TY - THES A1 - Weigand, Wolfgang T1 - Geometrische Struktur und Morphologie epitaktisch gewachsener ZnSe-Schichtsysteme T1 - Geometric structure and morphology of ZnSe-layersystems N2 - Halbleiterbauelemente sind im täglichen Leben allgegenwärtig und haben in den letzten Jahrzehnten unseren Lebensstil vollkommen verändert.Während diemikro-elektronischen Bauelemente hauptsächlich auf Silizium-Technologie basieren, gewannen Anfang der 90-ziger Jahre Verbindungshalbleiter wie GaAs, GaN, CdHgTe oder ZnSe für opto-elektronische Bauelemente immer stärkere Bedeutung. Besonders der II-VI Halbleiter ZnSe war wegen seiner großen Bandlücke und seiner geringen Versetzungsdichte einer der größten Hoffnungsträger, blau emittierende Laserdioden zu realisieren. Wie sich später zeigte, weisen ZnSe-basierte blaue Laserdioden aber binnen kurzer Zeit eine ausgeprägte Degradation ihrer opto-elektronisch aktiven Schicht auf [Guha97]. Dies führte schließlich dazu, dass sich zur Produktion blau-grün emittierender Laserdioden das konkurrierende Halbleitermaterial GaN durchsetzte [Pearton99] und ZnSe in den Hintergrund gedrängt wurde. In jüngster Zeit aber erlebt das ZnSe Halbleitermaterial in spintronischen Bauelementen eine Renaissance [Fiederling99], und auch in Kombination mit Mg und Fe konnten interessante magnetische Eigenschaften nachgewiesen werden [Marangolo01,Marangolo02]. ZurHerstellung der oben erwähnten opto-elektronischen und spintronischen Schichtstrukturen wird hauptsächlich die Molekular-Strahl-Epitaxie (MBE) eingesetzt. Sie gewährleistet erstens eine geringe Defektdichte und einen hohen Reinheitsgrad der erzeugten Schichtstrukturen. Zweitens können die elektronischen Eigenschaften der so erzeugten Schichtstrukturen durchDotierung gezielt beeinflusstwerden. Für das Wachstum der ZnSe-basierten Schichtsysteme ist zum einen die genutzte Substratfläche entscheidend. Als mögliche Substratkristalle bieten sich Halbleitermaterialien wie GaAs und Germanium an, die gegenüber dem ZnSe-Kristall eine sehr kleine Gitterfehlanpassung aufweisen (< 0.3 %). Zum anderen nimmt die ZnSe Oberfläche eine wichtige Rolle ein, weil an ihr das Wachstum abläuft und ihre mikroskopischen Eigenschaften direkt das Wachstum beeinflussen. Die genauen Mechanismen dieses Wachstumsprozesses sind bis jetzt nur in Ansätzen verstanden (siehe z.B. [Pimpinelli99,Herman97]), weshalb die Wachstumsoptimierung meist auf empirischem Weg erfolgt. Aus diesem Grund besteht ein gesteigertes akademisches Interesse an der Aufklärung der mikroskopischen Eigenschaften der Halbleiteroberflächen. Für die Oberflächen von CdTe- und GaAs-Kristallen wurden diesbezüglich bereits zahlreicheUntersuchungen durchgeführt, die die geometrische und elektronische Struktur und dieMorphologie dieser Oberflächen analysieren.MitHilfe von experimentellen Methoden wie Rastertunnel-Mikroskopie (STM), Photoelektronen-Spektroskopie (PES, ARUPS) und verschiedenen Beugungsmethoden (SXRD,HRXRD und LEED) bzw. theoretischen Berechnungen (DFT) wurde das Verhalten dieser Oberflächen untersucht. Ihren Eigenschaften wird Modell-Charakter zugewiesen, der oft auf andere II-VI und III-V Halbleiteroberflächen angewendet wird. Überraschenderweise ist das Verhalten der ZnSe Oberfläche, obwohl sie so lange im Mittelpunkt der Forschung um den blauen Laser stand, weit weniger gut verstanden. Unter anderemexistieren für die geometrische Struktur der c(2×2)-rekonstruierten ZnSe(001)Wachstumsoberfläche zwei konkurrierende Strukturmodelle, die sich widersprechen. Ziel der nachfolgenden Abhandlung ist es, zuerst die geometrische Struktur und die Morphologie der verschieden rekonstruierten ZnSe(001) Oberflächen zu untersuchen und mit dem Verhalten anderer II-VI Oberflächen zu vergleichen. Dadurch soll festgestellt werden, welche Eigenschaften der II-VI Halbleiteroberflächen Modell-Charakter besitzen, also übertragbar auf andere II-VI Halbleiteroberflächen sind, und welche der Oberflächen-Eigenschaften materialspezifisch sind (siehe Tab. 5.1). Zweitens wird die geometrische Struktur und dieMorphologie der Te-passivierten Ge(001) Oberfläche untersucht. Diese Oberfläche ist wegen ihrer geringen Gitterfehlanpassung bzgl. des ZnSe Kristalls eine erfolgversprechende Substratoberfläche, um das ZnSe-Wachstum auch auf nicht-polaren Halbleiteroberflächen zu etablieren. Zur Untersuchung der geometrischen Struktur bzw. Morphologie der Halbleiteroberflächen wurden die zwei komplementären Methoden SXRD und SPA-LEED eingesetzt. Die oberflächenempfindliche Röntgenbeugung (SXRD) ermöglicht es, die geometrische Struktur, also den genauen atomaren Aufbau der Oberfläche, aufzuklären. Die hochauflösende niederenergetische Elektronenbeugung (SPA-LEED) hingegen liefert Informationen über die Morphologie, also die Gestalt der Oberfläche auf mesoskopischer Größenskala. Diese Untersuchungen werden durch hochauflösende klassische Röntgenbeugung (HRXRD), Rasterkraft-Mikroskopie (AFM), hochauflösender Photoelektronen-Spektroskopie (PES, ARUPS) und Massen-Spektroskopie (QMS) ergänzt. Die vorliegende Arbeit gliedert sich in folgende drei Teile: Zuerst wird in die SXRD und SPA-LEED Methoden eingeführt, mit denen hauptsächlich gearbeitet wurde (Kapitel 2). Anschließend werden die experimentellen Untersuchungen an der Te/Ge(001) Oberfläche und an den verschieden rekonstruierten ZnSe(001) Oberflächen vorgestellt (Kapitel 5 bis 8). Im dritten und letzten Teil werden schließlich die wichtigsten Ergebnisse und Schlussfolgerungen zusammengefasst (Kapitel 9). N2 - The field of II-VI compound semiconductors has attracted considerable interest, due to important progress in the fabrication of electronic and opto-electronic devices. Since interface effects are often important in thin film systems, a good knowledge of the electronic and geometric structure of surfaces and interfaces is indispensable to design optimized devices. For example, to achieve high-quality pseudomorphic growth of II-VI compound thin films on III-V substrates a detailed knowledge about the II-VI/III-V interface and the II-VI surface is essential. An example of recent progress in this field is the c(2×2)-reconstructed ZnSe(001) surface. However, there is still an ongoing discussion concerning the exact geometric structure of the c(2×2)-reconstructed ZnSe(001) surface, which is somewhat surprising, since this system has been extensively investigated in the past and is considered to be a model-system for II-VI MBE growth. Also the hetero-epitaxial growth of compound semiconductors on surfaces such as silicon or germanium is strongly affected by the chemical bonding at the interface. Therefore, in this work the geometric and morphologic structure of the reconstructed ZnSe surface is investigated and compared to other II-VI surfaces. Furthermore, the morphologic structure of the Te covered Ge(001) surface is analyzed to decide whether Te provides better growth conditions for ZnSe films on the Ge(001) surface. The crystallography of surfaces has been investigated primarily by surface x-ray diffraction performed at the Hamburger Synchrotronstrahlungslabor (HASYLAB) at the Deutsches Elektronen-Synchrotron (DESY) inHamburg and themorphology of surfaces by high resolution low energy electron diffraction (SPA-LEED), which was implemented in the MBE-machine of Experimentelle Physik III. Additional experimental techniques used were photoelectron spectroscopy (PES), atomic force microscopy (AFM), quadrupole mass spectroscopy (QMS), and high resolution x-ray diffraction (HRXRD). As shown by SPA-LEED, the Te covered Ge(001) surface is a strained surface, which results in a missing row reconstruction. Large Te covered domains of the surface are interrupted by long parallel rows without adsorbates. This arrangement allows the Te rows to expand laterally into the Te-free rows and lowers the stress of the Te covered Ge(001) surface. This is also achieved by double steps,which also exist on the Te covered Ge(001) surface. By annealing the Te covered Ge(001) surface Te desorbs, and the randomly arranged missing rows form an ordered grating, the period of which increase if the Te coverage is reduced. When the tellurium is completely desorbed, the surface shows the well-known (2×1)-reconstruction of a clean Ge(001) surface. Furthermore, a (113)-faceting of the (001) surface occurs during Te adsorption at higher substrate temperatures. For these reasons, the Te covered Ge(001) surface is not suited as a substrate for the ZnSe growth. However, the stripe pattern of this surface may be adapted as a template for a preferential adsorption of, e.g., organic molecules. Using high-resolution low-energy electron diffraction (SPA-LEED) correlations of neighboring superstructure domains of the ZnSe(001) surface across steps are found. These steps run along the [110]- and [1¯10]-directions at the (2×1)-reconstructed ZnSe(001) surface and formso-called incommensurate domainwalls. This behavior of the ZnSe(001) surface is in contrast to the behavior of the CdTe(001) surface. It may be explained by the different elastic properties of the ZnSe and the CdTe crystal, respectively. At the c(2×2)-reconstructed surface the neighboring superstructure domains are correlated across [100]- and [010]-oriented steps. This is well known from sputtered and annealed ZnSe surfaces by the work of Chen et al. [Chen02]. We show that this is also true for MBE grown ZnSe surfaces and, therefore, the correlations of the superstructure domains are an intrinsic property of the c(2×2)-reconstructed ZnSe(001) surface. The ZnSe(001) surface sublimates at temperatures above 450 ◦C. In contrast to Cd-Te(001), deep cavities arise during sublimation. Since this sublimation temperature is much higher than the growth temperature, sublimation does not affect the growth of ZnSe. Also the ZnSe/GaAs layer-system shows an unexpected morphologic effect. As normal for metal surfaces, above a critical thickness of 100 nm the topmost ZnSe layer relaxes by forming large mosaic domains, which are tilted by 0.2◦ with respect to the macroscopic surface. The misfit of the ZnSe/GaAs interface probably induces this formation of mosaic domains. The geometric structure of the c(2×2)-reconstructed ZnSe(001) surface is studied by surface X-ray diffraction performed under ultra-high vacuum using synchrotron radiation, which reveals the precise atomic geometry. The results are in excellent agreement with the Zn-vacancy model proposed earlier on the basis of density functional theory calculations [Park94]. The Se-vacancy model [Ohtake99b], which challenges this theoretical calculation, can be excluded on the basis of our measurements. The special morphologic properties of the (2×1)-reconstructed ZnSe surface prohibit a precise quantitative analysis of the surface structure. Nevertheless, it was discovered that asymmetrical translated Se-dimers, which are well-known from the Si(001)-(2×1) and Ge(001)-(2×1) surfaces, but unexpected from the theoretical point of view for the ZnSe surface, form on the reconstructed surface. These findings are confirmed by PES-measurements. KW - Zinkselenid KW - Epitaxieschicht KW - Halbleiteroberfläche KW - LEED KW - Röntgenbeugung KW - Oberflächenphysik KW - geometrische Struktur KW - Oberflächenröntgenbeugung KW - hochauflösende Elektronenbeugung KW - II-IV Halbleiter KW - surface science KW - II-VI semiconductor KW - diffraction Y1 - 2005 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-12955 ER - TY - THES A1 - Wagner, Joachim T1 - Optische Charakterisierung von II-VI-Halbleiter-Oberflächen in Kombination mit First-Principles-Rechnungen T1 - Optical Characterisation of II-VI Semiconductor Surfaces in Combination with First Principles Calculations N2 - In dieser Arbeit sind Methoden der optischen Spektroskopie, insbesondere die Ramanspektroskopie (RS) und die Reflexions-Anisotropie-Spektroskopie (RAS), angewandt worden, um die Oberflächen von II-VI Halbleitern zu charakterisieren. Für die experimentellen Untersuchungen wurde eine eigens für diesen Zweck entwickelte UHV-Optikkammer benutzt. Diese einzigartige Möglichkeit, II-VI Halbleiterproben aus einer state-of-the-art MBE-Anlage mit einer UHV-Optikanlage zu kombinieren hat gezeigt, dass optische Spektroskopie sehr gut dafür geeignet ist, strukturelle Eigenschaften, z.B. Rekonstruktionen, und chemische Bindungen an Oberflächen, sowie die damit verbundene Schwingungsdynamik zu analysieren. Neben den experimentellen Arbeiten wurden u. a. first principles Rechnungen mittels der Dichtefunktionaltheorie im Rahmen der Lokalen-Dichte-Approximation durchgeführt. Damit konnten für die Oberflächen einerseits ihre geometrischen Eigenschaften, d.h die atomare Anordnung der Oberflächenatome, und andererseits auch ihre Dynamik, d.h. die Schwingungsfrequenzen und die Auslenkungsmuster der an der Rekonstruktion beteiligten Atome der Oberfläche und der oberflächennahen Schichten, im Rahmen der Frozen-Phonon-Näherung bestimmt werden. Die Kombination von experimenteller und theoretischer Vibrationsbestimmung von Oberflächen bietet also, neben den klassischen Oberflächen-Analysemethoden wie RHEED, LEED, XPS, Auger und SXRD, ein zusätzliches Werkzeug zur Charakterisierung von Oberflächen. Da die Frozen-Phonon-Näherung nicht elementarer Bestandteil des hier benutzten DFT-Programmcodes fhi96md ist, wurde diese Erweiterung im Rahmen dieser Arbeit durchgeführt. Die theoretische Berechnung von Schwingungsfrequenzen mit dynamischen Matrizen ist in einem Unterkapitel dargestellt. Die so berechneten Schwingungsfrequenzen für verschiedene Oberflächen-Rekonstruktionen konnten erfolgreich am Beispiel der reinen BeTe(100)-Oberfläche mit den experimentell mit der UHV-Ramanspektroskopie beobachteten Frequenzen verglichen werden. So gelang erstmalig die optische identifizierung von rekonstruktionsinduzierten Eigenschwingungen einer Oberfläche. Nach detaillierter Kenntnis der BeTe(100)-Oberfläche wurde die Ramanspektroskopie als Sonde benutzt, um die Entwicklung der BeTe-Oberfläche bei unterschiedlichen Behandlungen (Modifikation) zu verfolgen. Dabei dienten die früheren Ergebnisse als Referenzpunkte, um die modifizierten Spektren zu erklären. Zusätzlich wurde ein Konzept zur Passivierung der Te-reichen BeTe(100)-Oberfläche entwickelt, um diese Proben ohne einen technisch aufwendigen UHV-Transportbehälter über grössere Entfernungen transportieren zu können (z.B. zu Experimenten an einem Synchrotron). Mit der RAS wurden auch die Oberflächen von weiteren Gruppe II-Telluriden, nämlich die Te-reiche (2x1) CdTe(100)-Oberfläche, die Te-reiche (2x1) MnTe(100)-Oberfläche und die Hg-reiche c(2x2) HgTe(100)-Oberfläche untersucht. Schließlich wurde der Wachstumsstart von CdSe auf der BeTe(100)-Oberfläche im Bereich weniger Monolagen (1-5 ML) CdSe analysiert, wobei die hohe Empfindlichkeit der Ramanspektroskopie bereits den Nachweis einer Monolage CdSe erlaubte. N2 - In this thesis optical spectroscopy, especially Raman spectroscopy (RS) and reflection anisotropy spectroscopy (RAS), was used for characterisation of II-VI-semiconductor surfaces. For the experimental studies a specially designed UHV-optical chamber was applied. The unique combination of a state of the art molecular beam epitaxy (MBE) facility with this UHV-optical chamber distinctly proved that optical spectroscopy is a powerfull tool for analyzing the structural properties (e.g. reconstructions) and the chemical bindings at a surface, as well as its dynamical properties. Beside the experimental activities, first principles calculations within the framework of density functional theory (DFT) and local density approximation (LDA) were performed. Therefore the geometrical, statical properties (e.g. atomic positions) of the surface and near-surface atoms could be determined. Additionally, their dynamical properties (e.g. displacement patterns and vibrational frequencies) were calculated with the frozen phonon approximation. This combination of experimental and theoretical determination of the surface dynamics offers an additional tool for surface characterisation beside the classical methods for surface analysis like RHEED, LEED, XPS, Auger and SXRD. Because frozen phonon calculations do not constitute an integral part of the available DFT programm code fhi96md, the extension was performed as a part of this thesis. The theoretical calculation of vibration frequencies with dynamical matrices is described in one of the subsections. The frequencies calculated in this way for different surface reconstructions were successfully compared with the experimentally observed frequencies in the case of pure BeTe(100) surfaces. Thus, the first optical identification of reconstruction-induced surface eigenvibration modes was realized. After this detailed knowledge of the BeTe(100) surface Raman spectroscopy was used as a probe to track the changes of the BeTe surface under different modifications. In doing so the previous result on the pure BeTe surfaces served as references to explain the modified spectra. Besides a concept for passivation of the tellurium rich BeTe(100) surface was developed to ease the transport to far away laboratories without using extensive UHV facilities. Additionally the surfaces of further group II-tellurides (e.g. Te-rich (2x1) CdTe(100), Te-rich (2x1) MnTe(100) and Hg-rich c(2x2) HgTe) has been investigated with the RAS. Finally the start of the CdSe growth on the BeTe(100) surface was analyzed in the region of 1-5 monolayers of CdSe. Within these experiments a high sensitivity for detecting even one monolayer of CdSe was achieved by Raman spectroscopy. KW - Zwei-Sechs-Halbleiter KW - Halbleiteroberfläche KW - Optische Eigenschaft KW - optisch KW - spektroskopie KW - Halbleiter KW - Oberfläche KW - DFT KW - optical KW - spectroscopy KW - semiconductor KW - surface KW - DFT Y1 - 2003 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-8722 ER - TY - THES A1 - Schömig, Herbert Richard T1 - Nanooptik an breitbandlückigen Halbleiter-Nanostrukturen für die Spintronik und Optoelektronik T1 - Nanooptics on wide-bandgap semiconductor nanostructures for spintronics and optoelectronics N2 - Die vorliegende Arbeit behandelt drei Themen aus der Forschung an nanostrukturierten Halbleitern im Umfeld der Spintronik und Optoelektronik. 1) Einzelne semimagnetische Quantenpunkte Mn-dotierte, und damit semimagnetische Halbleiter zeichnen sich durch eine sp-d-Austauschkopplung zwischen den freien Ladungsträgerspins und den Mn-Spins aus. Für ein optisch injiziertes Exziton bedeutet dies eine Austauschenergie, die sich proportional zur Mn-Magnetisierung im Exzitonvolumen verhält. Lokalisiert man das Exziton in einem Quantenpunkt, so kann man es als Sonde für die Magnetisierung in der Nanoumgebung gebrauchen. Bedingung hierfür ist die spektroskopische Selektion einzelner Quantenpunkte. Die Selektion einzelner CdSe/ZnMnSe-Quantenpunkte konnte realisiert werden durch die lithographische Präparation einer lichtundurchlässigen Metallmaske auf der Probenoberfläche, versehen mit nanoskaligen Aperturen. Die Photolumineszenz(PL)-Emission an diesen Aperturen zeigt individuelle PL-Linien entsprechend einzelner Quantenpunkte. Mittels Magneto-PL-Spektroskopie gelingt es das magnetische Moment einzelner Quantenpunkte von wenigen 10 Bohrmagneton sowie die thermische Fluktuation dieses Moments aufzuklären. Sowohl die Temperatur- als auch die Magnetfeldabhängigkeit der Exziton-Mn-Kopplung werden im Rahmen eines modifizierten Brillouinmodells konsistent beschrieben. 2) Ferromagnet-DMS-Hybride Eine lokale Beeinflussung von Spins im Halbleiter wird möglich durch die Präparation von ferromagnetischen Strukturen auf der Halbleiteroberfläche. Die magnetischen Streufelder, welche von nanostrukturierten Ferromagneten (FM) erzeugt werden, können auf mesoskopischer Längenskala eine Verbiegung der Spinbänder in einem Quantenfilm bewirken. Dies gilt insbesondere für einen semimagnetischen (DMS-)Quantenfilm vom Typ ZnCdMnSe/ZnSe, wie er im vorliegenden Fall Verwendung fand. Aufgrund der Verstärkerfunktion der Mn-Spins liegen hier nämlich riesige effektive g-Faktoren vor, welche im Magnetfeld große Spinaufspaltungen produzieren. Wie magnetostatische Rechnungen für Drahtstrukturen aus ferromagnetischem Dysprosium (Dy) offenlegen, sind bei senkrechter Magnetisierung Streufelder in der Größenordung von 0.1 bis 1 T in der Quantenfilmebene darstellbar. Magneto-PL-Messungen mit hoher Ortsauflösung demonstrieren tatsächlich einen Einfluß der nanostrukturierten Ferromagnete auf die exzitonischen Spinzustände im Quantenfilm und erlauben zudem einen Rückschluß auf die magnetische Charakteristik der FM-Nanostrukturen. 3) Einzelne Lokalisationszentren in InGaN/GaN-Quantenfilmen Die Lokalisation der Ladungsträger in nm-skaligen Materieinseln hat einen erheblichen Einfluss auf die optischen Eigenschaften eines InGaN-Quantenfilmes. Eine detaillierte Aufklärung dieses Effektes erfordert den reproduzierbaren, spektroskopischen Zugang zu einzelnen dieser Lokalisationszentren. Diese Bedingung wurde hier mit der Aufbringung einer Nanoaperturmaske auf der Halbleiteroberfläche erfüllt. PL-Spektren, gemessen an solchen Nanoaperturen bei einer Temperatur von 4 K, weisen tatsächlich einzelne, spektral scharfe Emissionlinien mit Halbwertsbreiten bis hinab zu 0.8 meV auf. Eine solche Einzellinie entspricht dabei der PL-Emission aus in einem einzelnen Lokalisationszentrum, welche an dieser Stelle erstmalig nachgewiesen werden konnte. In den folgenden Experimenten zeigte sich interessanterweise, dass diese Einzellinien gänzlich andere Abhängigkeiten an den Tag legen als das inhomogene PL-Signal eines großen Ensembles von Zentren. Dies ermöglichte eine fundierte Beurteilung bislang kontrovers diskutierter Mechanismen, welche für die PL-Charakteristik von InGaN-Quantenfilmen relevant sind. Als bestimmende Faktoren erwiesen sich das interne Piezofeld, der Bandfülleffekt und die Bildung von Multiexzitonen. N2 - This work treats three topics from the research on nanostructured semiconductors in the field of spintronics and optoelectronics. 1) Single semimagnetic quantum dots Semiconductors doped with Mn, so-called diluted magnetic semiconductors, exhibit an intense sp-d exchange interaction between free carrier spins and localized Mn spins. Due to this coupling an exciton, optically injected into the DMS semiconductor, acquires an exchange energy proportional to the Mn magnetization within the exciton volume. If the exciton localizes in a quantum dot it can be employed as a probe monitoring the magnetization in the nanoenvironment. However, this requires the spectroscopic selection of single quantum dots. In this work single CdSe/ZnMnSe quantum dots could be addressed with the help of an opaque metal mask on top of the semiconductor with nanoapertures prepared by electron lithography. The PL emission from such nanoapertures shows individual PL lines corresponding to single quantum dots. By means of magneto-PL-spectroscopy the magnetic moment of single quantum dots of only some tens of Bohrmagnetons is addressed, including its thermal fluctuations. The temperature as well as magnetic field dependence of the exciton-Mn coupling is consistently described in the frame of a modified Brillouin model. 2) Ferromagnet-DMS-Hybrids A local manipulation of spins in a semiconductor can be realized by a preparation of ferromagnetic structures on the surface of a semiconductor. Magnetic fringe fields, emerging from nanostructured ferromagnets (FM) are capable of bending the spin bands of a buried quantum well on a mesoscopic length scale. This is especially valid for a semimagnetic quantum well like the ZnCdMnSe/ZnSe heterostructure used in the following experiments. Due to the drastic enhancement of the exciton g factor by the coupling to the Mn spins, huge spin splittings become possible. Magnetostatic calculations performed for ferromagnetic dysprosium (Dy) wire structures show, that fringe fields in the range of 0.1 to 1 T can be achieved in a perpendicular magnetization configuration. Magneto-PL measurements with a high spatial resolution actually demonstrate an influence of nanostructured ferromagnets on the excitonic spin bands in the quantum well and even provide some information about the magnetic characteristics of the FM nanoelements. 3) Single localization centers in a InGaN/GaN quantum well The localization of charge carriers in nm-sized islands has a strong influence on the optical properties of InGaN/GaN quantum wells. A detailed analysis of these effects require a reproduceable, spectroscopic access to single localization centers. This prerequisite has been fulfilled by depositing a mask with nanoapertures on the semiconductor surface. PL spectra measured on these nanoapertures at a temperature of 4 K reveal individual, spectrally narrow emission lines with a halfwidth down to 0.8 meV. Such a single PL line can be attributed to the emission from a single localization center. The optical access to single centers has been demonstrated here for the first time. As the following experiments showed, there is a profound difference between the behavior of such single PL lines and the inhomogenous PL signal from a large ensemble of centers. This gives a clear picture of the impact of some mechanisms relevant for the PL characteristics of InGaN quantum films, that have been the subject of a controversial debate. The most influential factors are the internal piezo electric field, the bandfilling effect and the formation of multiexcitons. KW - Cadmiumselenid KW - Zinkselenid KW - Manganselenide KW - Semimagnetischer Halbleiter KW - Quantenpunkt KW - Halbleiteroberfläche KW - Ferromagnetische Schicht KW - Nanostruktur KW - Spin KW - Indiumnitrid KW - Galliumnitrid KW - Ferromagnete KW - Photolumineszenz KW - Quantum dots KW - semimagnetic semiconductors Y1 - 2004 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-126558 N1 - Dieses Dokument wurde aus Datenschutzgründen - ohne inhaltliche Änderungen - erneut veröffentlicht. Die ursprüngliche Veröffentlichung war am: 22.10.2005 ER - TY - THES A1 - Schömig, Herbert Richard T1 - Nanooptik an breitbandlückigen Halbleiter-Nanostrukturen für die Spintronik und Optoelektronik T1 - Nanooptics on wide-bandgap semiconductor nanostructures for spintronics and optoelectronics N2 - Die vorliegende Arbeit behandelt drei Themen aus der Forschung an nanostrukturierten Halbleitern im Umfeld der Spintronik und Optoelektronik. 1) Einzelne semimagnetische Quantenpunkte Mn-dotierte, und damit semimagnetische Halbleiter zeichnen sich durch eine sp-d-Austauschkopplung zwischen den freien Ladungsträgerspins und den Mn-Spins aus. Für ein optisch injiziertes Exziton bedeutet dies eine Austauschenergie, die sich proportional zur Mn-Magnetisierung im Exzitonvolumen verhält. Lokalisiert man das Exziton in einem Quantenpunkt, so kann man es als Sonde für die Magnetisierung in der Nanoumgebung gebrauchen. Bedingung hierfür ist die spektroskopische Selektion einzelner Quantenpunkte. Die Selektion einzelner CdSe/ZnMnSe-Quantenpunkte konnte realisiert werden durch die lithographische Präparation einer lichtundurchlässigen Metallmaske auf der Probenoberfläche, versehen mit nanoskaligen Aperturen. Die Photolumineszenz(PL)-Emission an diesen Aperturen zeigt individuelle PL-Linien entsprechend einzelner Quantenpunkte. Mittels Magneto-PL-Spektroskopie gelingt es das magnetische Moment einzelner Quantenpunkte von wenigen 10 Bohrmagneton sowie die thermische Fluktuation dieses Moments aufzuklären. Sowohl die Temperatur- als auch die Magnetfeldabhängigkeit der Exziton-Mn-Kopplung werden im Rahmen eines modifizierten Brillouinmodells konsistent beschrieben. 2) Ferromagnet-DMS-Hybride Eine lokale Beeinflussung von Spins im Halbleiter wird möglich durch die Präparation von ferromagnetischen Strukturen auf der Halbleiteroberfläche. Die magnetischen Streufelder, welche von nanostrukturierten Ferromagneten (FM) erzeugt werden, können auf mesoskopischer Längenskala eine Verbiegung der Spinbänder in einem Quantenfilm bewirken. Dies gilt insbesondere für einen semimagnetischen (DMS-)Quantenfilm vom Typ ZnCdMnSe/ZnSe, wie er im vorliegenden Fall Verwendung fand. Aufgrund der Verstärkerfunktion der Mn-Spins liegen hier nämlich riesige effektive g-Faktoren vor, welche im Magnetfeld große Spinaufspaltungen produzieren. Wie magnetostatische Rechnungen für Drahtstrukturen aus ferromagnetischem Dysprosium (Dy) offenlegen, sind bei senkrechter Magnetisierung Streufelder in der Größenordung von 0.1 bis 1 T in der Quantenfilmebene darstellbar. Magneto-PL-Messungen mit hoher Ortsauflösung demonstrieren tatsächlich einen Einfluß der nanostrukturierten Ferromagnete auf die exzitonischen Spinzustände im Quantenfilm und erlauben zudem einen Rückschluß auf die magnetische Charakteristik der FM-Nanostrukturen. 3) Einzelne Lokalisationszentren in InGaN/GaN-Quantenfilmen Die Lokalisation der Ladungsträger in nm-skaligen Materieinseln hat einen erheblichen Einfluss auf die optischen Eigenschaften eines InGaN-Quantenfilmes. Eine detaillierte Aufklärung dieses Effektes erfordert den reproduzierbaren, spektroskopischen Zugang zu einzelnen dieser Lokalisationszentren. Diese Bedingung wurde hier mit der Aufbringung einer Nanoaperturmaske auf der Halbleiteroberfläche erfüllt. PL-Spektren, gemessen an solchen Nanoaperturen bei einer Temperatur von 4 K, weisen tatsächlich einzelne, spektral scharfe Emissionlinien mit Halbwertsbreiten bis hinab zu 0.8 meV auf. Eine solche Einzellinie entspricht dabei der PL-Emission aus in einem einzelnen Lokalisationszentrum, welche an dieser Stelle erstmalig nachgewiesen werden konnte. In den folgenden Experimenten zeigte sich interessanterweise, dass diese Einzellinien gänzlich andere Abhängigkeiten an den Tag legen als das inhomogene PL-Signal eines großen Ensembles von Zentren. Dies ermöglichte eine fundierte Beurteilung bislang kontrovers diskutierter Mechanismen, welche für die PL-Charakteristik von InGaN-Quantenfilmen relevant sind. Als bestimmende Faktoren erwiesen sich das interne Piezofeld, der Bandfülleffekt und die Bildung von Multiexzitonen. N2 - This work treats three topics from the research on nanostructured semiconductors in the field of spintronics and optoelectronics. 1) Single semimagnetic quantum dots Semiconductors doped with Mn, so-called diluted magnetic semiconductors, exhibit an intense sp-d exchange interaction between free carrier spins and localized Mn spins. Due to this coupling an exciton, optically injected into the DMS semiconductor, acquires an exchange energy proportional to the Mn magnetization within the exciton volume. If the exciton localizes in a quantum dot it can be employed as a probe monitoring the magnetization in the nanoenvironment. However, this requires the spectroscopic selection of single quantum dots. In this work single CdSe/ZnMnSe quantum dots could be addressed with the help of an opaque metal mask on top of the semiconductor with nanoapertures prepared by electron lithography. The PL emission from such nanoapertures shows individual PL lines corresponding to single quantum dots. By means of magneto-PL-spectroscopy the magnetic moment of single quantum dots of only some tens of Bohrmagnetons is addressed, including its thermal fluctuations. The temperature as well as magnetic field dependence of the exciton-Mn coupling is consistently described in the frame of a modified Brillouin model. 2) Ferromagnet-DMS-Hybrids A local manipulation of spins in a semiconductor can be realized by a preparation of ferromagnetic structures on the surface of a semiconductor. Magnetic fringe fields, emerging from nanostructured ferromagnets (FM) are capable of bending the spin bands of a buried quantum well on a mesoscopic length scale. This is especially valid for a semimagnetic quantum well like the ZnCdMnSe/ZnSe heterostructure used in the following experiments. Due to the drastic enhancement of the exciton g factor by the coupling to the Mn spins, huge spin splittings become possible. Magnetostatic calculations performed for ferromagnetic dysprosium (Dy) wire structures show, that fringe fields in the range of 0.1 to 1 T can be achieved in a perpendicular magnetization configuration. Magneto-PL measurements with a high spatial resolution actually demonstrate an influence of nanostructured ferromagnets on the excitonic spin bands in the quantum well and even provide some information about the magnetic characteristics of the FM nanoelements. 3) Single localization centers in a InGaN/GaN quantum well The localization of charge carriers in nm-sized islands has a strong influence on the optical properties of InGaN/GaN quantum wells. A detailed analysis of these effects require a reproduceable, spectroscopic access to single localization centers. This prerequisite has been fulfilled by depositing a mask with nanoapertures on the semiconductor surface. PL spectra measured on these nanoapertures at a temperature of 4 K reveal individual, spectrally narrow emission lines with a halfwidth down to 0.8 meV. Such a single PL line can be attributed to the emission from a single localization center. The optical access to single centers has been demonstrated here for the first time. As the following experiments showed, there is a profound difference between the behavior of such single PL lines and the inhomogenous PL signal from a large ensemble of centers. This gives a clear picture of the impact of some mechanisms relevant for the PL characteristics of InGaN quantum films, that have been the subject of a controversial debate. The most influential factors are the internal piezo electric field, the bandfilling effect and the formation of multiexcitons. KW - Cadmiumselenid KW - Zinkselenid KW - Manganselenide KW - Semimagnetischer Halbleiter KW - Quantenpunkt KW - Halbleiteroberfläche KW - Ferromagnetische Schicht KW - Nanostruktur KW - Spin KW - Indiumnitrid KW - Galliumnitrid KW - Ferromagnete KW - Photolumineszenz KW - Quantum dots KW - semimagnetic semiconductors KW - gallium nitride KW - ferromagnets KW - photoluminescence Y1 - 2004 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-15188 N1 - Aus datenschutzrechtlichen Gründen wurde der Zugriff auf den Volltext zu diesem Dokument gesperrt. Eine inhaltlich identische neue Version ist erhältlich unter: http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-126558 ER - TY - THES A1 - Meyer, Sebastian T1 - Model System for Correlation Phenomena in Reduced Dimensions - Gold-induced Atomic Chains on Germanium T1 - Modellsystem für Korrelationsphänomene in niedrigen Dimensionen - Gold-induzierte Atomketten auf Germanium N2 - Atomic chains, often called nanowires, form in a self-organized process after the adsorption of metal atoms. These wires are spatially well confined representing a close approach of a true one-dimensional structure. The low-dimensional architecture thereby often leads to anisotropic electronic states with vanishing interchain interaction. In the presence of weak coupling to the substrate a one-dimensional metal can experience a phase transition according to Peierls into an insulating ground state upon temperature, which is accompanied by a periodic lattice distortion. Without any coupling a strict onedimensional regime is reached, where the common Fermi liquid description breaks down with the quasi-particles being replaced by collective excitations of spin and charge. This state is referred to as a Tomonaga-Luttinger liquid (TLL), which has been observed so far only in anisotropic bulk materials. An experimental fingerprint for both phenomena can be obtained from the electronic states close to the chemical potential, i.e. the Fermi energy. Using a semiconducting substrate provides the best observation conditions since any bulk projection onto the interesting bands is avoided. In case of Au/Ge(001) the growth of gold-induced chains is guided by the dimerized bare Ge (2×1) reconstruction yielding two different domains of wires rotated by 90° going from one terrace to the next by a single height step. The superior wetting capabilities of gold on germanium enables a complete coverage of the Ge(001) surface with longrange ordered wires. Their length scale and defect density is limited by the underlying substrate, for which a cleaning procedure is introduced based on wet-chemical etching followed by thermal dry oxidation. The band structure of Au/Ge(001) is investigated by angle-resolved photoelectron spectroscopy as a function of temperature. Two states are observed: a two-dimensional metallic state with hole-like dispersion and a one-dimensional electron pocket, whose band-integrated spectral function does not show the typical Fermi distribution at the chemical potential. Instead, a decrease of spectral weight applies following a power-law. This behavior can be well explained within the Tomonaga-Luttinger liquid theory which replaces the Fermi-Landau formalism in strictly one-dimensional systems. To enable theoretical modeling, a structural analysis was performed on the basis of surface x-ray diffraction (SXRD). From the in-plane scattering data a Patterson-map could be extracted leading to in-plane distances between gold atoms in the unit cell. This provides the first step towards a complete structural model and therefore towards a band structure calculation. First successful attempts have been made to manipulate the system by controlled adsorption of potassium. Here, an n-type doping effect is observed for submonolayer coverage whereas slightly increased coverages in combination with thermal energy lead to a new surface reconstruction. N2 - Atomare Ketten, sogenannte Nano-Drähte, entstehen durch Selbstorganisation adsorbierter Metallatome auf einer Halbleiteroberfläche. Aufgrund der starken räumlichen Einschränkung der Ladungsträger innerhalb dieser Ketten entsteht dabei oftmals eine metallische Bandstruktur mit starker Anisotropie. Im Falle phononischer Ankopplung an das Substrat kann so ein eindimensionales (1D) Metall instabil gegen eine periodische Gitterverzerrung werden, bei der es zu einer Ausbildung einer Energielücke kommt. Dieser Metall-Isolator-Übergang wird dabei als Peierls Übergang bezeichnet. Für verschwindend geringe Kopplung der Ketten untereinander bzw. an das Substrat, d.h. im strikt eindimensionalen Fall, bricht das Fermi Flüssigkeitsmodell für dreidimensionale (3D) Metalle zusammen. Dessen Quasiteilchen werden durch kollektive Anregungen von Spin und Ladung ersetzt. Diesen Zustand bezeichnet man als Tomonaga-Luttinger Flüssigkeit. Beide Phänomene, Peierlsübergang und Tomonaga-Luttinger Flüssigkeit lassen sich anhand der elektronischen Bandstruktur experimentell nachweisen. Bei dem hier untersuchten Probensystem handelt es sich um Gold-induzierte Nandrähte auf der Germanium (001)-Oberfläche, kurz Au/Ge(001). Deren Wachstum erfolgt epitaktisch entlang der durch das Substrat vorgegebenen Dimer-Reihen, welche die freie Germaniumoberfläche in Form einer (2×1)-Symmetrie einnimmt. Die abwechselnde Stapelfolge ABAB des Substrates führt dabei zu zwei unterschiedlichen Drahtrichtungen, die jeweils um 90° zueinander gedreht sind, wenn man eine Einfachstufe von 1.4 A von einer A-Terrasse auf eine B-Terrasse oder umgekehrt geht. Die vorherrschende Kinetik während der Gold-Deposition bzw. das Benetzungsverhalten ermöglicht dabei eine vollständige Bedeckung der vormals freien Oberfläche mit Nanodrähten, deren Abmessungen einzig und allein durch Defekte bzw. die Größe der darunterliegenden Ge-Terrasse begrenzt sind. Um die Längenskala der Subtrat-Terrassen zu optimieren, wurde eine Reinigungsprozedur für Ge (001) entwickelt, bei der nass-chemisches Ätzen mit anschliessender Trocken-Oxidation zum Einsatz kommt. Die darauf aufbauenden Nanodrähte wurden im Anschluss mittels winkelaufgelöster Photoelektronenspektroskopie auf ihre elektronische Bandstruktur untersucht. Dabei wurden zwei neuartige Zustände beobachtet: ein metallischer, zweidimensionaler Loch-Zustand, der seinen Ursprung höchstwahrscheinlich in tieferen Schichten des Germaniums hat; und ein eindimensionaler Oberflächenzustand mit elektronenartiger Dispersion, dessen bandintegrierte Spektralfunktion von der einer Fermiflüssigkeit abweicht. Stattdessen wird ein exponentieller Abfall des spektralen Gewichtes als Funktion der Energie zum Ferminiveau hin beobachtet. Dieses Verhalten kann über einen weiten Temperaturbereich beobachtet werden und lässt sich mit der Tomonaga-Luttinger Flüssigkeit für strikt eindimensionale Systeme erklären. Zum weiteren theoretischen Verständnis dieses Phänomes, beispielsweise durch Bandstrukuturrechnungen mittels Dichte-Funktional-Theorie, bedarf es der genauen Kenntnis der atomaren Struktur dieser Ketten. Selbige wurde mittels Oberflächenröntgenbeugung (engl. surface x-ray diffraction, SXRD) untersucht. Auf Basis der gewonnenen Patterson-Karte lassen sich Rückschlüsse auf die interatomaren Abstände der Goldatome untereinander in der Einheitszelle ziehen. Dies stellt einen ersten wichtigen Schritt auf dem Weg zu einem vollständigen Strukturmodell dar. Darüber hinaus wurden erste vielversprechende Schritte unternommen, das Nanodrahtsystem kontrolliert zu manipulieren. Durch geringfügige, zusätzliche Deposition von Kalium konnte dabei eine schrittweise Erhöhung der Bandfüllung erzielt werden. Für weitergehende Kaliumanlagerungen im (Sub-)Monolagenbereich konnte sogar eine neue Rekonstruktion erzielt werden. KW - Nanodraht KW - Germanium KW - Gold KW - Elektronenflüssigkeit KW - winkelaufgelöste Photoelektronenspektroskopie KW - Self-assembly KW - Onedimensional KW - Luttinger liquid KW - angle-resolved photoemission KW - Adsorbat KW - Halbleiteroberfläche KW - Luttinger-Flüssigkeit KW - Oberflächenphysik KW - Nanowire Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-77723 ER - TY - THES A1 - Höpfner, Philipp Alexander T1 - Two-Dimensional Electron Systems at Surfaces — Spin-Orbit Interaction and Electronic Correlations T1 - Zweidimensionale Elektronensysteme auf Oberflächen — Spin-Bahn Wechselwirkung und elektronische Korrelationen N2 - This thesis addresses three different realizations of a truly two-dimensional electron system (2DES), established at the surface of elemental semiconductors, i.e., Pt/Si(111), Au/Ge(111), and Sn/Si(111). Characteristic features of atomic structures at surfaces have been studied using scanning tunneling microscopy and low energy electron diffraction with special emphasis on Pt deposition onto Si(111). Topographic inspection reveals that Pt atoms agglomerate as trimers, which represent the structural building block of phase-slip domains. Surprisingly, each trimer is rotated by 30° with respect to the substrate, which results in an unexpected symmetry breaking. In turn, this represents a unique example of a chiral structure at a semiconductor surface, and marks Pt/Si(111) as a promising candidate for catalytic processes at the atomic scale. Spin-orbit interactions (SOIs) play a significant role at surfaces involving heavy adatoms. As a result, a lift of the spin degeneracy in the electronic states, termed as Rashba effect, may be observed. A candidate system to exhibit such physics is Au/Ge(111). Its large hexagonal Fermi sheet is suggested to be spin-split by calculations within the density functional theory. Experimental clarification is obtained by exploiting the unique capabilities of three-dimensional spin detection in spin- and angle-resolved photoelectron spectroscopy. Besides verification of the spin splitting, the in-plane components of the spin are shown to possess helical character, while also a prominent rotation out of this plane is observed along straight sections of the Fermi surface. Surprisingly and for the first time in a 2DES, additional in-plane rotations of the spin are revealed close to high symmetry directions. This complex spin pattern must originate from crystalline anisotropies, and it is best described by augmenting the original Rashba model with higher order Dresselhaus-like SOI terms. The alternative use of group-IV adatoms at a significantly reduced coverage drastically changes the basic properties of a 2DES. Electron localization is strongly enhanced, and the ground state characteristics will be dominated by correlation effects then. Sn/Si(111) is scrutinized with this regard. It serves as an ideal realization of a triangular lattice, that inherently suffers from spin frustration. Consequently, long-range magnetic order is prohibited, and the ground state is assumed to be either a spiral antiferromagnetic (AFM) insulator or a spin liquid. Here, the single-particle spectral function is utilized as a fundamental quantity to address the complex interplay of geometric frustration and electronic correlations. In particular, this is achieved by combining the complementary strengths of ab initio local density approximation (LDA) calculations, state-of-the-art angle-resolved photoelectron spectroscopy, and the sophisticated many-body LDA+DCA. In this way, the evolution of a shadow band and a band backfolding incompatible with a spiral AFM order are unveiled. Moreover, beyond nearest-neighbor hopping processes are crucial here, and the spectral features must be attributed to a collinear AFM ground state, contrary to common expectation for a frustrated spin lattice. N2 - In der vorliegenden Arbeit werden drei unterschiedliche Beispiele für ein zweidimensionales Elektronensystem (2DES) auf der Oberfläche von Elementhalbleitern behandelt: Pt/Si(111), Au/Ge(111) und Sn/Si(111). Atomare Strukturen und deren spezielle Merkmale wurden mit Rastertunnelmikroskopie (STM) und Elektronenbeugung (LEED) untersucht, wobei ein Schwerpunkt die Abscheidung von Pt auf Si(111) war. Hervorzuheben ist hier die Anordnung von Pt Atomen als Trimere, die das Grundgerüst phasenverschobener Domänen bilden. Interessanterweise sind die Trimere um 30° gegenüber dem Substrat verdreht, was einen unerwarteten Symmetriebruch bedeutet. Daher stellt Pt/Si(111) ein einzigartiges Beispiel einer chiralen Struktur auf Halbleitern dar und könnte außerdem für katalytische Prozesse im atomaren Bereich interessant sein. Die Spin-Bahn Wechselwirkung ist auf Oberflächen, die schwere Elemente enthalten, von großer Bedeutung. Hier kann die Spin-Entartung in den elektronischen Zuständen aufgehoben sein, was als Rashba-Effekt bekannt ist. Rechnungen mittels Dichtefunktionaltheorie (DFT) zeigen, dass eine solche Aufspaltung in der hexagonalen Fermi-Fläche von Au/Ge(111) existiert. Experimentell wurde dies mit dreidimensionaler spin- und winkelaufgelöster Photoelektronenspektroskopie bestätigt. Dabei folgt die planare Spin-Komponente einem kreisförmigen Umlaufsinn, während zudem eine starke Aufrichtung des Spins aus der Ebene hinaus entlang gerader Abschnitte der Fermi-Fläche auftritt. Hierbei wurden zum ersten Mal in einem 2DES zusätzliche Rotationen des planaren Spinanteils in der Oberflächenebene nahe von Hochsymmetrierichtungen nachgewiesen. Dieses komplexe Spin-Muster resultiert aus den kristallinen Anisotropien und kann exzellent modelliert werden, indem das Rashba-Modell um Dresselhaus-artige Spin-Bahn Terme höherer Ordnung erweitert wird. Die alternative Verwendung von Gruppe-IV Adatomen bei einer geringeren Bedeckung ändert die Eigenschaften eines 2DES deutlich. Kennzeichnend sind eine verstärkte Ladungsträger-Lokalisierung und ein von Korrelationen bestimmter Grundzustand. Dabei stellt Sn/Si(111) ein Modell-System dar, das zudem ein spin-frustriertes Dreiecksgitter bildet. In einem solchen fehlt üblicherweise die langreichweitige magnetische Ordnung und der Grundzustand ist entweder ein isolierender spiralförmiger Antiferromagnet (AF) oder eine Spin-Flüssigkeit. Zur Analyse des Wechselspiels von geometrischer Frustration und elektronischen Korrelationen dient die Ein-Teilchen Spektralfunktion als Basisgröße. Dazu wurden die sich ergänzenden Stärken von Bandstruktur-Rechnungen in der lokalen Dichtenäherung (LDA), winkelaufgelöster Photoelektronenspektroskopie und Viel-Teilchen Modellen (hier LDA+DCA) kombiniert. Dabei wurde die Existenz eines Schattenbandes und einer Bandrückfaltung nachgewiesen, wobei letztere einen spiralförmigen AF als Grundzustand ausschließt. Vielmehr sind Hüpfprozesse über den nächsten Nachbarn im Gitter hinaus relevant und die spektralen Merkmale sind, trotz der Spin-Frustration, durch einen langreichweitigen kollinearen AF als Grundzustand erklärbar. KW - Halbleiteroberfläche KW - Elektronengas KW - Dimension 2 KW - scanning tunneling microscopy KW - photoelectron spectroscopy KW - triangular lattice KW - Rashba effect KW - spin-orbit coupling KW - metal-to-insulator transition KW - Rastertunnelmikroskop KW - Photoelektronenspektroskopie KW - Dreiecksgitter KW - Rashba-Effekt KW - Spin-Bahn-Wechselwirkung KW - Metall-Isolator-Phasenumwandlung Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-78876 ER -