden um den bandfüllungsinduzierten Mott-Übergang zu treiben. Die Kontrolle der Sauerstoffstöchiometrie in beiden Materialien erlaubt eine systematische Untersuchung von Korrelationseffekten im Allgemeinen und des Mott-Übergangs im Speziellen. Dies wird durch die Anwendung diverser spezialisierter Techniken der Photoelektronenspektroskopie realisiert, welche weitreichende Einblicke in die elektronische Struktur gewähren. Resonante Photoelektronenspektroskopie macht nicht nur die partielle Zustandsdichte mit Titan- und Vanadium-Charakter im Valenzband zugänglich, sondern zeigt auch, wie stark die zugehörigen Signale an der \(L\)-Absorptionskante verstärkt werden. Diese Intensitätsverstärkung erweist sich zudem als hilfreich bei der Untersuchung der Fermiflächentopologie und Banddispersion mittels winkelaufgelöster Phototemission. Die daraus gewonnenen Erkenntnisse zur impulsaufgelösten, elektronischen Struktur bestätigen zentrale Punkte der theoretischen Beschreibung des Mott-Übergangs, nämlich eine Renormierung der Bandbreite und ein konstantes Luttingervolumen in einem korrelierten Metall, welches sich der Mott-Phase annähert. KW - Übergangsmetalloxide KW - Mott-Übergang KW - Dünne Schicht KW - Metall-Isolator-Phasenumwandlung KW - Photoelectron Spectroscopy KW - Thin Films KW - Correlated Electron Materials KW - Mott Transistion KW - Photoelektronenspektroskopie KW - Mott-Isolator KW - Lanthantitanate KW - Strontiumvanadate Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-186358 ER - TY - THES A1 - Michalke, Thordis T1 - Elektronen-Korrelationen und Elektron-Phonon-Kopplung in einem nanostrukturierten Adsorbatsystem T1 - Electron Correlations and Electron Phonon Coupling in a Nanoscaled Adsorbate System N2 - In meiner Arbeit werden die Auswirkungen von Vielteilcheneffekten in einem niedrigdimensionalen Adsorbatsystem untersucht. Ein solches System kann als einfaches Modellsystem zum Verständnis der Vielteilcheneffekte dienen. Mit Hilfe der Photoelektronenspektroskopie und Rastertunnelspektroskopie kann die Lebensdauer der Quasiteilchen direkt gemessen werden. An quasi-nulldimensionalen Quantenpunkten lässt sich außerdem der Einfluss der Dimensionalität und der Strukturgröße auf die Korrelationseffekte und Kopplungsstärken der Elektronen messen. Das Adsorbatsystem Stickstoff auf Kupfer (Cu(100)c(2x2)N) ist hierfür ideal geeignet. Bei der Adsorption von Stickstoff auf Cu(100) bilden sich auf Grund starker Verspannungen durch die inkommensurate c(2x2)-Bedeckung Stickstoff-Inseln mit einer typischen Größe von 5x5 nm². Auf diesen quasi-nulldimensionalen Quantenpunkten lässt sich lokal mit der Rastertunnelspektroskopie die elektronische Zustandsdichte messen. In den STS-Spektren und Bildern sind typische diskrete Eigenzustände eines Quantentrogs zu beobachten. Mit einem Modell gedämpfter, quasifreier Elektronen ist es gelungen, diese Eigenzustände zu simulieren und wichtige physikalische Größen, wie die effektive Masse, die Bindungsenergie und die mittlere Lebensdauer der Elektronen in den Inseln zu bestimmen. Mit Hilfe der Photoelektronenspektroskopie können zahlreiche adsorbatinduzierte Zustände identifiziert und die zweidimensionale Bandstruktur des Adsorbatsystems gemessen werden. Die Elektron-Phonon-Kopplung spielt in dem Stickstoff-Adsorbatsystem eine wichtige Rolle: Temperaturabhängige Messungen der zweidimensionalen Zustände lassen auf eine sehr starke Kopplung schließen mit Werten bis zu 1,4 für die Kopplungskonstante. Dabei ist die Kopplungsstärke wesentlich von der Lokalisierung der Adsorbatzustände abhängig. In der Nähe der Fermikante zeigt ein Adsorbatzustand eine außergewöhnliche Linienform. Die Spektralfunktion kann selbst bei recht hohen Temperaturen von 150 K mit dem Realteil der Selbstenergie der Elektron-Phonon-Kopplung beschrieben werden. Für die Phononenzustandsdichte wird dabei das Einstein-Modell verwendet auf Grund des dominierenden Anteils der adsorbatinduzierten optischen Phononen. Die Kopplungsstärke und der Beitrag der Elektron-Elektron und Elektron-Defekt-Streuung werden aus diesen Daten extrahiert. Auf Grund der sehr starken Elektron-Phonon-Kopplung könnte man spekulieren, ob sich in der Oberfläche Cooper-Paare bilden, deren Anziehung über ein optisches Adsorbatphonon vermittelt würde, und so eine exotische Oberflächen-Supraleitung verursachen. N2 - In my thesis the influence of many body effects on a low dimensional adsorbate system is studied. The adsorbate system provides as a modell system for the understanding of these many body effects. With photoelectron spectroscopy and scanning tunneling spectroscopy the lifetime of these quasi particles can be measured directly. For quasi zero dimensional quantum dots the influence of the dimensionality and the size of the structures to correlation effects and coupling constants of the electrons can be measured. The adsorbate system nitrogen on copper (Cu(100)c(2x2)N) is an ideal modell system for such studies. During the adsorption of nitrogen on Cu(100) nitrogen islands are formed with a typical size of 5x5 nm² due to the incommensurate c(2x2)structure and strain relief mechanism. Using scanning tunneling spectroscopy one is able to measure locally on a single island, a quasi-zero dimensional quantum dot. In STS-spectra quantum well states are observed with typical discrete eigen-states. A model is used to simulate these eigen-states and extract important physical parameters like the effective mass, the binding energy and the mean lifetime of the electronic states inside the islands. The photoelectron spectroscopy reveals several adsorbate induced states. The two dimensional bandstructure of the nitrogen adsorbate system has been measured. Electron phonon coupling plays a key role in these two dimensional states. Temperature dependent measurements reveal a very strong coupling with values up to 1,4 for the coupling constant. The coupling constant is very sensitive to the localization of the adsorbate states. One of the adsorbate induced states shows an exceptional line shape when approaching the Fermi energy: the spectral function can be described by the real part of the electron phonon self energy even at quite high temperatures (150 K). The Einstein model is used to describe the phonon density of states because of the dominant role of adsorbate induced optical phonons. The coupling constant and the contributions of the electron-electron and electron-defect scattering are deduced. Due to the very strong electron phonon coupling in the adsorbate system one may speculate about an exotic surface superconductivity, where the Cooper pairs might be confined to the surface and their attraction might be mediated by the adsorbate optical phonons. KW - Adsorbat KW - Nanostrukturiertes Material KW - Elektronenkorrelation KW - Elektron-Phonon-Wechselwirkung KW - Photoelektronenspektroskopie KW - Rastertunnelspektroskopie KW - Adsorbatsystem KW - Quasiteilchen-Lebensdauer KW - Quantentrogzustände KW - Photoelectron Spectroscopy KW - Scanning Tunneling Spectroscopy KW - Adsorbate System KW - Quasiparticle Lifetime KW - Quantum Well States Y1 - 2004 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-11957 ER -