TY - JOUR A1 - Aster, Hans-Christoph A1 - Evdokimov, Dimitar A1 - Braun, Alexandra A1 - Üçeyler, Nurcan A1 - Kampf, Thomas A1 - Pham, Mirko A1 - Homola, György A. A1 - Sommer, Claudia T1 - CNS imaging characteristics in fibromyalgia patients with and without peripheral nerve involvement JF - Scientific Reports N2 - We tested the hypothesis that reduced skin innervation in fibromyalgia syndrome is associated with specific CNS changes. This prospective case–control study included 43 women diagnosed with fibromyalgia syndrome and 40 healthy controls. We further compared the fibromyalgia subgroups with reduced (n = 21) and normal (n = 22) skin innervation. Brains were analysed for cortical volume, for white matter integrity, and for functional connectivity. Compared to controls, cortical thickness was decreased in regions of the frontal, temporal and parietal cortex in the fibromyalgia group as a whole, and decreased in the bilateral pericalcarine cortices in the fibromyalgia subgroup with reduced skin innervation. Diffusion tensor imaging revealed a significant increase in fractional anisotropy in the corona radiata, the corpus callosum, cingulum and fornix in patients with fibromyalgia compared to healthy controls and decreased FA in parts of the internal capsule and thalamic radiation in the subgroup with reduced skin innervation. Using resting-state fMRI, the fibromyalgia group as a whole showed functional hypoconnectivity between the right midfrontal gyrus and the posterior cerebellum and the right crus cerebellum, respectively. The subgroup with reduced skin innervation showed hyperconnectivity between the inferior frontal gyrus, the angular gyrus and the posterior parietal gyrus. Our results suggest that the subgroup of fibromyalgia patients with pronounced pathology in the peripheral nervous system shows alterations in morphology, structural and functional connectivity also at the level of the encephalon. We propose considering these subgroups when conducting clinical trials. KW - fibromyalgia syndrome KW - CNS imaging KW - peripheral nerve involvement Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-300562 VL - 12 IS - 1 ER - TY - JOUR A1 - Erbacher, Christoph A1 - Vaknine, Shani A1 - Moshitzky, Gilli A1 - Lobentanzer, Sebastian A1 - Eisenberg, Lina A1 - Evdokimov, Dimitar A1 - Sommer, Claudia A1 - Greenberg, David S. A1 - Soreq, Hermona A1 - Üçeyler, Nurcan T1 - Distinct CholinomiR blood cell signature as a potential modulator of the cholinergic system in women with fibromyalgia syndrome JF - Cells N2 - Fibromyalgia syndrome (FMS) is a heterogeneous chronic pain syndrome characterized by musculoskeletal pain and other key co-morbidities including fatigue and a depressed mood. FMS involves altered functioning of the central and peripheral nervous system (CNS, PNS) and immune system, but the specific molecular pathophysiology remains unclear. Anti-cholinergic treatment is effective in FMS patient subgroups, and cholinergic signaling is a strong modulator of CNS and PNS immune processes. Therefore, we used whole blood small RNA-sequencing of female FMS patients and healthy controls to profile microRNA regulators of cholinergic transcripts (CholinomiRs). We compared microRNA profiles with those from Parkinson's disease (PD) patients with pain as disease controls. We validated the sequencing results with quantitative real-time PCR (qRT-PCR) and identified cholinergic targets. Further, we measured serum cholinesterase activity in FMS patients and healthy controls. Small RNA-sequencing revealed FMS-specific changes in 19 CholinomiRs compared to healthy controls and PD patients. qRT-PCR validated miR-182-5p upregulation, distinguishing FMS patients from healthy controls. mRNA targets of CholinomiRs bone morphogenic protein receptor 2 and interleukin 6 signal transducer were downregulated. Serum acetylcholinesterase levels and cholinesterase activity in FMS patients were unchanged. Our findings identified an FMS-specific CholinomiR signature in whole blood, modulating immune-related gene expression. KW - fibromyalgia syndrome KW - cholinergic system KW - CholinomiRs KW - microRNA KW - miR-182-5p KW - Parkinson's disease Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-270686 SN - 2073-4409 VL - 11 IS - 8 ER -