TY - THES A1 - Rumpf, Florian T1 - Optogenetic stimulation of AVP neurons in the anterior hypothalamus promotes wakefulness T1 - Optogenetische Stimulation von AVP Neuronen im vorderen Hypothalamus induziert Wachheit N2 - The mammalian central clock, located in the suprachiasmatic nucleus (SCN) of the anterior hypothalamus, controls circadian rhythms in behaviour such as the sleep-wake cycle. It is made up of approximately 20,000 heterogeneous neurons that can be classified by their expression of neuropeptides. There are three major populations: AVP neurons (arginine vasopressin), VIP neurons (vasoactive intestinal peptide), and GRP neurons (gastrin releasing peptide). How these neuronal clusters form functional units to govern various aspects of rhythmic behavior is poorly understood. At a molecular level, biological clocks are represented by transcriptional-posttranslational feedback loops that induce circadian oscillations in the electrical activity of the SCN and hence correlate with behavioral circadian rhythms. In mammals, the sleep wake cycle can be accurately predicted by measuring electrical muscle and brain activity. To investigate the link between the electrical activity of heterogeneous neurons of the SCN and the sleep wake cycle, we optogenetically manipulated AVP neurons in vivo with SSFO (stabilized step function opsin) and simultaneously recorded an electroencephalogram (EEG) and electromyogram (EMG) in freely moving mice. SSFO-mediated stimulation of AVP positive neurons in the anterior hypothalamus increased the total amount of wakefulness during the hour of stimulation. Interestingly, this effect led to a rebound in sleep in the hour after stimulation. Markov chain sleep-stage transition analysis showed that the depolarization of AVP neurons through SSFO promotes the transition from all states to wakefulness. After the end of stimulation, a compensatory increase in transitions to NREM sleep was observed. Ex vivo, SSFO activation in AVP neurons causes depolarization and modifies the activity of AVP neurons. Therefore, the results of this thesis project suggest an essential role of AVP neurons as mediators between circadian rhythmicity and sleep-wake behaviour. N2 - Die zentrale Uhr von Säugetieren, die sich im Nucleus suprachiasmaticus (SCN) des vorderen Hypothalamus befindet, steuert zirkadiane Verhaltensrhythmen wie den Schlaf-Wach-Rhythmus. Sie besteht aus etwa 20.000 heterogenen Neuronen, die nach ihrer Expression von Neuropeptiden klassifiziert werden können. Es gibt drei große Populationen: AVP-Neuronen, VIP-Neuronen und GRP-Neuronen. Wie diese Neuronengruppen funktionelle Einheiten bilden, um verschiedene Aspekte des rhythmischen Verhaltens zu steuern, ist nur unzureichend bekannt. Bei Säugetieren kann der Schlaf-Wach-Zyklus durch Messung der elektrischen Muskel- und Gehirnaktivität genau vorhergesagt werden. Um den Zusammenhang zwischen der elektrischen Aktivität heterogener Neuronen des SCN und dem Schlaf-Wach-Zyklus zu untersuchen, wurden AVP-Neuronen in vivo mit SSFO optogenetisch manipuliert und gleichzeitig ein Elektroenzephalogramm (EEG) und ein Elektromyogramm (EMG) bei frei beweglichen Mäusen aufgezeichnet. Die SSFO-vermittelte Stimulation von AVP-positiven Neuronen im vorderen Hypothalamus erhöhte den Gesamtanteil der Wachheit während der Stunde der Stimulation. Interessanterweise führte dieser Effekt zu einem Ansteigen des Schlafes in der Stunde nach der Stimulation. Eine Markov-Ketten-Analyse der Schlafphasenübergänge zeigte, dass die Depolarisierung der AVP-Neuronen durch SSFO den Übergang von allen Zuständen zum Wachsein fördert. Nach dem Ende der Stimulation wurde ein kompensatorischer Anstieg der Schlafphasenübergänge zum NREM-Schlaf beobachtet. Ex vivo verursachte die SSFO-Aktivierung in AVP-Neuronen eine Depolarisation und veränderte die Aktivität der AVP-Neuronen. Die Ergebnisse dieser Doktorarbeit könnten auf die Rolle der AVP-Neuronen als Vermittler zwischen zirkadianer Rhythmik und Schlaf-Wach-Verhalten hinweisen. KW - Schlaf KW - Tagesrhythmus KW - Hypothalamus KW - Optogenetik KW - Sleep KW - Hypothalamus KW - Circadian KW - Optogenetics Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-315492 ER - TY - THES A1 - Reuter, Isabel T1 - Development and function of monoaminergic systems in the brain of zebrafish T1 - Entwicklung und Funktion monoaminerger Systeme im Zebrafischgehirn N2 - This thesis explores the development of monoaminergic systems in the central nervous system (CNS) of zebrafish. The serotonergic cells of the hypothalamus pose the main focus of the present work. Most vertebrates except for mammals possess serotonin (5-HT) synthesising cells in more than one region of the CNS. In zebrafish such regions are, e.g. the hypothalamus, the raphe nuclei and the spinal cord. Serotonin functions as a neurotransmitter and neuromodulator in the CNS. Presumably due to its neuromodulatory tasks hypothalamic serotonergic cells are in contact with the cerebrospinal fluid (CSF), which expands the field of potential serotonergic targets tremendously. This highlights that serotonergic CSF-contacting (CSF-c) cells are vital for the execution of many functions and behaviours. Further, the hypothalamic serotonergic clusters constitute the largest population of serotonergic cells in the CNS of zebrafish. Together, these facts emphasise the need to understand the development and function of serotonergic CSF-c cells in the hypothalamus. Few studies have dealt with this subject, hence, information about the development of these cells is scarce. The zinc-finger transcription factor fezf2, and Fibroblast growth factor (Fgf)-signalling via the ETS-domain transcription factor etv5b are known to regulate serotonergic cell development in the hypothalamus (Bosco et al., 2013; Rink and Guo, 2004). However, the main Fgf ligand responsible for this mediation has not been determined prior to this work. The present thesis identifies Fgf3 as a crucial Fgf ligand. To achieve this result three independent strategies to impair Fgf3 activity have been applied to zebrafish embryos: the fgf3t24152 mutant, an fgf3 morpholino-based knock-down and the CRISPR/Cas9 technique. The investigations show that Fgf3 regulates the development of monoaminergic CSF-c cells in the hypothalamus. Additionally, Fgf3 impacts on cells expressing the peptide hormone arginine vasopressin (avp). Most interestingly, the requirement for Fgf3 by these cells follows a caudo-rostral gradient with a higher dependence on Fgf3 by caudal cells. This also seems to be the case for dopaminergic CSF-c cells in the hypothalamus (Koch et al., 2014). Moreover, etv5b a downstream target of Fgf-signalling is demonstrated to be under the control of Fgf3. With regard to serotonergic CSF-c cell development, it is shown that fgf3 is expressed several hours before tph1a and 5-HT (Bellipanni et al., 2002; Bosco et al., 2013). Together with the result that the hypothalamus is already smaller before mature serotonergic CSF-c cells appear, this argues for an early impact of Fgf3 on serotonergic specification. This hypothesis is supported by several findings in this study: the universal decrease of proliferating cells in the hypothalamus and simultaneous increase of cell death after fgf3 impairment. Complementary cell fate experiments confirm that proliferating serotonergic progenitors need Fgf3 to commit serotonergic specification. Further, these results corroborate findings of an earlier study stating that hypothalamic serotonergic progenitors require Fgf-signalling via etv5b to maintain the progenitor pool (Bosco et al., 2013). Additionally, the transcriptome of the hypothalamus has been analysed and 13 previously overlooked transcripts of Fgf ligands are expressed at developmental stages. The transcriptome analysis provides evidence for a self-compensatory mechanism of fgf3 since expression of fgf3 is upregulated as a consequence of its own impairment. Moreover, the Fgf-signalling pathway appears to be mildly affected by fgf3 manipulation. Together, Fgf-signalling and especially Fgf3 are established to be of critical importance during hypothalamic development with effects on serotonergic, dopaminergic CSF-c and avp expressing cells. Furthermore, this thesis provides two strategies to impair the tph1a gene. Both strategies will facilitate investigations regarding the function of hypothalamic serotonergic CSF-c cells. Finally, the presented findings in this study provide insights into the emergence of the posterior recess region of the hypothalamus, thereby, contributing to the understanding of the evolution of the vertebrate hypothalamus. N2 - Die vorliegende Dissertation untersucht die Entwicklung und Funktion monoaminerger Systeme im Zebrafischgehirn. Hierzu konzentriert sich die Studie hauptsächlich auf die serotonergen Zellen des Hypothalamus. Die meisten Vertebraten, außer Säugetiere, besitzen Serotonin (5-HT)-synthetisierende Zellen in mehr als einer Region im zentralen Nervensystem (ZNS). Solche Zellen lassen sich in Zebrafischen unter anderem im Hypothalamus, den Raphe Kernen und dem Rückenmark finden. Im ZNS agiert 5-HT als Neurotransmitter und als Neuromodulator. Es wird vermutet, dass, aufgrund der neuromodulatorischen Aufgaben des 5-HT, serotonerge Zellen mit ihren Vorsätzen mit der Cerebrospinalflüssigkeit (CSF) in Kontakt stehen, wodurch der Wirkungsbereich dieser Zellen enorm vergrößert wird. Dies betont den weitläufigen Einfluss serotonerger CSF-kontaktierender (CSF-k) Zellen auf vielfältige Funktionen und Verhalten. Zudem bilden serotonerge Zellen des Hypothalamus die größte serotonerge Zellpopulation im ZNS des Zebrafisches. Zusammengefasst heben diese Fakten die Notwenigkeit hervor, die Entwicklung und die Funktion serotonerger Zellen im Hypothalamus genauer zu verstehen. Nur wenige Studien haben sich dieser Thematik bisher angenommen, weshalb Erkenntnisse über diese Zellen rar sind. Bereits bekannt ist, dass der Zinkfinger-Transkriptionsfaktor fezf2 und der Fibroblasten-Wachstumsfaktor (Fgf)-Signaltransduktionsweg über den ETS-Domäne-Transkriptionsfaktor etv5b Einfluss auf die Entwicklung serotonerger CSF-k Zellen des Hypothalamus nehmen (Bosco et al., 2013; Rink and Guo, 2004). Allerdings ist der Fgf-Ligand, der die Entwicklung serotonerger CSF-k Zellen reguliert, noch nicht bekannt. Die vorliegende Arbeit identifiziert Fgf3 als einen Schlüsselliganden in diesem Zusammenhang. Hierfür wurden drei unabhängige Strategien zur Beeinträchtigung der Fgf3-Aktivität in Zebrafischembryos angewendet: die fgf3t24152 Mutante, ein Morpholino-basierter fgf3 Gen-Knockdown und die CRISPR/Cas9-Methodik. Die durchgeführten Untersuchungen zeigen, dass Fgf3 die Entwicklung monoaminerger CSF-k Zellen des Hypothalamus maßgeblich reguliert. Zusätzlich beeinflusst Fgf3 auch die Genexpression des Peptidhormons arginine vasopressin (avp) in dieser Region. Interessanterweise sind caudale avp exprimierende Zellen abhängiger von Fgf3 als rostrale. Dies scheint auch der Fall für dopaminerge Zellpopulationen des Hypothalamus zu sein (Koch et al., 2014). Des Weiteren wird demonstriert, dass Fgf3 über den Fgf-Signalweg die Expression von etv5b kontrolliert. Bezüglich der Entwicklung serotonerger CSF-k Zellen wird gezeigt, dass die fgf3 Expression bereits einige Stunden vor tph1a und 5-HT im caudalen Hypothalamus vorhanden ist (Bellipanni et al., 2002; Bosco et al., 2013). Zusammen mit dem Ergebnis, dass die nkx2.4b Expressionsdomäne, die zur Kenntlichmachung des Hypothalamus verwendet wurde, ebenfalls in früheren Entwicklungsstadien eine verringerte Größe aufweist, führt dies zu der Annahme, dass Fgf3 Auswirkungen auf die serotonerge Zellspezifikation hat. Diese Hypothese wird durch folgende Beobachtungen in dieser Arbeit unterstützt: Proliferierende Zellen des gesamten caudalen Hypothalamus sind mehrheitlich reduziert nachdem fgf3 beeinträchtigt wurde, gleichzeitig ist der Zelltod erhöht. Des Weiteren wird gezeigt, dass serotonerge Vorläuferzellen Fgf3 benötigen, um einer serotonergen Spezialisierung zu folgen. Die beschriebenen Beobachtungen untermauern die Ergebnisse einer früheren Studie, wonach der Fgf-Signalweg und etv5b wichtige Rollen für die Erhaltung der Proliferation von serotonergen Vorläuferzellen einnehmen (Bosco et al., 2013). Zusätzlich werden durch die durchgeführte Transkriptomanalyse 13 zuvor übersehene Fgf Liganden identifiziert, die im Hypothalamus exprimiert werden. Die Transkriptomanalyse zeigt zudem, dass die Beeinträchtigung von fgf3 zu einer Zunahme der fgf3 Transkript Anzahl führt, weshalb ein Selbstkompensationsmechanismus von fgf3 vorzuliegen scheint. Komponenten des Fgf-Signalweges unterliegen geringen Veränderungen nach der Manipulation von fgf3. Zusammenfassend wird in dieser Dissertation der Ligand Fgf3 als essentieller Faktor für die Entwicklung des Hypothalamus etabliert. Dies wird durch die Fgf3 Abhängigkeit von serotonergen, dopaminergen CSF-k und avp exprimierenden Zellen in dieser Region bestätigt. Des Weiteren werden in dieser Arbeit zwei Strategien für die Beeinträchtigung von tph1a präsentiert, die Untersuchungen bezüglich der Funktion serotonerger CSF-k Zellen des Hypothalamus ermöglichen. Abschließend erlauben die Ergebnisse neue Einblicke in die Entwicklung der Region um den posterioren Ventrikelrezess des Hypothalamus. Dies trägt dazu bei, das Verständnis über die Evolution des Hypothalamus von Vertebraten zu erweitern. KW - Hypothalamus KW - Zebrabärbling KW - fgf KW - Serotonin Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-204089 ER - TY - JOUR A1 - Reuter, Isabel A1 - Jäckels, Jana A1 - Kneitz, Susanne A1 - Kuper, Jochen A1 - Lesch, Klaus-Peter A1 - Lillesaar, Christina T1 - Fgf3 is crucial for the generation of monoaminergic cerebrospinal fluid contacting cells in zebrafish JF - Biology Open N2 - In most vertebrates, including zebrafish, the hypothalamic serotonergic cerebrospinal fluid-contacting (CSF-c) cells constitute a prominent population. In contrast to the hindbrain serotonergic neurons, little is known about the development and function of these cells. Here, we identify fibroblast growth factor (Fgf)3 as the main Fgf ligand controlling the ontogeny of serotonergic CSF-c cells. We show that fgf3 positively regulates the number of serotonergic CSF-c cells, as well as a subset of dopaminergic and neuroendocrine cells in the posterior hypothalamus via control of proliferation and cell survival. Further, expression of the ETS-domain transcription factor etv5b is downregulated after fgf3 impairment. Previous findings identified etv5b as critical for the proliferation of serotonergic progenitors in the hypothalamus, and therefore we now suggest that Fgf3 acts via etv5b during early development to ultimately control the number of mature serotonergic CSF-c cells. Moreover, our analysis of the developing hypothalamic transcriptome shows that the expression of fgf3 is upregulated upon fgf3 loss-of-function, suggesting activation of a self-compensatory mechanism. Together, these results highlight Fgf3 in a novel context as part of a signalling pathway of critical importance for hypothalamic development. KW - Fgf-signalling KW - Serotonin KW - Dopamine KW - Hypothalamus KW - Central nervous system Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-200749 VL - 8 ER - TY - JOUR A1 - Feuerstein, G. A1 - Zerbe, R. L. A1 - Sirén, Anna-Leena T1 - Supraoptic nuclei in vasopressin and hemodynamic responses to hemorrhage in rats N2 - CARDIOVASCULAR and vasopressin (A VP) responses to hcmorrhagc wcrc studicd in rats with lesions of the hypothalamic supraoptic nuclei (SONL). Bleeding caused hypotension and increase in heart rate (HR) and A VP. SONL rats failed to fully recover from bleeding as compared to normal rats. Plasma A VP in SONL rats was in the normal in basal conditions, but failed to increase to levels attained in normal rats throughout the post-hemorrhage period. These data suggcst that the supraoptic nuclei are the primary regulatory sitcs for A VP release in rcsponse to hemorrhage and that lack of adequate A VP release significantly retards blood pressure recovery after bleeding. KW - Neurobiologie KW - Hypothalamus KW - Supraoptic nucleus KW - Hemorrhage KW - Vasopressin Y1 - 1991 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-63057 ER - TY - JOUR A1 - Vonhof, S. A1 - Sirén, Anna-Leena A1 - Feuerstein, Giora T1 - Volume-dependent spatial distribution of microinjected thyrotropin-releasing hormone (TRH) into the medial preoptic nucleus of the rat N2 - The present study was performed to qua ntify the distribution of a peptide neurotransmitter after microinjection into the medial preoptic area (POM), using a technique suitable for conscious animal preparations. The results indicate that only 50-ni volumes of injected tracer were sufficiently localized with 77 ± 9% recovery in the POM. Injections of higher volumes resulted in an increasing spread of tracer into distant anatomical regions and structures, including the needle tract and cerebral ventricles. The amount of tracer localized in the POM decreased to 38±4% (200 nl) (P < 0.05) and 41 ±8% (500 nl) (P <0.05), respectively. The data suggest that the volume of injection is critical for intraparenchymal injections into structures of a diameter of I mm or less, such as the POM and should not exceed 50 nl in conscious animal preparations. KW - Neurophysiologie KW - Neurobiologie KW - Autoradiography KW - Microinjection KW - Hypothalamus KW - TRH KW - Neuropeptides KW - [3H][3Me-His2]-TRH Y1 - 1990 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-47421 ER - TY - JOUR A1 - Feuerstein, G. A1 - Sirén, Anna-Leena T1 - Hypothalamic µ-receptors in the cardiovascular control: a review N2 - The endogenous opioid system includes three major families of peptides [22): dynorphins (derived from pre-proenkephalin B); endorphins (derived from pre-proopiomelanocortin) and enkephalins (derived from pre-proenkephalin A). Multiple species of opioid peptides are derived from these major precursors and many of them possess potent cardiovascular properties. Multiple forms of opioid receptors have been defined in the central nervous system. Although the relationship of these receptors to the multiple actions of the opioid systems is not weil understood, some predications can be made: in vitro the dynorphin-related peptidesbind preferentially to kappa-opioid receptors; the enkephalins bind preferentially to delta and JL-opioid receptors and while beta-endorphin binds to mu- and delta-, but not to kappa-opioid receptors. While littleis known on the roJe ofthe opioid system in normal cardiovascular regulation, it has become clear that cardiovascular stress situations substantially modify the activity ofthe endogenous opioid system. This review focuses on the mu-opioid system in the hypothalamus with special emphasis on its potential roJe in cardiovascular control of both normal and pathophysiologic states. KW - Neurobiologie KW - µ opioid receptors KW - Hypothalamus KW - Cardiovascular system KW - Sympathetic nervous system Y1 - 1988 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-63228 ER -