TY - JOUR A1 - Volckmar, Anna-Lena A1 - Han, Chung Ting A1 - Pütter, Carolin A1 - Haas, Stefan A1 - Vogel, Carla I. G. A1 - Knoll, Nadja A1 - Struve, Christoph A1 - Göbel, Maria A1 - Haas, Katharina A1 - Herrfurth, Nikolas A1 - Jarick, Ivonne A1 - Grallert, Harald A1 - Schürmann, Annette A1 - Al-Hasani, Hadi A1 - Hebebrand, Johannes A1 - Sauer, Sascha A1 - Hinney, Anke T1 - Analysis of Genes Involved in Body Weight Regulation by Targeted Re-Sequencing JF - PLoS ONE N2 - Introduction Genes involved in body weight regulation that were previously investigated in genome-wide association studies (GWAS) and in animal models were target-enriched followed by massive parallel next generation sequencing. Methods We enriched and re-sequenced continuous genomic regions comprising FTO, MC4R, TMEM18, SDCCAG8, TKNS, MSRA and TBC1D1 in a screening sample of 196 extremely obese children and adolescents with age and sex specific body mass index (BMI) ≥ 99th percentile and 176 lean adults (BMI ≤ 15th percentile). 22 variants were confirmed by Sanger sequencing. Genotyping was performed in up to 705 independent obesity trios (extremely obese child and both parents), 243 extremely obese cases and 261 lean adults. Results and Conclusion We detected 20 different non-synonymous variants, one frame shift and one nonsense mutation in the 7 continuous genomic regions in study groups of different weight extremes. For SNP Arg695Cys (rs58983546) in TBC1D1 we detected nominal association with obesity (pTDT = 0.03 in 705 trios). Eleven of the variants were rare, thus were only detected heterozygously in up to ten individual(s) of the complete screening sample of 372 individuals. Two of them (in FTO and MSRA) were found in lean individuals, nine in extremely obese. In silico analyses of the 11 variants did not reveal functional implications for the mutations. Concordant with our hypothesis we detected a rare variant that potentially leads to loss of FTO function in a lean individual. For TBC1D1, in contrary to our hypothesis, the loss of function variant (Arg443Stop) was found in an obese individual. Functional in vitro studies are warranted. KW - body weight regulation KW - genes KW - targeted re-sequencing Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-167274 VL - 11 IS - 2 ER - TY - JOUR A1 - Siegel, T. Nicolai A1 - Hon, Chung-Chau A1 - Zhang, Qinfeng A1 - Lopez-Rubio, Jose-Juan A1 - Scheidig-Benatar, Christine A1 - Martins, Rafeal M. A1 - Sismeiro, Odile A1 - Coppée, Jean-Yves T1 - Strand-specific RNA-Seq reveals widespread and developmentally regulated transcription of natural antisense transcripts in Plasmodium falciparum JF - BMC Genomics N2 - Background Advances in high-throughput sequencing have led to the discovery of widespread transcription of natural antisense transcripts (NATs) in a large number of organisms, where these transcripts have been shown to play important roles in the regulation of gene expression. Likewise, the existence of NATs has been observed in Plasmodium but our understanding towards their genome-wide distribution remains incomplete due to the limited depth and uncertainties in the level of strand specificity of previous datasets. Results To gain insights into the genome-wide distribution of NATs in P. falciparum, we performed RNA-ligation based strand-specific RNA sequencing at unprecedented depth. Our data indicate that 78.3% of the genome is transcribed during blood-stage development. Moreover, our analysis reveals significant levels of antisense transcription from at least 24% of protein-coding genes and that while expression levels of NATs change during the intraerythrocytic developmental cycle (IDC), they do not correlate with the corresponding mRNA levels. Interestingly, antisense transcription is not evenly distributed across coding regions (CDSs) but strongly clustered towards the 3′-end of CDSs. Furthermore, for a significant subset of NATs, transcript levels correlate with mRNA levels of neighboring genes. Finally, we were able to identify the polyadenylation sites (PASs) for a subset of NATs, demonstrating that at least some NATs are polyadenylated. We also mapped the PASs of 3443 coding genes, yielding an average 3′ untranslated region length of 523 bp. Conclusions Our strand-specific analysis of the P. falciparum transcriptome expands and strengthens the existing body of evidence that antisense transcription is a substantial phenomenon in P. falciparum. For a subset of neighboring genes we find that sense and antisense transcript levels are intricately linked while other NATs appear to be regulated independently of mRNA transcription. Our deep strand-specific dataset will provide a valuable resource for the precise determination of expression levels as it separates sense from antisense transcript levels, which we find to often significantly differ. In addition, the extensive novel data on 3′ UTR length will allow others to perform searches for regulatory motifs in the UTRs and help understand post-translational regulation in P. falciparum. KW - directional RNA-Seq KW - ncRNA KW - natural antisense transcripts KW - 3′ UTR KW - polyadenylation sites KW - genes KW - antisense RNA KW - plasmodium falciparum Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-119892 VL - 15 ER - TY - JOUR A1 - Bielaszewska, Martina A1 - Schiller, Roswitha A1 - Lammers, Lydia A1 - Bauwens, Andreas A1 - Fruth, Angelika A1 - Middendorf, Barbara A1 - Schmidt, M. Alexander A1 - Tarr, Phillip I. A1 - Dobrindt, Ulrich A1 - Karch, Helge A1 - Mellmann, Alexander T1 - Heteropathogenic virulence and phylogeny reveal phased pathogenic metamorphosis in Escherichia coli O2:H6 JF - EMBO Molecular Medicine N2 - Extraintestinal pathogenic and intestinal pathogenic (diarrheagenic) Escherichia coli differ phylogenetically and by virulence profiles. Classic theory teaches simple linear descent in this species, where non-pathogens acquire virulence traits and emerge as pathogens. However, diarrheagenic Shiga toxin-producing E.coli (STEC) O2:H6 not only possess and express virulence factors associated with diarrheagenic and uropathogenic E.coli but also cause diarrhea and urinary tract infections. These organisms are phylogenetically positioned between members of an intestinal pathogenic group (STEC) and extraintestinal pathogenic E.coli. STEC O2:H6 is, therefore, a 'heteropathogen,' and the first such hybrid virulent E.coli identified. The phylogeny of these E.coli and the repertoire of virulence traits they possess compel consideration of an alternate view of pathogen emergence, whereby one pathogroup of E.coli undergoes phased metamorphosis into another. By understanding the evolutionary mechanisms of bacterial pathogens, rational strategies for counteracting their detrimental effects on humans can be developed. KW - phased metamorphosis KW - phylogeny KW - heteropathogenicity KW - Shiga toxin-producing Escherichia coli KW - hemolytic-uremic syndrome KW - urinary-tract-infection KW - cytolethal distending toxin KW - shiga toxin KW - Crohns-disease KW - outbreak KW - genes KW - island KW - strains KW - parallel evolution KW - uropathogenic Escherichia coli Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-117254 SN - 1757-4684 VL - 6 IS - 3 ER - TY - JOUR A1 - Schokraie, Elham A1 - Warnken, Uwe A1 - Hotz-Wagenblatt, Agnes A1 - Grohme, Markus A. A1 - Hengherr, Steffen A1 - Förster, Frank A1 - Schill, Ralph O. A1 - Frohme, Marcus A1 - Dandekar, Thomas A1 - Schnölzer, Martina T1 - Comparative proteome analysis of Milnesium tardigradum in early embryonic state versus adults in active and anhydrobiotic state JF - PLoS One N2 - Tardigrades have fascinated researchers for more than 300 years because of their extraordinary capability to undergo cryptobiosis and survive extreme environmental conditions. However, the survival mechanisms of tardigrades are still poorly understood mainly due to the absence of detailed knowledge about the proteome and genome of these organisms. Our study was intended to provide a basis for the functional characterization of expressed proteins in different states of tardigrades. High-throughput, high-accuracy proteomics in combination with a newly developed tardigrade specific protein database resulted in the identification of more than 3000 proteins in three different states: early embryonic state and adult animals in active and anhydrobiotic state. This comprehensive proteome resource includes protein families such as chaperones, antioxidants, ribosomal proteins, cytoskeletal proteins, transporters, protein channels, nutrient reservoirs, and developmental proteins. A comparative analysis of protein families in the different states was performed by calculating the exponentially modified protein abundance index which classifies proteins in major and minor components. This is the first step to analyzing the proteins involved in early embryonic development, and furthermore proteins which might play an important role in the transition into the anhydrobiotic state. KW - life-span regulation KW - genes KW - Yolk protein KW - water stress KW - expression KW - tolerance KW - richtersius coronifer KW - superoxide-dismutase KW - caenorhabditis elegans KW - arabidopsis thaliana KW - vitellogenin Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-134447 VL - 7 IS - 9 ER - TY - JOUR A1 - Havik, Bjarte A1 - Degenhardt, Franziska A. A1 - Johansson, Stefan A1 - Fernandes, Carla P. D. A1 - Hinney, Anke A1 - Scherag, André A1 - Lybaek, Helle A1 - Djurovic, Srdjan A1 - Christoforou, Andrea A1 - Ersland, Kari M. A1 - Giddaluru, Sudheer A1 - O'Donovan, Michael C. A1 - Owen, Michael J. A1 - Craddock, Nick A1 - Mühleisen, Thomas W. A1 - Mattheisen, Manuel A1 - Schimmelmann, Benno G. A1 - Renner, Tobias A1 - Warnke, Andreas A1 - Herpertz-Dahlmann, Beate A1 - Sinzig, Judith A1 - Albayrak, Özgür A1 - Rietschel, Marcella A1 - Nöthen, Markus M. A1 - Bramham, Clive R. A1 - Werge, Thomas A1 - Hebebrand, Johannes A1 - Haavik, Jan A1 - Andreassen, Ole A. A1 - Cichon, Sven A1 - Steen, Vidar M. A1 - Le Hellard, Stephanie T1 - DCLK1 Variants Are Associated across Schizophrenia and Attention Deficit/Hyperactivity Disorder JF - PLoS One N2 - Doublecortin and calmodulin like kinase 1 (DCLK1) is implicated in synaptic plasticity and neurodevelopment. Genetic variants in DCLK1 are associated with cognitive traits, specifically verbal memory and general cognition. We investigated the role of DCLK1 variants in three psychiatric disorders that have neuro-cognitive dysfunctions: schizophrenia (SCZ), bipolar affective disorder (BP) and attention deficit/hyperactivity disorder (ADHD). We mined six genome wide association studies (GWASs) that were available publically or through collaboration; three for BP, two for SCZ and one for ADHD. We also genotyped the DCLK1 region in additional samples of cases with SCZ, BP or ADHD and controls that had not been whole-genome typed. In total, 9895 subjects were analysed, including 5308 normal controls and 4,587 patients (1,125 with SCZ, 2,496 with BP and 966 with ADHD). Several DCLK1 variants were associated with disease phenotypes in the different samples. The main effect was observed for rs7989807 in intron 3, which was strongly associated with SCZ alone and even more so when cases with SCZ and ADHD were combined (P-value = 4x10\(^{-5}\) and 4x10\(^{-6}\), respectively). Associations were also observed with additional markers in intron 3 (combination of SCZ, ADHD and BP), intron 19 (SCZ+BP) and the 3'UTR (SCZ+BP). Our results suggest that genetic variants in DCLK1 are associated with SCZ and, to a lesser extent, with ADHD and BP. Interestingly the association is strongest when SCZ and ADHD are considered together, suggesting common genetic susceptibility. Given that DCLK1 variants were previously found to be associated with cognitive traits, these results are consistent with the role of DCLK1 in neurodevelopment and synaptic plasticity. KW - psychosis KW - deficit hyperactivity disorder KW - genome-wide association KW - bipolar disorder KW - VAL66MET polymorphism KW - doublecortine-like KW - genes KW - kinase KW - BDNF KW - endophenotype Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-135285 VL - 7 IS - 4 ER - TY - JOUR A1 - Krehan, Mario A1 - Heubeck, Christian A1 - Menzel, Nicolas A1 - Seibel, Peter A1 - Schön, Astrid T1 - RNase MRP RNA and RNase P activity in plants are associated with a Pop1p containing complex JF - Nucleic Acids Research N2 - RNase P processes the 5'-end of tRNAs. An essential catalytic RNA has been demonstrated in Bacteria, Archaea and the nuclei of most eukaryotes; an organism-specific number of proteins complement the holoenzyme. Nuclear RNase P from yeast and humans is well understood and contains an RNA, similar to the sister enzyme RNase MRP. In contrast, no protein subunits have yet been identified in the plant enzymes, and the presence of a nucleic acid in RNase P is still enigmatic. We have thus set out to identify and characterize the subunits of these enzymes in two plant model systems. Expression of the two known Arabidopsis MRP RNA genes in vivo was verified. The first wheat MRP RNA sequences are presented, leading to improved structure models for plant MRP RNAs. A novel mRNA encoding the central RNase P/MRP protein Pop1p was identified in Arabidopsis, suggesting the expression of distinct protein variants from this gene in vivo. Pop1p-specific antibodies precipitate RNase P activity and MRP RNAs from wheat extracts. Our results provide evidence that in plants, Pop1p is associated with MRP RNAs and with the catalytic subunit of RNase P, either separately or in a single large complex. KW - enzyme KW - binding KW - sequence KW - cyanelle KW - in vitro KW - partial purification KW - protein subunit KW - ribonuclease-P KW - genes KW - identification Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-130648 VL - 40 IS - 16 ER - TY - JOUR A1 - Schmidtke, Cornelius A1 - Findeiß, Sven A1 - Sharma, Cynthia M. A1 - Kuhfuss, Juliane A1 - Hoffmann, Steve A1 - Vogel, Jörg A1 - Stadler, Peter F. A1 - Bonas, Ulla T1 - Genome-wide transcriptome analysis of the plant pathogen Xanthomonas identifies sRNAs with putative virulence functions JF - Nucleic Acids Research N2 - The Gram-negative plant-pathogenic bacterium Xanthomonas campestris pv. vesicatoria (Xcv) is an important model to elucidate the mechanisms involved in the interaction with the host. To gain insight into the transcriptome of the Xcv strain 85-10, we took a differential RNA sequencing (dRNA-seq) approach. Using a novel method to automatically generate comprehensive transcription start site (TSS) maps we report 1421 putative TSSs in the Xcv genome. Genes in Xcv exhibit a poorly conserved -10 promoter element and no consensus Shine-Dalgarno sequence. Moreover, 14% of all mRNAs are leaderless and 13% of them have unusually long 5'-UTRs. Northern blot analyses confirmed 16 intergenic small RNAs and seven cis-encoded antisense RNAs in Xcv. Expression of eight intergenic transcripts was controlled by HrpG and HrpX, key regulators of the Xcv type III secretion system. More detailed characterization identified sX12 as a small RNA that controls virulence of Xcv by affecting the interaction of the pathogen and its host plants. The transcriptional landscape of Xcv is unexpectedly complex, featuring abundant antisense transcripts, alternative TSSs and clade-specific small RNAs. KW - SUBSP carotovora KW - regulatory RNA KW - gene-cluster KW - campestris PV vesicatoria KW - escherichia coli KW - determines pathgenicity KW - hypersensitive response KW - ralstonia solanacearum KW - extracellular enzymes KW - secretion systems KW - transcription initiation site KW - RNA sequence analyses KW - messanger RNA KW - plants KW - libraries KW - genome KW - genes KW - gene expression profiling KW - genetic transcription KW - northern blotting KW - untranslated regions KW - xanthomonas KW - xanthomonas campestris KW - bacteria KW - virulence KW - pathogenetic organism KW - RNA KW - small RNA KW - pathogenicity KW - type III secretion system pathways KW - maps KW - consesus KW - host (organism) KW - type III protein secretion system complex Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-131781 VL - 40 IS - 5 SP - 2020 EP - 2031 ER -