TY - JOUR A1 - Dziom, V. A1 - Shuvaev, A. A1 - Pimenov, A. A1 - Astakhov, G.V. A1 - Ames, C. A1 - Bendias, K. A1 - Böttcher, J. A1 - Tkachov, G. A1 - Hankiewicz, E.M. A1 - Brüne, C. A1 - Buhmann, H. A1 - Molenkamp, L.W. T1 - Observation of the universal magnetoelectric effect in a 3D topological insulator JF - Nature Communications N2 - The electrodynamics of topological insulators (TIs) is described by modified Maxwell’s equations, which contain additional terms that couple an electric field to a magnetization and a magnetic field to a polarization of the medium, such that the coupling coefficient is quantized in odd multiples of α/4π per surface. Here we report on the observation of this so-called topological magnetoelectric effect. We use monochromatic terahertz (THz) spectroscopy of TI structures equipped with a semitransparent gate to selectively address surface states. In high external magnetic fields, we observe a universal Faraday rotation angle equal to the fine structure constant α=e\(^{2}\)/2E\(_{0}\)hc (in SI units) when a linearly polarized THz radiation of a certain frequency passes through the two surfaces of a strained HgTe 3D TI. These experiments give insight into axion electrodynamics of TIs and may potentially be used for a metrological definition of the three basic physical constants. KW - topological matter KW - infrared spectroscopy KW - topological insulators KW - topological magnetoelectric effect Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-170875 VL - 8 IS - 15197 ER - TY - THES A1 - Nähle, Lars T1 - Monomodige und weit abstimmbare Halbleiterlaser im GaSb-Materialsystem im Wellenlängenbereich von 3,0 - 3,4 μm T1 - Monomode and widely tunable semiconductor lasers in the GaSb material system in the wavelength range from 3.0 - 3.4 µm N2 - Ein Ziel der Arbeit war die Entwicklung spektral monomodiger DFB-Lasern im Wellenlängenbereich von 3,0-3,4µm. Diese sollten auf spezielle Anwendungen in der Absorptionsspektroskopie an Kohlenwasserstoffen gezielt angepasst werden. Hierfür wurden zwei auf GaSb-Material basierende Lasertypen untersucht - Interbandkaskadenlaser (ICL) und Diodenlaser mit quinären AlGaInAsSb-Barrieren- und Wellenleiter-Schichten. Für das ICL-Material wurde ein DFB-Prozess basierend auf vertikalen Seitengittern entwickelt. Dieser Ansatz ermöglichte monomodigen Laserbetrieb bei Realisierung der Laser mit Kopplungsgitter in nur einem Ätzschritt und ohne epitaktischen Überwachstumsschritt. Maximal mögliche Betriebstemperaturen von ~0°C für die auf dem verfügbaren epitaktischen Material entwickelten Laser wurden bestimmt. Eine Diskussion der thermischen Eigenschaften der Laser deckte Gründe für die Limitierung der Betriebstemperatur auf. Möglichkeiten zur Optimierung der Leistungsfähigkeit und Steigerung der Betriebstemperatur beim ICL-Ansatz wurden hierauf basierend vorgestellt. Als kritischster Parameter wurde hier die epitaxiebestimmte Temperaturstabilität der Laserschwelle ausgemacht. Weitere Entwicklungen umfassten die Herstellung von DFB-Lasern mit dem erwähnten Diodenlasermaterial mit quinären Barrieren. Es kam eine Prozessierung der Bauteile ohne Überwachstum unter Verwendung von lateralen Metallgittern zur Modenselektion zum Einsatz. Die Bestimmung optischer Parameter zur Entwicklung von Lasern mit guter DFB-Ausbeute wurde für das Epitaxiematerial mit quinären Barrieren >3,0µm von Wellenleiter-Simulationen unterstützt. Die Definition der Gitterstrukturen wurde auf niedrige Absorptionsverluste optimiert. So hergestellte Laser zeigten exzellente Eigenschaften mit maximalen Betriebstemperaturen im Dauerstrichbetrieb von >50°C und spektral monomodiger Emission um 2,95µm mit Seitenmodenunterdrückungen (SMSR) bis 50dB. Diesem Konzept entsprechend wurden DFB-Laser speziell für die Acetylen-Detektion bei Wellenlängen von 3,03µm und 3,06µm entwickelt. Die für ~3,0µm entwickelte und erfolgreich angewendete DFB-Prozessierung wurde daraufhin auf den Wellenlängenbereich bis 3,4µm angepasst. Ein Prozesslauf mit verbesserter Wärmeabfuhr, ohne die Verwendung eines Polymers, wurde entwickelt. Es konnten DFB-Laser hergestellt werden, die fast den gesamten Wellenlängenbereich von 3,3-3,4µm abdeckten. Maximale Betriebstemperaturen dieser Laser lagen bei >20°C in Dauerstrichbetrieb bei ausgezeichneten spektralen Eigenschaften (SMSR 45dB). Spezielle Bauteile im Bereich 3,34-3,38µm, u.a. für die Detektion von Methan, Ethan und Propan, wurden entwickelt. Die in dieser Arbeit auf Diodenlasermaterial mit quinären Barrieren entwickelten DFB-Laser definieren für den gesamten Wellenlängenbereich von 2,8-3,4µm den aktuellen Stand der Technik für monomodige Laseremission durch direkte strahlende Übergänge. Sie stellen außerdem für den Wellenlängenbereich von 3,02-3,41µm die einzigen veröffentlichten DFB-Laser in cw-Betrieb bei Raumtemperatur dar. Eine maximale monomodige Emissionswellenlänge für Diodenlaser von 3412,1nm wurde erreicht. Ein weiteres Ziel der Arbeit war die Entwicklung weit abstimmbarer Laser von 3,3-3,4µm zur Ermöglichung erweiterter Anwendungen in der Kohlenwasserstoff-Gassensorik. Hierfür wurde ein Konzept zweisegmentiger Laser mit binären, überlagerten Gittern verwendet. Für diese sogenannten BSG-Laser konnte durch Simulationen unterstützt der Einfluss des kritischen Parameters der Phase der Bragg-Moden an den Facetten untersucht werden. Ein dementsprechend phasenoptimiertes Design der Gitterstrukturen wurde in den Segmenten der Laser angewendet. Simulationen des Durchstimmverhaltens der Laser wurden diskutiert und Einschätzungen über das reale Verhalten in hergestellten Bauteilen gegeben. Die entwickelten Laser wiesen Emission in bis zu vier ansteuerbaren, monomodigen Wellenlängenkanälen auf. Sie zeigten ein den Simulationen entsprechendes, sehr gutes Durchstimmverhalten in den Kanälen (bis zu ~30nm). Die Entwicklung eines bestimmten Lasers in dieser Arbeit war speziell auf die industrielle Anwendung in einem Sensorsystem mit monomodigen Emissionen um 3333nm und 3357nm ausgelegt. Für diese Wellenlängenkanäle wurden spektrale Messungen mit hohem Dynamikbereich gemacht. Mit SMSR bis 45dB war eine hervorragende Anwendbarkeit in einem Sensorsystem gewährleistet. Der Aufbau mit nur zwei Lasersegmenten garantiert eine einfache Ansteuerung ohne komplexe Elektronik. Die in dieser Arbeit entwickelten weit abstimmbaren Laser stellen die bisher langwelligsten, monolithisch hergestellten, weit abstimmbaren Laser dar. Sie sind außerdem die bislang einzigen zweisegmentigen BSG-Laser, die in durch simultane Stromveränderung durchstimmbaren Wellenlängenkanälen ein Abstimmverhalten mit konstant hoher Seitenmodenunterdrückung und ohne Modensprünge zeigen. N2 - A major goal of this work was the development of spectrally monomode DFB lasers in the wavelength range around 3.0-3.4µm. It was intended to specifically adapt them to certain applications in absorption spectroscopy of hydrocarbons. To attain this goal, two types of laser concepts based on GaSb material were investigated - Interband Cascade Lasers and Diode Lasers with quinary AlGaInAsSb barrier and waveguide layers. A DFB process run based on vertical sidewall gratings was developed on the Interband Casade Laser material. This approach enabled monomode laser operation by processing of the lasers along with their feedback gratings in a single etch step and without an epitaxial overgrowth step. Possible maximum operating temperatures of ~0°C for the lasers developed by the applied processing route on the available epitaxial material were determined. A discussion of thermal properties for the lasers revealed reasons for the limitation of operating temperatures. Based on this, options for the optimization of performance and increase of operating temperatures with the Interband Cascade Laser approach were presented. The epitaxially determined temperature stability of the laser threshold was made out as the most critical parameter. Further developments comprised the fabrication of DFB lasers with the prementioned Diode Laser material with quinary barriers. A processing concept without overgrowth employing lateral metal gratings for mode selection was applied. The determination of optical parameters for the development of lasers with a good DFB yield was supported by waveguide simulations of the epitaxial material with quinary barriers >3.0µm. The definition of grating structures was optimized for low absorption losses. Correspondingly fabricated lasers showed outstanding characteristics, operating up to temperatures of >50°C in continuous mode with spectrally monomode emission of up to 50dB at ~2.95µm. Following this concept, DFB lasers were specifically developed for acetylene detection at wavelengths of 3.03µm and 3.06µm. The DFB processing route developed and successfully implemented for ~3.0µm was subsequently further optimized for the wavelength range up to 3.4µm. A process run with improved heat removal and without application of a polymer was established. DFB lasers that covered almost the entire wavelength range from 3.3-3.4µm, could be successfully developed. Maximum operating temperatures of these lasers amounted to >20°C in continuous mode, their spectral characteristics were excellent (side-mode suppression ratio 45dB). Specific devices in the range 3.34-3.38µm were developed, for example, for detection of methane, ethane and propane. The DFB lasers based on Diode Laser material with quinary barriers developed in this work define the current state of the art for monomode laser emission by direct radiative transitions for the entire wavelength range from 2.8-3.4µm. They also represent the only published DFB lasers operating in cw operation at room temperature in the wavelength range from 3.02-3.41µm. A maximum monomode emission wavelength for Diode Lasers of 3412.1nm has been reached. A further goal of this work was the development of widely tunable lasers from 3.3-3.4µm, to enable extended applications in hydrocarbon gas spectroscopy. Therefore a concept of two-segment lasers with Binary Superimposed Gratings (BSG) was applied. Supported by simulations, the influence of the critical parameter of the phase of the Bragg modes at the positions of the facets could be investigated for these BSG lasers. An according phase-optimized design of the grating structures was employed in the laser segments. Simulations of the lasers' tuning behaviour were discussed and estimations on the real behaviour of fabricated devices were given. The developed lasers exhibited emission in up to four addressable monomode wavelength channels. According to the simulations, they showed very good tuning behaviour within the channels (up to ~30nm). The development of a specific laser in this work was designed for industrial application in a sensor system with monomode emission around 3333nm and 3357nm. Spectral characterization of these channels was performed with a high dynamic range. Side-mode suppression ratios of up to 45dB guaranteed an outstanding applicability in a sensor system. The design with only two laser segments makes an easy control without the use of complex electronics possible. The widely tunable lasers developed in this work represent the monolithic widely tunable lasers with the highest emission wavelength so far. They are also so far the only two-segment BSG lasers with verified high monomode quality and mode-hop free tuning behaviour in channels tuned by co-directional current shifting in the segments. KW - Halbleiterlaser KW - Galliumantimonid KW - Abstimmbarer Laser KW - BSG-Laser KW - weit abstimmbare Laser KW - Kohlenwasserstoffsensorik KW - Semiconductor laser KW - DFB laser KW - diode laser KW - infrared spectroscopy KW - hydrocarbons KW - DFB-Laser KW - Laserdiode KW - Quantenkaskadenlaser KW - Gasanalyse KW - Kohlenwasserstoffe KW - Elektronenstrahllithographie Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-70538 ER - TY - THES A1 - Wolpert, Daniel T1 - Quantum Control of Photoinduced Chemical Reactions T1 - Quantenkontrolle von photoinduzierten chemischen Reaktionen N2 - The control of quantum mechanical processes, especially the selective manipulation of photochemical reactions by shaped fs laser pulses was successfully demonstrated in many experiments in the fields of physics, chemistry and biology. In this work, attention is directed to the control of two systems that mark a bridge to real synthetic chemistry. In a liquid phase environment the outcome of the photo-induced Wolff rearrangement of an industrially relevant diazonaphthoquinone compound, normally used in photoresists (e.g. Novolak) was optimized using shaped fs laser pulses. In the second series of experiments chemical reactions on a catalyst metal surface which comprise laser induced molecular bond formation channels were selectively manipulated for the first time. The control of liquid phase reactions necessitates adequate spectroscopic signals that are characteristic for the formed product species. Therefore, a pump-probe setup for transient absorption spectroscopy in the mid-infrared for the purpose of investigating ultrafast structural changes of molecules during photoreactions was constructed. This versatile setup enables to monitor structural changes of molecules in the liquid phase and to find appropriate feedback signals for the control of these processes. Prior to quantum control experiments, the photoinduced Wolff-rearrangement reaction of 2-diazo-1-naphthoquinone (DNQ) dissolved in water and methanol was thoroughly investigated. Steady state absorption measurements in the mid-infrared in combination with quantum chemical density functional theory (DFT) calculations revealed the characteristic vibrational bands of DNQ and of possible products. A mid-infrared transient absorption study was performed, to illuminate the structural dynamics of the ultrafast rearrangement reaction of DNQ. The experimental observations indicate, that the Wolff rearrangement reaction of DNQ proceeds within 300 fs. A model for the relaxation dynamics of the ketene photoproduct and DNQ after photoexcitation can be deduced that fits the measured data very well. The object of the quantum control experiments on DNQ was the improvement of the ketene yield. It was shown that the ketene formation after Wolff rearrangement of DNQ is very sensitive to the shape of the applied excitation laser pulses. The variation of single parameters, like the linear chirp as well as the pulse separation of colored double pulses lead to the conclusion that the well known intrapulse dumping mechanism is responsible for the impact of the frequency ordering within the excitation pulse on the photoproduct yield. Adaptive optimizations using a closed learning loop basically lead to the same result. Adaptive fs quantum control was also applied to surface reactions on a catalyst metal surface for the first time. Therefore, the laser-induced catalytic reactions of carbon monoxide (CO) and hydrogen (H2) on a Pd(100) single crystal surface were studied. This photochemical reaction initiated with fs laser pulses has not been observed before. Several product molecules could be synthesized, among them also species (e.g. CH^3+) for whose formation three particles are involved. The systematic variation of different parameters showed that the reactions are sensitive to the catalyst surface, the composition of the adsorbate and to the laser properties. A pump-probe study revealed that they occur on an ultrafast time scale. These catalytic surface reactions were then investigated and improved with phaseshaped fs laser pulses. By applying a feedback optimal control scheme, the reaction outcome could be successfully manipulated and the ratio of different reaction channels could be selectively controlled. Evidence has been found that the underlying control mechanism is nontrivial and sensitive to the specific conditions on the surface. The experiments shown here represent the first successful experiment on adaptive fs quantum control of a chemical reaction between adsorbate molecules on a surface. In contrast to previous quantum control experiments, reaction channels comprising the formation of new molecular bonds rather than the cleavage of already existing bonds are controlled. This work successfully showed that quantum control can be extended to systems closer to situations encountered in synthetic chemistry as was demonstrated in the two examples of the optimization of a complicated rearrangement reaction and the selective formation of chemical bonds with shaped fs laser pulses. N2 - Die Kontrolle quantenmechanischer Prozesse, insbesondere die selektive Manipulation photochemischer Reaktionen mit Hilfe geformter fs-Laserpulse wurde auf den Gebieten der Physik, Chemie und Biologie in vielen Experimenten erfolgreich gezeigt. In dieser Arbeit wird das Augenmerk auf die Kontrolle zweier Systeme gerichtet, die eine Brücke zur synthetischen Chemie darstellen. In der flüssigen Phase wurde das Resultat der photoinduziertenWolff Umlagerung einer industriell relevanten Diazonaphthoquinone Verbindung, die gewöhnlich in Photolacken (z.B. Novolak) Verwendung findet, durch geformte fs-Laserpulse optimiert. In der zweiten Reihe von Experimenten wurden chemische Reaktionen auf einer Katalysator-Metalloberfläche, die Kanäle mit laserinduzierter molekularer Bindungsknüpfung beinhalten, zum ersten Mal selektiv beeinflusst. Für die Kontrolle von Reaktionen in der flüssigen Phase benötigt man geeignete spektroskopische Messsignale, die charakteristisch für die gebildeten Produktspezies sind. Zu diesem Zweck wurde ein Versuchsaufbau für Anrege-Abfrage Experimente zur transienten Absorptionsspektroskopie im mittleren Infrarot aufgebaut, um ultraschnelle strukturelle Veränderungen von Molekülen während Photoreaktionen zu untersuchen. Dieser vielseitige Versuchsaufbau ermöglicht die Messung struktureller Veränderungen in Molekülen in flüssiger Phase und damit das Auffinden geeigneter Rückkopplungssignale zur Kontrolle dieser Prozesse. Vor den Quantenkontrollexperimenten wurde die photoinduzierte Wolff Umlagerung von 2-Diazo-1-Naphthoquinone (DNQ) in den Lösungsmitteln Wasser und Methanol sorgfältig untersucht. Lineare Absorptionsmessungen im mittleren Infrarot in Verbindung mit quantenchemischen Dichtefunktionaltheorie (DFT) Rechnungen lieferten die charakteristischen Schwingungsbanden von DNQ und möglichen Photoprodukten. Untersuchungen mit transienter Absorptionsspektroskopie im mittleren Infrarot wurden durchgeführt, um die strukturelle Dynamik der ultraschnellen Umlagerungsreaktion von DNQ zu beleuchten. Die experimentellen Beobachtungen deuten darauf hin, dass die Wolff Umlagerung von DNQ innnerhalb von 300 fs abläuft. Ein Modell für die Relaxationsdynamik des Keten Photoprodukts und DNQ, dass die gemessenen Daten sehr gut beschreibt wurde abgeleitet. Das Ziel der Quantenkontrollexperimente an DNQ war die Erhöhung der Ketenausbeute. Es wurde gezeigt, dass die Bildung des Keten nach der Wolff Umlagerung des DNQ empfindlich auf die Form der Anregungspulse reagiert. Die Variation einzelner Parameter, wie des linearen Chirps sowie des Pulsabstands von farbigen Doppelpulsen führen zu dem Schluss, dass der gut bekannte Intrapuls-Abregemechanismus verantwortlich für den Einfluss der Frequenzfolge innerhalb des Anregepulses auf die Ausbeute des Photoprodukts ist. Adaptive Optimierungen führen zum gleichen Ergebnis. Adaptive Quantenkontrolle wurde auch erstmalig auf Oberflächenreaktionen auf einer Katalysator-Metalloberfläche angewendet. Dazu wurden die laserinduzierten katalytischen Oberflächenreaktionen von Kohlenmonoxid (CO) und Wasserstoff (H2) auf einer Pd(100) Einkristalloberfläche untersucht. Diese photochemische Reaktion, die durch fs-Laserpulse ausgelöst wird wurde bisher noch nicht beobachtet. Mehrere Produktmoleküle konnten synthetisiert werden, darunter auch Moleküle für deren Bildung mindestens drei Eduktmoleküle zusammenkommen und reagieren müssen. Die systematische Änderung verschiedener Parameter zeigte, dass die Reaktionen von der Katalysatoroberfläche, der Zusammensetzung des Adsorbats und den Eigenschaften der fs-Laserpulse abhängen. Eine Anrege-Abfrage Untersuchung machte deutlich, dass die Reaktionen auf einer ultrakurzen Zeitskala ablaufen. Diese katalytischen Oberflächenreaktionen wurden im Anschluss mit Hilfe von phasengeformten fs-Laserpulsen weiter untersucht und gezielt gesteuert. In adaptiven Quantenkontrollexperimenten konnte das Reaktionsergebnis sowie das Verhältnis unterschiedlicher Reaktionskanäle selektiv manipuliert werden. Es wurden Hinweise gefunden, dass der zugrundeliegende Kontrollmechanismus nichttrivial ist und von den genauen Bedingungen auf der Oberfläche abhängt. Diese Experimente stellen die ersten erfolgreichen adaptiven Quantenkontrollexperimente an einer chemischen Reaktion zwischen Adsorbatmolekülen auf einer Oberfläche dar. Im Gegensatz zu bisherigen Quantenkontrollexperimenten wurden hierbei Reaktionskanäle optimiert, die die Formung und nicht nur den Bruch einer molekularen Bindung umfassen. Diese Arbeit zeigt, dass die Methoden der Quantenkontrolle auf Systeme, die den Situationen in der synthetischen Chemie nahekommen, erfolgreich angewendet werden können, wie mit den zwei Beispielen, der Optimierung einer komplizierten Umlagerungsreaktion und der selektiven Bildung chemischer Bindungen mit geformten fs-Laserpulsen demonstriert wurde. KW - Nichtlineare Spektroskopie KW - Infrarotspektroskopie KW - Massenspektrometrie KW - Laserchemie KW - Femtosekundenpulse KW - Pulsformung KW - Quantenkontrolle KW - quantum control KW - pulse shaping KW - femtosecond pulses KW - time-of-flight mass spectrometry KW - infrared spectroscopy KW - nonlinear spectroscopy Y1 - 2008 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-27171 ER -