TY - JOUR A1 - Lee, Chang-Min A1 - Lim, Hee-Jin A1 - Schneider, Christian A1 - Maier, Sebastian A1 - Höfling, Sven A1 - Kamp, Martin A1 - Lee, Yong-Hee T1 - Efficient single photon source based on \(\mu\)-fibre-coupled tunable microcavity JF - Scientific Reports N2 - Efficient and fast on-demand single photon sources have been sought after as critical components of quantum information science. We report an efficient and tunable single photon source based on an InAs quantum dot (QD) embedded in a photonic crystal cavity coupled with a highly curved \(\mu\)-fibre. Exploiting evanescent coupling between the \(\mu\)-fibre and the cavity, a high collection efficiency of 23% and Purcell-enhanced spontaneous emissions are observed. In our scheme, the spectral position of a resonance can be tuned by as much as 1.5 nm by adjusting the contact position of the \(\mu\)-fibre, which increases the spectral coupling probability between the QD and the cavity mode. Taking advantage of the high photon count rate and the tunability, the collection efficiencies and the decay rates are systematically investigated as a function of the QD-cavity detuning. KW - tapers KW - semiconductor quantum dots KW - crystal KW - nanowire KW - generation KW - nanoactivity KW - mode KW - emission Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-145835 VL - 5 IS - 14309 ER - TY - JOUR A1 - Schatton, Tobias A1 - Yang, Jun A1 - Kleffel, Sonja A1 - Uehara, Mayuko A1 - Barthel, Steven R. A1 - Schlapbach, Christoph A1 - Zhan, Qian A1 - Dudeney, Stephen A1 - Mueller, Hansgeorg A1 - Lee, Nayoung A1 - de Vries, Juliane C. A1 - Meier, Barbara A1 - Beken, Seppe Vander A1 - Kluth, Mark A. A1 - Ganss, Christoph A1 - Sharpe, Arlene H. A1 - Waaga-Gasser, Ana Maria A1 - Sayegh, Mohamed H. A1 - Abdi, Reza A1 - Scharffetter-Kochanek, Karin A1 - Murphy, George F. A1 - Kupper, Thomas S. A1 - Frank, Natasha Y. A1 - Frank, Markus H. T1 - ABCB5 Identifies Immunoregulatory Dermal Cells JF - Cell Reports N2 - Cell-based strategies represent a new frontier in the treatment of immune-mediated disorders. However, the paucity of markers for isolation of molecularly defined immunomodulatory cell populations poses a barrier to this field. Here, we show that ATP-binding cassette member B5 (ABCB5) identifies dermal immunoregulatory cells (DIRCs) capable of exerting therapeutic immunoregulatory functions through engagement of programmed cell death 1 (PD-1). Purified Abcb5\(^+\) DIRCs suppressed T cell proliferation, evaded immune rejection, homed to recipient immune tissues, and induced Tregs in vivo. In fully major-histocompatibility-complex-mismatched cardiac allotransplantation models, allogeneic DIRCs significantly prolonged allograft survival. Blockade of DIRC-expressed PD-1 reversed the inhibitory effects of DIRCs on T cell activation, inhibited DIRC-dependent Treg induction, and attenuated DIRC-induced prolongation of cardiac allograft survival, indicating that DIRC immunoregulatory function is mediated, at least in part, through PD-1. Our results identify ABCB5\(^+\) DIRCs as a distinct immunoregulatory cell population and suggest promising roles of this expandable cell subset in cellular immunotherapy. KW - mesenchymal stem cells KW - P-glycoprotein KW - regulatory T cells KW - maintain immune homeostasis KW - malignant melanoma KW - in vivo KW - skin KW - generation KW - transplant KW - tolerance Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-149989 VL - 12 SP - 1564 EP - 1574 ER - TY - JOUR A1 - Yu, Leo A1 - Natarajan, Chandra M. A1 - Horikiri, Tomoyuki A1 - Langrock, Carsten A1 - Pelc, Jason S. A1 - Tanner, Michael G. A1 - Abe, Eisuke A1 - Maier, Sebastian A1 - Schneider, Christian A1 - Höfling, Sven A1 - Kamp, Martin A1 - Hadfield, Robert H. A1 - Fejer, Martin M. A1 - Yamamoto, Yoshihisa T1 - Two-photon interference at telecom wavelengths for time-bin-encoded single photons from quantum-dot spin qubits JF - Nature Communications N2 - Practical quantum communication between remote quantum memories rely on single photons at telecom wavelengths. Although spin-photon entanglement has been demonstrated in atomic and solid-state qubit systems, the produced single photons at short wavelengths and with polarization encoding are not suitable for long-distance communication, because they suffer from high propagation loss and depolarization in optical fibres. Establishing entanglement between remote quantum nodes would further require the photons generated from separate nodes to be indistinguishable. Here, we report the observation of correlations between a quantum-dot spin and a telecom single photon across a 2-km fibre channel based on time-bin encoding and background-free frequency downconversion. The downconverted photon at telecom wavelengths exhibits two-photon interference with another photon from an independent source, achieving a mean wavepacket overlap of greater than 0.89 despite their original wavelength mismatch (900 and 911 nm). The quantum-networking operations that we demonstrate will enable practical communication between solid-state spin qubits across long distances. KW - atom KW - 1550 nm KW - up-conversion KW - heralded entanglement KW - emission KW - interface KW - generation KW - communication KW - downconversion Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-138677 VL - 6 ER -