TY - THES A1 - Langejahn, Marcus T1 - Hard X-ray Properties of Relativistically Beamed Jets from Radio- and Gamma-Ray-Bright Blazars T1 - Eigenschaften der harten Röntgenstrahlung von relativistisch gebeamten radio- und gamma-hellen Blazaren N2 - In this work I characterize the hard X-ray properties of blazars, active galactic nuclei with highly beamed emission, which are notoriously hard to detect in this energy range. I employ pre-defined samples of beamed AGN: the radio-selected MOJAVE and TANAMI samples, as well as the most recent gamma-ray-selected Fermi/LAT 4LAC catalog. The hard X-ray data is extracted from the 105-month all-sky survey maps of the Swift/BAT (Burst Alert Telescope) in the energy band of 20 keV to 100 keV. A great majority of both the MOJAVE and TANAMI samples are significantly detected, with signal-to noise ratios of the sources often just below the X-ray catalog signal thresholds. All blazar sub-types (FSRQs, BL Lacs) and radio galaxies show characteristic ranges of X-ray flux, luminosity, and photon index. Their properties are correlated with the corresponding SED's shape / peak frequency. The LogN-LogS distributions of the samples show a scarcity of blazars in the middle and lower X-ray flux range, indicating differing evolutionary paths between radio and X-ray emission, which is also suggested by the corresponding luminosity functions. Compared to the radio samples, the 4LAC sources are on average significantly less bright in the BAT band since this range often coincides with the spectral gap region between the two big SED emission bumps. Also, the spectral shapes differ notably, especially for the sub-type of BL Lacs. Using the parameter space of X-ray and gamma-ray photon indices, 35 blazar candidate sources can be assigned to either the FSRQ or BL Lac type with high certainty. The reason why many blazars are weak in this energy band can be traced back to a number of factors: the selection bias of the initial sample, differential evolution of the X-rays and the wavelengths in which the sample is defined, and the limited sensitivity of the observing instruments. N2 - In dieser Arbeit charakterisiere ich die Eigenschaften der harten Röntgenstrahlung von Blazaren, aktiven Galaxienkernen mit stark gebeamter Emission, welche in diesem Energiebereich oft schwer detektierbar sind. Dafür verwende ich vordefinierte AGN-Samples: die im Radiobereich ausgewählten MOJAVE- und TANAMI-Samples sowie den im Gammastrahlenbereich definierten Fermi/LAT 4LAC-Katalog. Die Röntgendaten stammen aus dem 105-monatigen All-Sky-Survey des Swift/BAT (Burst Alert Telescope) bei 20 keV bis 100 keV. Der Großteil der MOJAVE- und TANAMI-Samples sind signifikant detektiert, wobei das Signal/Rausch-Verhältnis der Quellen oft knapp unter dem Limit der Röntgenkataloge liegt. Alle Blazar-Subtypen (FSRQs, BL Lacs) und Radiogalaxien zeigen charakteristische Bereiche des Röntgenflusses, der Leuchtkraft und des Photonenindexes. Ihre Eigenschaften korrelieren mit der Form bzw. Peak-Frequenz der entsprechenden SED. Die LogN-LogS-Verteilungen der Samples zeigen einen Mangel an Blazaren im mittleren und unteren Flussbereich, was auf unterschiedliche Entwicklungen zwischen Radio- und Röntgenemission hinweist, bestätigt durch die entsprechenden Leuchtkraftfunktionen. Im Vergleich zu den Radio-Samples sind die 4LAC-Quellen im BAT-Band durchschnittlich deutlich weniger hell, da dieser Bereich oft mit der großen spektralen Lücke der Blazar-SEDs zusammenfällt. Auch die spektralen Formen unterscheiden sich deutlich, insbesondere für BL Lacs. Unter Verwendung des Parameterraums der Röntgen- und Gammastrahlen-Photonenindizes können 35 Blazarkandidaten mit hoher Sicherheit entweder dem FSRQ- oder BL Lac-Typ zugeordnet werden. Der Grund, warum viele Blazare in diesem Energieband schwach sind, kann auf eine Reihe von Faktoren zurückgeführt werden: den Auswahleffekt des ursprünglichen Samples, die unterschiedliche Entwicklung der Röntgenstrahlung und der Wellenlängen, in denen das Sample definiert ist, sowie die begrenzte Empfindlichkeit der Beobachtungsinstrumente. KW - Aktiver galaktischer Kern KW - Blazar KW - Röntgenstrahlung KW - Radio KW - Gammastrahlung KW - Swift KW - Burst Alert Telescope KW - Fermi KW - AGN KW - Mojave KW - Tanami KW - X-ray Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-282009 ER - TY - THES A1 - Weidinger, Matthias T1 - Variabilität entlang der Blazar-Sequenz - Hinweise auf die Zusammensetzung relativistischer Ausflüsse Aktiver Galaxienkerne T1 - Variability along the Blazar-Sequence - Hints for the composition of the relativistic outflows of Active Galactic Nuclei N2 - Die vorliegende Arbeit beschäftigt sich mit der Abstrahlung von Aktiven Galaxienkernen. Das erste Maximum der charakteristischen Doppelpeakstruktur des $\nu F_{\nu}$-Spektrums vom Blazaren ist zweifelsfrei Synchrotronstrahlung hochenergetischer Elektronen innerhalb des relativistischen Ausflusses des zugrundeliegenden Aktiven Galaxienkerns. Die zum zweiten (hochenergetischen) Maximum beitragenden Strahlungsprozesse und Teilchenspezies hingegen sind Gegenstand aktueller Diskussionen. In dieser Arbeit wir ein vollständig selbstkonsistentes und zeitabhängiges hybrides Emissionsmodell, welches auch Teilchenbeschleunigung berücksichtigt, entwickelt und auf verschiedene Blazar-Typen entlang der Blazar-Sequenz, von BL Lac Objekten mit verschiedenen Peakfrequenzen bis hin zu Flachspektrum-Radioquasaren, angewendet. Die spektrale Emission ersterer kann gut im rein leptonischen Grenzfall, d.h. der zweite $\nu F_{\nu}$-Peak kommt durch invers Compton-gestreute Synchrotronphotonen der abstrahlenden Elektronen selbst zustande, beschrieben werden. Zur Beschreibung letzterer muss man nicht-thermische Protonen innerhalb des Jets zulassen um die Dominanz des zweiten Maximums im Spektrum konsistent zu erklären. In diesem Fall besteht der zweite Peak aus Protonensynchrotronstrahlung und Kaskadenstrahlung der photohadronischen Prozesse. Mit dem entwickelten Modell ist es möglich auch die zeitliche Information, welche durch Ausbrüche von Blazaren bereitgestellt wird, auszunutzen um zum einen die freien Modellparameter weiter einzuschränken und -viel wichtiger- zum anderen leptonisch dominierte Blazare von hadronischen zu unterscheiden. Hierzu werden die typischen Zeitunterschiede in den Interbandlichtkurven als hadronischer Fingerabdruck benutzt.\\ Mit einer Stichprobe von 16 Spektren von zehn Blazaren entlang der Blazar-Sequenz, welche in unterschiedlichen Flusszuständen und mit starker Variabilität beobachtet wurden, ist es möglich die wichtigsten offenen Fragen der Physik relativistischer Ausbrüche in systematischer Art und Weise zu adressieren. Anhand der modellierten Ausbrüche kann man erkennen, dass sechs Quellen rein leptonisch dominiert sind, aber vier Protonen bis auf $\gamma \approx 10^{11}$ beschleunigen, was Auswirkungen auf die möglichen Quellen extragalaktischer kosmischer Strahlung unter den Blazaren hat. Darüber hinaus findet sich eine Abhängigkeit zwischen dem Magnetfeld der Emissionsregion und der injizierten Leuchtkraft, welche unabhängig von den zugrunde liegenden Teilchenpopulationen Gültigkeit besitzt. In diesem Zusammenhang lässt sich die Blazar-Sequenz als ein evolutionäres Szenario erklären: die Sequenz $FSRQ \rightarrow LBL/IBL \rightarrow HBL$ kommt aufgrund abnehmender Gasdichte der Hostgalaxie und damit einhergehender abnehmender Akkretionsrate zustande, dies wird durch weitere kosmologische Beobachtungen bestätigt. Eine abnehmende Materiedichte innerhalb des relativistischen Ausflusses wird von einem abnehmenden Magnetfeld begleitet, d.h. aber auch, dass Protonen weit vor den Elektronen nicht mehr im Strahlungsgebiet gehalten werden können. Die Blazar-Sequenz ist also ein Maß für die Hadronizität des Jets. Dies erklärt zudem die Dichotomie von FSRQs und BL Lac Objekten sowie die Zweiteilung in anderen Erscheinungsformen von AGN, z.B. FR-I und FR-II Radiogalaxien.\\ Während der Modellierung wird gezeigt, dass man Blazar-Spektren, speziell im hadronischen Fall, nicht mehr statisch betrachten kann, da es zu kumulierten Effekten aufgrund der langen Protonensynchrotronzeitskala kommt. Die niedrige Luminosität der Quellen und unterschiedlich lange Beobachtungszeiten verschiedener Experimente verlangen bei variablen Blazaren auch im leptonischen Fall eine zeitabhängige Betrachtung. Die Kurzzeitvariabilität scheint bei einzelnen Blazaren stets die selbe Ursache zu haben, unterscheidet sich aber bei der Betrachtung verschiedener Quellen. Zusätzlich wird für jeden Blazar, der in verschiedenen Flusszuständen beobachtet werden konnte, der Unterschied zwischen Lang- und Kurzzeitvariabilität, auch im Hinblick auf einen möglichen globalen Grundzustand hin, betrachtet. N2 - The work at hand deals with the radiative properties of active galactic nuclei. The first peak in the characteristic double humped spectral energy distribution of blazars is undoubtedly synchrotron emission of highly energetic electrons within the relativistic outflow of the subjacent active galactic nucleus whereas the contributing processes and particle species giving rise to the second, high energy peak are still a matter of debate. In this work a fully selfconsistent and timedependent hybrid emission model, including particle acceleration, is developed and applied to various types of sources from high frequency peaked BL Lac objects to the luminous flat spectrum radio quasars along the blazar-sequence. While the spectral emission of the first is well described leptonically, i.e. the second peak is Compton upscattered synchrotron photons by the radiating electrons themselves, one needs to introduce non-thermal protons within the jet of the latter to explain the $\gamma$-dominance in their spectra consistently. In this case the second peak consists of synchrotron radiation of highly relativistic protons and reprocessed radiation from photohadronic interactions. With the developed framework it is possible to exploit outbursts of blazars, and hence the provided timing information on the one hand to tighten down the model parameters and on the other hand, more importantly, to discriminate between purely leptonic blazars and hadronically dominated ones using the typical timelags in the interband lightcurves as a fingerprint.\\ With a sample of 16 spectra of ten blazars along the sequence, observed at different flux levels exhibiting strong variability, it is possible to address the most important questions concerning the physics of the relativistic outflow in a systematic way. As modelled outbursts indicate, six blazars are well described in a leptonic context while four accelerate protons up to $\gamma \approx 10^{11}$. The impact on possible sources of extragalactic cosmic rays among blazars are discussed. Furthermore a correlation between the magnetic field within the jet and the injected luminosity is found being independent from the underlying particle species. In this context the blazar-sequence is explained as an evolutionary scenario, the decreasing gas-density in the hostgalaxy and hence the declining accretion rate giving rise to the sequence $FSRQ \rightarrow LBL/IBL \rightarrow HBL$ also confirmed by cosmological observations. The decreasing mass-loading of the outflow goes hand in hand with a abating magnetic field, i.e. protons become less confined way before the electrons. Therefore the blazar-sequence can be interpreted as the hadronicness of a jet. This also consistently explains the dichotomy between FSRQs and BL Lacs as well as in other manifestations of AGN, namely FR-I and FR-II radiogalaxies.\\ During the modelling it is shown that blazar spectra, especially of hadronically dominated AGN, are not to be interpreted in a time-independent, static limit since outbursts are accumulated due to relatively long proton synchrotron timescales. Low flux levels and diverse integration times of experiments in various energy bands will also require for a time-resolved treatment of variable sources, even leptonic ones. The systematic investigation of short time variability depicts, that it is excited in the same way for various outbursts of the same blazar, but has no common cause concerning different sources. Additionally the difference between long- and short-time variability is emphasized for each blazar observed at different flux levels in context with a possible lowstate of each source. KW - Blazar KW - AGN KW - Jet KW - Strahlungsprozesse: Nicht-Thermisch KW - AGN KW - blazar KW - jet KW - radiation: non thermal KW - Strahlung KW - Mathematisches Modell KW - Astrophysik Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-70508 ER - TY - THES A1 - Rüger, Michael T1 - Ein zeitabhängiges, selbstkonsistentes hadronisch-leptonisches Strahlungsmodell zur Modellierung der Multiwellenlängenemission von Blazaren T1 - A time-dependent, selfconsistent hadronic-leptonic emission modell for the multiwavelength emission of blazars N2 - Diese Arbeit beschäftigt sich mit Strahlungsprozessen in Blazaren. Bei den Blazaren handelt es sich um eine Unterkategorie der aktiven Galaxienkerne, bei denen die Jetachse in Richtung des Beobachters zeigt. Charakteristisch für die Blazare ist ein Multifrequenzspektrum der Photonen, welches sich vom Radiobereich bis hin zur Gamma-Strahlung mit TeV-Energien erstreckt. Insbesondere der Gamma-Bereich rückt aktuell in den Fokus der Betrachtung mit Experimenten wie zum Beispiel FERMI und MAGIC. Ziel dieser Arbeit ist die Modellierung der auftretenden Strahlungsprozesse und die Beschreibung der Multifrequenzspektren der Blazare mit Hilfe eines hadronisch-leptonischen Modells. Grundlage hierfür ist ein selbstkonsistentes Synchrotron-Selbst-Compton-Modell (SSC), welches zur Beschreibung des Spektrums der Quelle 1 ES 1218+30.4 verwendet wird. Dabei wird die Parameterwahl unterstützt durch eine Abschätzung der Masse des zentralen schwarzen Loches. Das hier behandelte SSC-Modell wird dahingehend untersucht, wie es sich unter Veränderung der Modellparameter verhält. Dabei werden Abhängigkeiten des Photonenspektrums von Änderungsfaktoren der Parameter abgeleitet. Außerdem werden diese Abhängigkeiten in Relation gesetzt und aus dieser Betrachtung ergibt sich die Schlussfolgerung, dass unter der Voraussetzung eines festen Spektralindex der Elektronenverteilung die Wahl eines Parametersatzes zur Modellierung eines Photonenspektrums eindeutig ist. Zur Einführung eines zeitabhängigen, hadronischen Modells wird das SSCModell um die Anwesenheit nichtthermischer Protonen erweitert. Dadurch kann Proton-Synchrotron-Strahlung einen Beitrag im Gamma-Bereich leisten. Außerdem werden durch Proton-Photon-Wechselwirkung Pionen erzeugt. Aus deren Zerfall werden zusammen mit der Paarbildung aus Photon-Photon-Absorption sekundäre Elektronen und Positronen produziert, die wiederum zum Hochenergiespektrum beitragen. Neben den Pionen werden bei der Proton-Photon- Wechselwirkung außerdem noch Neutrinos und Neutronen erzeugt, die einen direkten Einblick in die Emissionsregion erlauben. Das hier vorgestellte hadronische Modell wird auf die Quelle 3C 279 angewandt. Für diese Quelle reicht mit der Detektion im VHE-Bereich der SSCAnsatz nicht aus, um das Photonenspektrum zu beschreiben. Mit dem vorgelegten Modell gelingt die Beschreibung des Spektrums in den SSC-kritischen Bereichen sehr gut. Insbesondere können verschiedene Flusszustände modelliert und allein durch Veränderung der Maximalenergien von Protonen und Elektronen ineinander überführt werden. Diese einfache Möglichkeit der Modellierung der Variabilität der Quelle unterstreicht die Wahl des hadronischen Ansatzes. Somit wird hier ein sehr gutes Werkzeug zur Untersuchung der Emissionsprozesse in Blazaren geliefert. Darüber hinaus ist mit der Abschätzung des Neutrino-Flusses zwar die Detektion von 3C 279 als Punktquelle mit IceCube unwahrscheinlich, jedoch liefert das Modell generell die Möglichkeit im Kontext des Multimessenger-Ansatzes Antworten zu liefern. Im gleichen Kontext wird auch der Beitrag zur kosmischen Strahlung durch entweichende Neutronen untersucht. N2 - This doctoral thesis discusses the radiative processes of blazars. Blazars are a subcategory of active galactic nuclei, where the jet axis points towards the observer. The typical spectrum of blazars ranges from radio frequencies up to the gamma ray regime at TeV energy. Current experiments like FERMI or MAGIC focus on the observation of gamma rays. Aim of this thesis is the modelling of the radiative processes and the description of the photon spectra of blazars using a lepto-hadronic emission model. It is based on a synchrotron self Compton model (SSC), which is applied to the source 1 ES 1218+30.4. The choice of parameters is supported by an estimation of the mass of the central black hole. It is shown how the SSC model reacts on the variation of the model parameters. The dependencies of the spectrum on the changing factors of the parameters are derived. The examination of these factors leads to the conclusion, that for a fixed spectral index of the electron distribution a particular choice of parameters to model the photon spectrum is unique. To introduce a time-dependent hadronic model the SSC model is extended by the presence of non-thermal protons, which leads to proton synchrotron radiation and proton photon interaction producing pions. Pion decay cascades together with pair creation due to photon photon absorption produce secondary electrons and positrons, which contribute to the high energy spectrum. In addition to that proton photon interaction creates neutrons and neutrinos, which provide a direct insight into the emission region. The presented hadronic model is applied to the source 3C 279. This blazar cannot be modelled by the one-zone SSC approach. The hadronic model solves the problems of the SSC model regarding this source. Different flux states are described by only changing the maximum energies of protons and electrons. This simple approach stresses the choice of the hadronic model to consider 3C 279. With this results we have a powerful tool for the examination of emission processes in blazars. With the estimated neutrino flux no detection as point source by IceCube is expected. However, in general it is possible to deliver answers with this model to the multi-messenger approach. In the same context the contribution of outgoing neutrons to cosmic rays is considered. KW - Blazar KW - Strahlung KW - Mathematisches Modell KW - Aktive Galaxienkerne Blazare KW - Aktiver galaktischer Kern KW - AGN KW - blazar Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-56955 ER - TY - THES A1 - Bretz, Thomas T1 - Observations of the Active Galactic Nucleus 1ES1218+304 with the MAGIC-telescope T1 - Beobachtung des aktiven Galaxienkerns 1ES1218+304 mit dem MAGIC-Teleskop N2 - The astronomical exploration at energies between 30\,GeV and $\lesssim$\,350\,GeV was the main motivation for building the \MAGIC-telescope. With its 17\,m \diameter\ mirror it is the worldwide largest imaging air-Cherenkov telescope. It is located at the Roque de los Muchachos at the Canary island of San Miguel de La Palma at 28.8$^\circ$\,N, 17.8$^\circ$\,W, 2200\,m a.s.l. The telescope detects Cherenkov light produced by relativistic electrons and positrons in air showers initiated by cosmic gamma-rays. The imaging technique is used to powerfully reject the background due to hadronically induced air showers from cosmic rays. Their inverse power-law energy-distribution leads to an increase of the event rate with decreasing energy threshold. For \MAGIC this implies a trigger rate in the order of 250\,Hz, and a correspondingly large data stream to be recorded and analyzed. A robust analysis software package, including the general framework \MARS, was developed and commissioned to allow automation, necessary for data taken under variable observing conditions. Since many of the astronomical sources of high-energy radiation, in particular the enigmatic gamma-ray bursts, are of a transient nature, the telescope was designed to allow repositioning in several tens of seconds, keeping a tracking accuracy of $\lesssim\,$0.01$^\circ$. Employing a starguider, a tracking accuracy of $\lesssim\,$1.3\,minutes of arc was obtained. The main class of sources at very high gamma-ray energies, known from previous imaging air-Cherenkov telescopes, are Active Galactic Nuclei with relativistic jets, the so-called high-peaked Blazars. Their spectrum is entirely dominated by non-thermal emission, spanning more than 15 orders of magnitude in energy, from radio to gamma-ray energies. Predictions based on radiation models invoking a synchrotron self-Compton or hadronic origin of the gamma-rays suggest, that a fairly large number of them should be detectable by \MAGIC. Promising candidates have been chosen from existing compilations, requiring high (synchrotron) X-ray flux, assumed to be related to a high (possibly inverse-Compton) flux at GeV energies, and a low distance, in oder to avoid strong attenuation due to pair-production in interactions with low-energy photons from the extragalactic background radiation along the line of sight. Based on this selection the first \AGN, emitting gamma-rays at 100\,GeV, 1ES\,1218+304 at a redshift of $z=0.182$, was discovered, one of the two farthest known \AGN emitting in the TeV energy region. In this context, the automated analysis chain was successfully demonstrated. The source was observed in January 2005 during six moonless nights for 8.2\,h. At the same time the collaborating \KVA-telescope, located near the \MAGIC site, observed in the optical band. The lightcurve calculated showed no day-to-day variability and is compatible with a constant flux of $F($\,$>$\,$100\,\mbox{GeV})=(8.7\pm1.4) \cdot 10^{-7}\,\mbox{m}^{-2}\,\mbox{s}^{-1}$ within the statistical errors. A differential spectrum between 87\,GeV and 630\,GeV was calculated and is compatible with a power law of $F_E(E) = (8.1\pm 2.1) \cdot 10^{-7}(E/\mbox{250\,GeV})^{-3.0\pm0.4}\,\mbox{TeV}^{-1}\,\mbox{m}^{-2}\,\mbox{s}^{-1}$ within the statistical errors. The spectrum emitted by the source was obtained by taking into account the attenuation due to pair-production with photons of the extragalactic background at low photon energies. A homogeneous, one-zone synchrotron self-Compton model has been fitted to the collected multi-wavelength data. Using the simultaneous optical data, a best fit model could be obtained from which some physical properties of the emitting plasma could be inferred. The result was compared with the so-called {\em Blazar sequence}. N2 - Die wesentliche Motivation zum Bau des \MAGIC-Teleskops war die Untersuchung astronomischer Objekte zwischen 30\,GeV und $\lesssim$\,350\,GeV. Mit einem 17\,m \diameter\ Spiegel ist es das weltweit gr"o"ste abbildende Luft-Cherenkov Teleskop. Es steht auf der Kanarischen Insel San Miguel de La Palma auf dem Roque de los Muchachos. Das Teleskop detektiert Cherenkov Licht von Elektronen und Positron aus Luftschauern, erzeugt von kosmischer Gammastrahlung. Die abbildende Technik ist das Hauptmerkmal einer guten Unterdr"uckung des Untergrundes, der haupts"achlich aus Luftschauern der kosmischen Strahlung besteht. Ihre Energieverteilung, beschrieben durch ein steil abfallendes Potenzgesetz, f"uhrt zu einem starken Anstieg der Ereignisrate bei sinkender Energieschwelle. F"ur \MAGIC bedeutet das Raten von etwa 250\,Hz, was zu einem gro"sen Datenstrom f"uhrt, der verarbeitet werden muss. Dazu wurde eine robuste Analyse Software, einschlie"slich des Grundger"ustes \MARS, entwickelt und ihre Anwendung automatisiert. Dies ist n"otig um wechselnde Beobachtungsbedingungen ber"ucksichtigen zu k"onnen. Da viele Quellen von Hochenergie Gammastrahlen, insbesondere die r"atselhaften {\em Gamma-Ray Bursts}, stark ver"anderliche Ph"anomene sind, wurde das Teleskop so ausgelegt, dass es Neuausrichtungen innerhalb weniger Sekunden erm"oglicht, und trotzdem eine Nachf"uhrgenauigkeit von $\lesssim\,$0.01$^\circ$ erreicht, die mit einem {\em Starguider} auf $\lesssim\,$1.3$'$ verbessert wird. %Dies wird erreicht durch den Vergleich %eines von einer \CCD-Kamera aufgenommenen Sternenfeldes mit dem %aus Sternenkatalogen berechneten. Die wichtigsten Quellen sehr hochenergetischer Gammastrahlung sind Aktive Galaktische Kerne mit relativistischen Jets, die sog.\ {\em high-peaked Blazars}. Ihr Spektrum erstreckt sich "uber mehr als 15 Gr"o"senordnungen, vom Radio- bis zum Gammabereich, und ist vollst"andig durch nicht-thermische Strahlung dominiert. Modelle, die {\em synchrotron selbst-Compton} Strahlung oder Strahlung aus hadroninduzierten Kaskaden zu Grunde legen, sagen voraus, dass eine gro"se Anzahl dieser Quellen von \MAGIC zu detektieren sein m"ussten. Vielversprechende Kandidaten wurden aus existierenden Katalogen ausgesucht mit der Anforderung eines gro"sen R"ontgenflusses (Synchrotronstrahlung), von dem erwartet wird, dass er einen gro"sen Fluss bei GeV-Energien zur Folge hat. Au"serdem wurden nur nahe Quellen ausgew"ahlt um nicht von der Abschw"achung des Flusses durch Paarbildung an der extragalaktischen Hintergrundstrahlung entlang der Sichtlinie betroffen zu sein. Basierend auf dieser Auswahl wurde zum ersten Mal Gammastrahlung von 100\,GeV bei einem \AGN (1ES\,1218+304,$z=0.182$) nachgewiesen. Hierbei wurde die automatische Analysekette erfolgreich demonstriert. Die Quelle wurde im Januar 2005 w"ahrend sechs mondloser N"achte 8.2 Stunden lang beobachtet. Zeitgleich wurden Daten im optischen Bereich vom mitarbeitenden \KVA-Teleskop aufgenommen. Die berechnete Lichtkurve ist innerhalb der statistischen Fehler mit einem konstanten Fluss von $F($\,$>$\,$100\,\mbox{GeV})=(8.7\pm1.4)\cdot 10^{-7}\,\mbox{m}^{-2}\,\mbox{s}^{-1}$ vertr"aglich. Das differentielle Spektrum wurde zwischen 87\,GeV und 630\,GeV bestimmt und ist innerhalb der statistischen Fehler mit einem Potenzgesetz $F_E(E)=(8.1\pm 2.1)\cdot10^{-7}\,(E/\mbox{250\,GeV})^{-3.0\pm0.4}\,\mbox{TeV}^{-1}\,\mbox{m}^{-2}\,\mbox{s}^{-1}$ vereinbar. Daraus wurde das von der Quelle emittierte Spektrum errechnet, indem die Paarbildung am extragalaktischen Hintergrund entlang der Sichtlinie ber"ucksichtigt wurde. An das resultierende Spektrum und weitere gesammelte Multiwellenl"angendaten wurde ein homogenes einzonen {\em synchrotron selbst-Compton} Modell angepasst. Unter Ber"ucksichtigung der zeitgleichen optischen Daten konnten physikalische Gr"o"sen des emittierenden Plasma bestimmt werden. Das Resultat wurde mit der sog.\ {\em Blazar-Sequenz} verglichen. KW - Aktiver galaktischer Kern KW - Čerenkov-Zähler KW - Gammaastronomie KW - Gigaelektronenvoltbereich KW - AGN KW - 1ES1218+304 KW - MAGIC KW - IACT KW - SED KW - AGN KW - 1ES1218+304 KW - MAGIC KW - IACT KW - SED Y1 - 2006 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-19240 ER -