TY - JOUR A1 - Frey, Anna A1 - Popp, Sandy A1 - Post, Antonia A1 - Langer, Simon A1 - Lehmann, Marc A1 - Hofmann, Ulrich A1 - Siren, Anna-Leena A1 - Hommers, Leif A1 - Schmitt, Angelika A1 - Strekalova, Tatyana A1 - Ertl, Georg A1 - Lesch, Klaus-Peter A1 - Frantz, Stefan T1 - Experimental heart failure causes depression-like behavior together with differential regulation of inflammatory and structural genes in the brain JF - Frontiers in Behavioral Neuroscience N2 - Background: Depression and anxiety are common and independent outcome predictors in patients with chronic heart failure (CHF). However, it is unclear whether CHF causes depression. Thus, we investigated whether mice develop anxiety- and depression-like behavior after induction of ischemic CHF by myocardial infarction (MI). Methods and Results: In order to assess depression-like behavior, anhedonia was investigated by repeatedly testing sucrose preference for 8 weeks after coronary artery ligation or sham operation. Mice with large MI and increased left ventricular dimensions on echocardiography (termed CHF mice) showed reduced preference for sucrose, indicating depression-like behavior. 6 weeks after MI, mice were tested for exploratory activity, anxiety-like behavior and cognitive function using the elevated plus maze (EPM), light-dark box (LDB), open field (OF), and object recognition (OR) tests. In the EPM and OF, CHF mice exhibited diminished exploratory behavior and motivation despite similar movement capability. In the OR, CHF mice had reduced preference for novelty and impaired short-term memory. On histology, CHF mice had unaltered overall cerebral morphology. However, analysis of gene expression by RNA-sequencing in prefrontal cortical, hippocampal, and left ventricular tissue revealed changes in genes related to inflammation and cofactors of neuronal signal transduction in CHF mice, with Nr4a1 being dysregulated both in prefrontal cortex and myocardium after MI. Conclusions: After induction of ischemic CHF, mice exhibited anhedonic behavior, decreased exploratory activity and interest in novelty, and cognitive impairment. Thus, ischemic CHF leads to distinct behavioral changes in mice analogous to symptoms observed in humans with CHF and comorbid depression. KW - chronic heart failure KW - myocardial infarction KW - anxiety KW - depression KW - mice Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-118234 SN - 1662-5153 VL - 8 ER - TY - JOUR A1 - de Munter, Johannes A1 - Pavlov, Dmitrii A1 - Gorlova, Anna A1 - Sicker, Michael A1 - Proshin, Andrey A1 - Kalueff, Allan V. A1 - Svistunov, Andrey A1 - Kiselev, Daniel A1 - Nedorubov, Andrey A1 - Morozov, Sergey A1 - Umriukhin, Aleksei A1 - Lesch, Klaus-Peter A1 - Strekalova, Tatyana A1 - Schroeter, Careen A. T1 - Increased Oxidative Stress in the Prefrontal Cortex as a Shared Feature of Depressive- and PTSD-Like Syndromes: Effects of a Standardized Herbal Antioxidant JF - Frontiers in Nutrition N2 - Major depression (MD) and posttraumatic stress disorder (PTSD) share common brain mechanisms and treatment strategies. Nowadays, the dramatically developing COVID-19 situation unavoidably results in stress, psychological trauma, and high incidence of MD and PTSD. Hence, the importance of the development of new treatments for these disorders cannot be overstated. Herbal medicine appears to be an effective and safe treatment with fewer side effects than classic pharmaca and that is affordable in low-income countries. Currently, oxidative stress and neuroinflammation attract increasing attention as important mechanisms of MD and PTSD. We investigated the effects of a standardized herbal cocktail (SHC), an extract of clove, bell pepper, basil, pomegranate, nettle, and other plants, that was designed as an antioxidant treatment in mouse models of MD and PTSD. In the MD model of “emotional” ultrasound stress (US), mice were subjected to ultrasound frequencies of 16–20 kHz, mimicking rodent sounds of anxiety/despair and “neutral” frequencies of 25–45 kHz, for three weeks and concomitantly treated with SHC. US-exposed mice showed elevated concentrations of oxidative stress markers malondialdehyde and protein carbonyl, increased gene and protein expression of pro-inflammatory cytokines interleukin (IL)-1β and IL-6 and other molecular changes in the prefrontal cortex as well as weight loss, helplessness, anxiety-like behavior, and neophobia that were ameliorated by the SHC treatment. In the PTSD model of the modified forced swim test (modFST), in which a 2-day swim is followed by an additional swim on day 5, mice were pretreated with SHC for 16 days. Increases in the floating behavior and oxidative stress markers malondialdehyde and protein carbonyl in the prefrontal cortex of modFST-mice were prevented by the administration of SHC. Chromatography mass spectrometry revealed bioactive constituents of SHC, including D-ribofuranose, beta-D-lactose, malic, glyceric, and citric acids that can modulate oxidative stress, immunity, and gut and microbiome functions and, thus, are likely to be active antistress elements underlying the beneficial effects of SHC. Significant correlations of malondialdehyde concentration in the prefrontal cortex with altered measures of behavioral despair and anxiety-like behavior suggest that the accumulation of oxidative stress markers are a common biological feature of MD and PTSD that can be equally effectively targeted therapeutically with antioxidant therapy, such as the SHC investigated here. KW - antioxidant nutrients KW - oxidative stress KW - depression KW - post-traumatic stress disorder KW - pro-inflammatory cytokines KW - prefrontal cortex KW - forced swimming KW - mice Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-236326 SN - 2296-861X VL - 8 ER - TY - JOUR A1 - Gutknecht, Lise A1 - Popp, Sandy A1 - Waider, Jonas A1 - Sommerlandt, Frank M. J. A1 - Göppner, Corinna A1 - Post, Antonia A1 - Reif, Andreas A1 - van den Hove, Daniel A1 - Strekalova, Tatyana A1 - Schmitt, Angelika A1 - Colaςo, Maria B. N. A1 - Sommer, Claudia A1 - Palme, Rupert A1 - Lesch, Klaus-Peter T1 - Interaction of brain 5-HT synthesis deficiency, chronic stress and sex differentially impact emotional behavior in Tph2 knockout mice JF - Psychopharmacology N2 - Rationale While brain serotonin (5-HT) function is implicated in gene-by-environment interaction (GxE) impacting the vulnerability-resilience continuum in neuropsychiatric disorders, it remains elusive how the interplay of altered 5-HT synthesis and environmental stressors is linked to failure in emotion regulation. Objective Here, we investigated the effect of constitutively impaired 5-HT synthesis on behavioral and neuroendocrine responses to unpredictable chronic mild stress (CMS) using a mouse model of brain 5-HT deficiency resulting from targeted inactivation of the tryptophan hydroxylase-2 (Tph2) gene. Results Locomotor activity and anxiety- and depression-like behavior as well as conditioned fear responses were differentially affected by Tph2 genotype, sex, and CMS. Tph2 null mutants (Tph2\(^{−/−}\)) displayed increased general metabolism, marginally reduced anxiety- and depression-like behavior but strikingly increased conditioned fear responses. Behavioral modifications were associated with sex-specific hypothalamic-pituitary-adrenocortical (HPA) system alterations as indicated by plasma corticosterone and fecal corticosterone metabolite concentrations. Tph2\(^{−/−}\) males displayed increased impulsivity and high aggressiveness. Tph2\(^{−/−}\) females displayed greater emotional reactivity to aversive conditions as reflected by changes in behaviors at baseline including increased freezing and decreased locomotion in novel environments. However, both Tph2\(^{−/−}\) male and female mice were resilient to CMS-induced hyperlocomotion, while CMS intensified conditioned fear responses in a GxE-dependent manner. Conclusions Our results indicate that 5-HT mediates behavioral responses to environmental adversity by facilitating the encoding of stress effects leading to increased vulnerability for negative emotionality. KW - Serotonin KW - Tryptophan hydroxylase-2 (Tph2) KW - chronic stress KW - gene-by-environment interaction KW - anxiety KW - fear KW - depression KW - aggression Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-154586 VL - 232 SP - 2429 EP - 2441 ER -