TY - THES A1 - Langlhofer, Georg T1 - Über die Bedeutung intrazellulärer Subdomänen des Glycinrezeptors für die Kanalfunktion T1 - Investigations into the relevance of glycine receptor intracellular subdomains to receptor channel function N2 - Der zur Familie der pentameren ligandengesteuerten Ionenkanäle zugehörige Glycinrezeptor (GlyR) ist ein wichtiger Vermittler synaptischer Inhibition im Zentralnervensystem von Säugetieren. GlyR-Mutationen führen zur neurologischen Bewegungsstörung Hyperekplexie. Aufgrund fehlender struktureller Daten ist die intrazelluläre Loop-Struktur zwischen den Transmembransegmenten 3 und 4 (TM3-4 Loop) eine weitgehend unerforschte Domäne des GlyR. Innerhalb dieser Domäne wurden Rezeptortrunkierungen sowie Punktmutationen identifiziert. Rezeptortrunkierung geht mit Funktionslosigkeit einher, welche jedoch durch Koexpression des fehlenden Sequenzabschnitts zum Teil wiederhergestellt werden kann. Innerhalb dieser Arbeit wurde die Interaktion zwischen trunkierten, funktionslosen GlyR und sukzessiv verkürzten Komplementationskonstrukten untersucht. Dabei wurden als Minimaldomänen für die Interaktion das C-terminalen basische Motive des TM3-4 Loops, die TM4 sowie der extrazelluläre C-Terminus identifiziert. Die Rückkreuzung transgener Mäuse, die das Komplementationskonstrukt iD-TM4 unter Kontrolle des GlyR-Promotors exprimierten, mit der oscillator-Maus spdot, die einen trunkierten GlyR exprimiert und 3 Wochen nach der Geburt verstirbt, hatte aufgrund fehlender Proteinexpression keinen Effekt auf die Letalität der Mutation. Des Weiteren wurde die Bedeutsamkeit der Integrität beider basischer Motive 316RFRRKRR322 und 385KKIDKISR392 im TM3-4 Loop in Kombination mit der Loop-Länge für die Funktionalität und das Desensitisierungsverhalten des humanen GlyRα1 anhand von chimären Rezeptoren identifiziert. Eine bisher unbekannte Patientenmutation P366L innerhalb des TM3-4 Loops wurde mit molekularbiologischen, biochemischen und elektrophysiologischen Methoden charakterisiert. Es wurde gezeigt, dass die mutierten Rezeptorkomplexe in vitro deutlich reduzierte Glycin-induzierte Maximalströme sowie eine beschleunigte Schließkinetik aufweisen. P366L hat im Gegensatz zu bereits charakterisierten Hyperekplexiemutationen innerhalb des TM3-4 Loops keinen Einfluss auf die Biogenese des Rezeptors. P366 ist Teil einer möglichen Poly-Prolin-Helix, die eine Erkennungssequenz für SH3-Domänen darstellt. Ein potenzieller Interaktionspartner des TM3-4 Loops des GlyRα1 ist Collybistin, welches eine wichtige Rolle bei der synaptischen Rezeptorintegration spielt und die Verbindung zum Zytoskelett vermittelt. An der inhibitorischen Synapse verursacht P366L durch die Reduzierung postsynaptischer Chloridströme, das beschleunigte Desensitisierungsverhalten des GlyRα1 sowie ein verändertes Interaktionsmotiv Störungen der glycinergen Transmission, die zur Ausprägung phänotypischer Symptome der Hyperekplexie führen. N2 - The glycine receptor (GlyR) belongs to the superfamily of pentameric ligand-gated ion channels and mediates synaptic inhibition in the central nervous system of mammals. GlyR mutations lead to the neuromotor disorder hyperekplexia. Due to the lack of structural data, the intracellular loop between transmembrane segments 3 and 4 (TM3-4 Loop) is considered as the most unexplored domain of the GlyR. Within this domain receptor truncations as well as point mutations have been identified. Receptor truncation correlates with non-functionality that can be partially restored by coexpression of the missing sequence. In this work, the interaction between a truncated non-functional GlyR and successively truncated complementation constructs was investigated. The C-terminal basic motif of the TM3-4 loop, the TM4 and the C-Terminus were identified as the minimal domain required for interaction. Backcrossing of a transgenic mouse line expressing the complementation construct iD-TM4 under the control of the GlyR promotor, with the oscillator mouse spdot expressing a truncated GlyR leading to death 3 weeks after birth, was unsuccessful and did not influence the lethality of the mutation, most probably due to the lack of transgene protein expression. In addition the importance of the integrity of both basic motifs 316RFRRKRR322 and 385KKIDKISR392 within the TM3-4 loop in combination with loop length were shown to be essential for functionality and desensitization behavior of the human GlyRα1 using chimeric receptors. An unknown TM3-4 loop mutation P366L was characterized using biomolecular, biochemical and electrophysiological approaches. It was demonstrated that mutated receptor complexes display remarkably reduced glycine-induced maximal currents in addition to accelerated channel closing kinetics in vitro. In contrast to previously analyzed hyperekplexia mutations within the TM3-4 loop, P366L exhibits no influence on receptor biogenesis. P366 is located in a sequence probably forming a poly-proline helix, which serves as a recognition sequence for SH3 domains. One prospective interaction partner is collybistin, which plays a major role in the process of synaptic receptor integration and connects the receptor complex to the cytoskeleton. At the site of the inhibitory synapse, P366L causes reduced chloride currents, accelerated desensitization behavior of the GlyRα1 and an altered interaction motif leading to disturbed glycinergic neurotransmission that result in formation of phenotypic symptoms of hyperekplexia. KW - Glycinrezeptor KW - intrazelluläre Domäne KW - Hyperekplexie KW - intracellular domain KW - hyperekplexia KW - Bewegungsstörung KW - Synapse KW - Ionenkanal Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-140249 ER - TY - JOUR A1 - Lepeta, Katarzyna A1 - Lourenco, Mychael V. A1 - Schweitzer, Barbara C. A1 - Martino Adami, Pamela V. A1 - Banerjee, Priyanjalee A1 - Catuara-Solarz, Silvina A1 - de la Fuente Revenga, Mario A1 - Marc Guillem, Alain A1 - Haider, Mouna A1 - Ijomone, Omamuyovwi M. A1 - Nadorp, Bettina A1 - Qi, Lin A1 - Perera, Nirma D. A1 - Refsgaard, Louise K. A1 - Reid, Kimberley M. A1 - Sabbar, Mariam A1 - Sahoo, Arghyadip A1 - Schaefer, Natascha A1 - Sheean, Rebecca K. A1 - Suska, Anna A1 - Verma, Rajkumar A1 - Vicidomini, Cinzia A1 - Wright, Dean A1 - Zhang, Xing-Ding A1 - Seidenbecher, Constanze T1 - Synaptopathies: synaptic dysfunction in neurological disorders - a review from students to students JF - Journal of Neurochemistry N2 - Synapses are essential components of neurons and allow information to travel coordinately throughout the nervous system to adjust behavior to environmental stimuli and to control body functions, memories, and emotions. Thus, optimal synaptic communication is required for proper brain physiology, and slight perturbations of synapse function can lead to brain disorders. In fact, increasing evidence has demonstrated the relevance of synapse dysfunction as a major determinant of many neurological diseases. This notion has led to the concept of synaptopathies as brain diseases with synapse defects as shared pathogenic features. In this review, which was initiated at the 13th International Society for Neurochemistry Advanced School, we discuss basic concepts of synapse structure and function, and provide a critical view of how aberrant synapse physiology may contribute to neurodevelopmental disorders (autism, Down syndrome, startle disease, and epilepsy) as well as neurodegenerative disorders (Alzheimer and Parkinson disease). We finally discuss the appropriateness and potential implications of gathering synapse diseases under a single term. Understanding common causes and intrinsic differences in disease-associated synaptic dysfunction could offer novel clues toward synapse-based therapeutic intervention for neurological and neuropsychiatric disorders. In this Review, which was initiated at the 13th International Society for Neurochemistry (ISN) Advanced School, we discuss basic concepts of synapse structure and function, and provide a critical view of how aberrant synapse physiology may contribute to neurodevelopmental (autism, Down syndrome, startle disease, and epilepsy) as well as neurodegenerative disorders (Alzheimer's and Parkinson's diseases), gathered together under the term of synaptopathies. Read the Editorial Highlight for this article on page . KW - Amyloid-beta oligomers; KW - Central nervous system KW - P75 Neurotrophin receptor KW - Cellular prion protein KW - Temporal-lobe epilepsy KW - Familial Alzheimers-disease KW - Inhibitory glycine receptor KW - Autism spectrum disorders KW - Alpha-synuclein oligomers KW - Dentate granule cells KW - Alzheimer disease KW - autism KW - Down syndrome KW - epilepsy KW - hyperekplexia KW - synapses Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-187509 VL - 138 IS - 6 ER -