TY - THES A1 - Dem, Claudiu Dorin T1 - Design and construction of a device for light scattering studies on airborne particles T1 - Entwurf und Aufbau von ainem Aerosolanalysegerät N2 - This thesis is concerned with the development of an on-line in-situ device for a chemical characterisation of flowing aerosols. The thesis describes the principles and most important features of such a system, allowing also on-line measurements using Raman spectroscopy as a diagnostic technique An analysis of the effect of forced oscillations on the motion of the particle dispersed in a gas flow is given in Chapter 2. Also the most important particle parameters are introduced. A review of the particle/fluid interaction in laminar air flows and the response of the particle is presented. In Chapter 3 the behaviour of the particle under different external conditions (ion bombardment and electric fields) is extended. A brief review of the most important particle charging theories (diffusion, field, and alternating potential charging) shows, that the effect of the electrical properties (represented by the dielectric constant) of the particles affects the charging process. A non-contact method for particle charge measurement was also presented. In the second part of the chapter, the interaction between the electric field and the charged particle for the purpose of particle trapping is illustrated. The most common systems like the two or four ring electrodynamic balance and the quadrupole trap are pointed out. In Chapter 4 a short review of the possibility of using scattered light to study aerosol particles is presented. First, the conditions and the facilities of using the Mie theory for particle size and refractive index determination are mentioned, then some features concerning the classical treatment of the Raman effect are presented Supported by the theoretical considerations exposed in Chapter 2, 3, and 4 the construction and the tests of different devices are presented in Chapter 5. Following the goal of the thesis, first an overview of the used materials and methods for particle generation is presented. Then, the constructed charging devices are described (from the mechanical and electrical point of view) and compared by measuring the acquired charge on the particle. Charged particles can be trapped in different containers. Two types of axially symmetric electrodynamic balances (two ring or an extended four ring configuration) were presented. For a deeper understanding these systems were studied using analytic and numerical methods. Considering the presented purpose of the work another type of trapping system has been developed, namely the quadrupole trap. A similar theoretical characterisation (in term’s of Mathieu equation) as for the electrodynamic balance was presented pointing out some specific features of this system. The incoming particle stream will be focused to the centre of the system simultaneously also the applied DC and AC potential onto the tube electrodes, yields a stable trapping of one or more particles. Chapter 6 consists of two parts: the system for single particle and for many particles investigation. The individual devices presented in Chapter 5 are now put together. The first part presents the method and the experimental realisation of a set-up for solid particle injection. In order to suppress the phase injection disadvantage found for the electrodynamic balance a developed program processes the information obtained from a particle cloud through an adequate electronic detection system, and reduces the number of particles until just one single particle is trapped. The method for one particle investigation can be extended for many particles. Using the presented set-up the particles are moved from one quadrupole to another and transformed from a particle cloud to a particle stream. A linearity between an external vertical mounted detector and the formed image of the particle stream on the CCD camera has been observed and used for simultaneous detection of many particles by Raman spectroscopy. For both methods Raman results are presented. One limitation of Raman Spectroscopy is the relatively long integration time needed for adequate signal-to-noise ratio. There are two factors which influence the integration time: first the incident radiation and the detector sensitivity, and second the intensity of the Raman bands. Using a CCD detector, the desired detector sensitivity should be achieved. So, the improvement of the signal-to-noise ratio should be the next goal in the system development. In order to reduce the integration time an optical system including optic fibres and the integration of an FT-Raman module operating in the visible region is planed. The goal of this work was to develop and construct an instrument for on-line in-situ single particle investigation by Raman spectroscopy. With the presented experimental set-up and the developed program the purpose of the work, the on-line in-situ near atmospheric pressure aerosol investigation was achieved. The Raman spectroscopy has been used successfully for a chemical characterisation of the aerosol particles. N2 - Diese Arbeit beschäftigt sich mit dem Aufbau eines on-line in-situ Analysegerätes zur chemische Charakterisierung von Aerosolen in Luftströmungen. Die Arbeit beschreibt neben den Grundlagen die wichtigsten Eigenschaften eines solchen Systems für on-line Messungen, das die Raman-Spektroskopie als eine Diagnosetechnik einsetzt. Kapitel 2 beinhaltet eine Analyse der Effekte von erzwungenen Oszillationen auf die Bewegung dispergierter Teilchen im Gasfluss. Dort werden auch die wichtigsten Eigenschaften von Partikeln vorgestellt. Es wird ein Überblick über die Teilchen-Gas Wechselwirkungen in laminarer Strömung gegeben, und die Reaktion des Teilchens in Abhängigkeit von Veränderungen (Kräften) wird diskutiert. In Kapitel 3 wird das Verhalten von Teilchen unter verschiedenen externen Bedingungen (Ionenbeschuss oder elektrisches Feld) weiter erörtert. Ein kurzer Überblick über die wichtigsten Theorien zur Teilchenladung (Diffusions-, Feld-, und alternierende Potentialaufladung) zeigt, dass die elektrischen Eigenschaften (dargestellt durch die dielektrische Konstante) des Teilchens den Ladungsprozess beeinflussen. Darüber hinaus wird eine kontaktlose Messmethode für die Ladung der Teilchen diskutiert. Im zweiten Teil des Kapitels wird die Wechselwirkung zwischen dem elektrischen Feld und dem geladenen Teilchen erläutert, zu dem Zweck, dass man die Teilchen ’’einfängt’’. Die gängigen Systeme wie z.B. die elektrodynamische Waage mit zwei oder vier Ringen und die Quadrupolfalle werden ebenfalls diskutiert. In Kapitel 4 werden die Möglichkeiten zur Untersuchung von Teilchen durch um Analyse des gestreuten Lichts vorgestellt. Zunächst werden die Bedingungen und Möglichkeiten für die Eignung der Mie-Theorie zum Studium von Partikelgröße und Brechungskoeffizient diskutiert; des weiteren wird auf die Eigenschaften des klassischen Raman-Effektes eingegangen. In Kapitel 5 wird die Konstruktion und anschließende Erprobung von Geräten beschrieben. Der Aufbau dieser Geräte erfolgte mit Hilfe der theoretischen Erwägungen aus den Kapiteln 2, 3 und 4. Es wird ein Überblick über die verwendeten Materialien und Methoden für die Teilchenerzeugung gegeben. Dann werden die entwickelten Ladegeräte beschrieben (vom mechanischen und elektronischen Standpunkt aus gesehen), und sie werden untereinander verglichen, indem die erzielte Ladung auf den Teilchen gemessen wird. Geladene Teichen können in verschiedenen Anordnungen gefangen werden. Zwei Arten von achsensymmetrischen elektrodynamischen Waagen (Zwei-Ring- oder eine erweiterte Vier-Ring-Konfiguration) werden vorgestellt. Für ein besseres Verständnis wurden diese Systeme durch analytische und numerische Methoden untersucht. In Anbetracht der Ziele dieser Arbeit wurde eine andere Art von Fangsystem entwickelt, die sogenannte Quadrupolfalle. Eine ähnliche theoretische Charakterisierung wie im Falle der elektrodynamischen Waage wurde vorgenommen und verschiedene spezifische Eigenschaften des Systems dargelegt. Der ankommende Teilchenfluss wird in die Mitte des Systems fokussiert, und unter Berücksichtigung des DC-Potentials auf den Rohrelektroden erhält man ein stabiles „Trapping“ eines oder mehrerer Teilchen. Kapitel 6 beschreibt die Experimentalaufbauten für die Untersuchung von einem oder von mehreren Teilchen. Die einzelnen Geräte, die in Kapitel 5 vorgeführt wurden, werden jetzt zusammengesetzt. Der erste Teil des Kapitels stellt die Methode und den experimentellen Aufbau für die Injektion von Feststoffteilchen vor. Um dem Nachteil der Phaseninjektion im Falle der elektrodynamischen Waage entgegenzukommen, wurde ein Programm entwickelt, das die Informationen (aufgenommen durch ein elektronisches Detektionssystem) von einer Teilchenwolke verarbeitet und das die Zahl der Teilchen reduziert, bis nur ein einziges übrig bleibt. Die Methode für die Ein-Teilchen-Untersuchung kann auch für mehrere Teilchen erweitert werden. Unter Verwendung des beschriebenen Systems werden die Teilchen aus einem Quadrupol in einen anderen bewegt und von einer Teilchenwolke in einen Teilchenstrom umgewandelt. Es wurde eine Linearität zwischen einem extern montierten Detektor und der Abbildung des Teilchenflusses durch ein Spektrometer auf einer CCD-Kamera festgestellt, welche für die gleichzeitige Detektion von mehreren Teilchen mittels Raman-Spektroskopie genutzt wurde. Für beide Methoden werden Raman-Ergebnisse gezeigt. Eine Einschränkung bei der Anwendung der Raman-Spektroskopie besteht in den relativ langen Integrationszeiten, die für ein ausreichendes Signal-Rausch-Verhältnis gebraucht werden. Es gibt zwei Faktoren, die die Integrationszeit beeinflussen: (1) die einfallende Strahlung und die Detektorempfindlichkeit und (2) die Frequenz und die Intensität der Raman Banden. Durch Verwendung eines CCD-Detektors kann die gewünschte Detektorsensitivität erreicht werden. Der nächste Schritt in der Systementwicklung ist die Verbesserung des Signal-Rausch-Verhältnisses. Um die Integrationszeit zu verkürzen, ist für zukünftige Arbeiten ein optisches System geplant, das optische Fasern und den Einbau eines FT-Raman-Moduls im sichtbaren Bereich einschließt. Das Ziel dieser Arbeit war die Entwicklung und der Aufbau eines Geräts zur on-line in-situ Untersuchung eines einzelnen Teilchens mit Hilfe der Raman-Spektroskopie. Durch den vorgestellten experimentellen Aufbau und das entwickelte Steuerungsprogramm konnte das Ziel der Arbeit, die in-situ Untersuchung von Aerosolen bei normalem Luftdruck, erreicht werden. Die Raman-Spektroskopie wurde erfolgreich zur chemischen Charakterisierung von Aerosolen eingesetzt. KW - Aerosol KW - Chemische Analyse KW - Raman-Spektroskopie KW - Schwebeteilchen KW - Elektrodynamische Falle KW - Raman Spektroskopie KW - Airborne particles KW - Electrodynamic trap KW - Raman spectroscopy Y1 - 2003 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-9605 ER - TY - THES A1 - Breitkreuz, Hanne-Katarin T1 - Solare Strahlungsprognosen für energiewirtschaftliche Anwendungen - Der Einfluss von Aerosolen auf das sichtbare Strahlungsangebot T1 - Solar Irradiance Forecasts for Energy Applications - the Influence of Aerosols on the Visible Range N2 - Für eine dauerhaft gesicherte und umweltgerechte Energieerzeugung kommt den erneuerbaren Energien in Zukunft eine immer größere Bedeutung zu. Dies stellt eine große Herausforderung für die Entwicklung zukünftiger Energiesysteme dar, da erneuerbare Energieträger zeitlich und räumlich zumeist hoch variabel zur Verfügung stehen. Eine effiziente Integration solar erzeugter Energie in das bestehende Energieversorgungsnetz ist daher nur möglich, wenn verlässliche Nahe-Echtzeit-Vorhersagen der am Erdboden verfügbaren Einstrahlung und ein- bis dreitägige Vorhersagen von Energieproduktion und -nachfrage zur Verfügung stehen. Die vorliegende Arbeit beschäftigt sich mit der Vorhersage der solaren Strahlung für die nächsten Tage und Stunden im Hinblick auf Anwendungen in der Energiewirtschaft. Der dominante Atmosphärenparameter für die Abschwächung der solaren Einstrahlung ist die Bewölkung. Das größte wirtschaftliche Potential der Solarenergie liegt jedoch in Zeiträumen und Regionen, in denen wenig Bewölkung auftritt. Im wolkenlosen Fall beeinflussen vor allem Aerosole, feste und flüssige Partikel in der Atmosphäre, die direkte und diffuse Strahlung am Erdboden. Aerosole sind durch eine hohe zeitliche und räumliche Variabilität gekennzeichnet, die die Bestimmung ihrer raumzeitlichen Verteilung und damit ihres Einflusses auf die Strahlung erschwert und einen hohen Aufwand zu ihrer Prognose erforderlich macht. Am Beispiel eines fünfmonatigen europäischen Datensatzes (Juli-November 2003) werden Prognosen der aerosoloptischen Tiefe bei 550 nm (AOT550) untersucht, die aus Aerosolvorhersagen eines Chemie-Transport-Modells stammen. Es zeigt sich, dass im Vergleich mit Bodenmessungen die Aerosolprognosen mit einer mittleren Unterschätzung von -0,11 und einem RMSE von 0,20 die geforderte Genauigkeit nicht ganz erreichen. Dabei stellen insbesondere die unregelmäßig auftretenden Saharastaubausbrüche über dem zentralen Mittelmeer eine im Modell bisher nicht erfassbare Quelle großer Ungenauigkeiten in der AOT- und damit auch in der Strahlungsvorhersage dar. Entsprechend der hohen regionalen Aerosol-Variabilität finden sich zudem signifikante Unterschiede zwischen den Regionen, zum Beispiel eine deutliche Unterschätzung des Aerosolaufkommens in der stark industriell belasteten Po-Ebene Norditaliens sowie gute Entsprechungen in abgelegenen Gegenden Nordeuropas. Basierend auf dieser Aerosol-Prognose und unter Einbeziehung weiterer Fernerkundungsdaten (Bodenalbedo, Ozon) und Parametern aus der numerischen Wetterprognose (Wasserdampf, Wolken) wird ein Prototyp für ein Vorhersagesystem der Solarstrahlung konzipiert und vorgestellt: das AFSOL-System (Aerosol-based Forecasts of Solar Irradiance for Energy Applications). An Hand der fünfmonatigen Testepisode wird das AFSOL-System mit Vorhersagen des Europäischen Zentrums für Mittelfrist-Wettervorhersage (ECMWF), mit satellitenbasierten Beobachtungen der Solarstrahlung (Meteosat-7) und mit Bodenmessungen der Solarstrahlung verglichen. Für den wolkenlosen Fall erzielt das AFSOL-Modellsystem eine deutliche Verbesserung der Direktstrahlungsprognosen gegenüber den ECMWF-Vorhersagen, mit einer Reduktion des relativen Bias von -26% auf +11% und des relativen RMSE von 31% auf 19%. Dies kann auf die verbesserte Beschreibung des atmosphärischen Aerosols zurückgeführt werden, die sich im Vergleich zu den am ECMWF genutzten AOT-Klimatologien ergibt, auch wenn insbesondere bei der Behandlung von Wüstenstaubepisoden weiterhin Probleme auftreten. Auch die Globalstrahlungsprognosen erreichen im wolkenlosen Fall eine höhere Genauigkeit als die operationell verfügbaren ECMWF-Vorhersagen, was sich in einer Verringerung des relativen Bias von -10% zu +5% sowie des relativen RMSE von 12% zu 7% zeigt. Im bewölkten Fall jedoch können die Vorhersagen des AFSOL-Systems erhebliche Ungenauigkeiten aufweisen, die sich auf Grund von Problemen bei der Wolkenprognose des zu Grunde liegenden numerischen Wettervorhersagemodells ergeben. Abschließend wird in einer Fallstudie zur Verwendung der Vorhersagen für die optimale Betriebsführung eines solarthermischen Kraftwerks in Spanien beispielhaft gezeigt, dass die Nutzung der AFSOL-Prognose im wolkenlosen Fall eine deutliche Gewinnsteigerung bei der Einspeisung ins öffentliche Stromnetz durch den Handel an der spanischen Strombörse ermöglicht. N2 - Due to the limitation of fossil fuel resources and their impact on climate change, our future energy system will increasingly depend on growing shares of renewable energy sources. This poses a major challenge on the development of future energy systems, since energy production from most renewable resources is highly variable in space and time. Because of the high variability, an efficient integration of solar energy into the existing energy supply system will only be possible if reliable near real time forecasts of ground level solar irradiance as well as one to three day forecasts of energy production and demand are available. This study deals with solar irradiance forecasts of the next few days and hours with respect to their application in solar energy industries. The main atmospheric parameter responsible for the extinction of solar irradiance is clouds. However, a main focus and economic potential of the solar energy industry is situated in regions and time periods with minimal cloud cover. During these ”clear sky cases“ it is mainly aerosols, solid and liquid particles in the atmosphere, that influence the direct and diffuse irradiance at ground level. Aerosols are highly variable in space and time, which leads to difficulties in calculating and forecasting their spatio-temporal patterns and thus their influence on irradiance. For an episode of five months (July-November 2003) in Europe, forecasts of the aerosol optical depth at 550 nm (AOD550) based on particle forecasts of a chemistry transport model are analysed. It is shown that the aerosol forecasts underestimate ground based measurements by a mean -0.11 (RMSE 0.20), which is not within the accuracy required for input parameters of irradiance forecasts. In particular, sporadic Saharan dust storm events in the central Mediterranean region lead to large inaccuracies which at the moment cannot be accounted for in the model system. Due to the high regional variability of aerosol presence and type, also large differences in the representation accuracy for different European regions can be distinguished, e.g., severe underestimations of particle load in the highly industrialized Po Valley in northern Italy or small errors for remote continental areas in Northern Europe. Using these aerosol forecasts and other remote sensing data (ground albedo, ozone) as well as numerical weather prediction parameters (water vapor, clouds), a prototype for an irradiance forecasting system is set up: the AFSOL system (Aerosol-based Forecasts of Solar Irradiance for Energy Applications). Based on the five month dataset its results are compared to forecasts of the European Centre for Medium-Range Weather Forecasts (ECMWF), satellite based irradiance data from Meteosat-7 and ground measurements. It is demonstrated that for clear sky situations the AFSOL system significantly improves direct irradiance forecasts compared to ECMWF forecasts, with a reduction of relative bias from -26% to +11% and a reduction of relative RMSE from 31% to 19%. This can be attributed to the increased accuracy of atmospheric aerosol description compared to the climatological values used by the ECMWF, regardless if there are still deficiencies especially for desert dust situations. Global irradiance forecasts are also shown to have higher accuracies in comparison to the operationally available ECMWF forecasts, with a reduction of relative bias from -10% to +5% and a reduction of relative RMSE from 12% to 7%. However, for cloudy situations the AFSOL forecasts can lead to significant forecast errors due to cloud modelling deficiencies in the underlying mesoscale numerial weather model. Finally, a case study on the use of the AFSOL irradiance forecasts for optimizing operation strategies of a solar thermal power plant in Spain is presented. It is demonstrated that with the improved forecast in clear sky cases a significant rise in profit can be obtained when feeding the solar energy into the public Spanish electricity market by participating in the Spanish electricity stock exchange. KW - Aerosol KW - Sonnenstrahlung KW - Erneuerbare Energien KW - Energiemarkt KW - Direktstrahlung KW - Strahlungsvorhersage KW - Aerosolvorhersage KW - Chemie-Transport-Modell KW - solar irradiance forecasts KW - direct irradiance KW - chemistry-transport-model KW - aerosol forecasts Y1 - 2008 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-28200 ER -