TY - THES A1 - Pirner, Marlies T1 - Kinetic modelling of gas mixtures T1 - Kinetische Modellierung von Gasgemischen N2 - This book deals with the kinetic modelling of gas mixtures. It extends the existing literature in mathematics for one species of gas to the case of gasmixtures. This is more realistic in applications. Thepresentedmodel for gas mixtures is proven to be consistentmeaning it satisfies theconservation laws, it admitsanentropy and an equilibriumstate. Furthermore, we can guarantee the existence, uniqueness and positivity of solutions. Moreover, the model is used for different applications, for example inplasma physics, for fluids with a small deviation from equilibrium and in the case of polyatomic gases. N2 - Die vorliegende Arbeit beschäftigt sich mit der Modellierung von Gasgemischen mittels einer kinetischen Beschreibung. Es werden Grundlagen über die Boltzmanngleichung für Gasgemische und die BGK-Aproximation präsentiert. Insbesondere wird auf deren Erweiterung auf Gasgemische eingegangen. Es wird ein Gasgemisch bestehend aus zwei Sorten von Gasen ohne chemische Reaktionen betrachtet. Das Gemisch wird mittels eines Systems kinetischer BGK-Gleichungen modelliert, welches je zwei Wechselwirkungsterme enthält, die den Impuls- und Energieaustausch berücksichtigen. Das hier vorgestellte Modell enthält einige von Physikern und Ingenieuren vorgeschlagene Modelle als Spezialfälle. Es wird gezeigt, dass das hier vorgeschlagene Modell die wesentlichen physikalischen Eigenschaften, wie Erhaltungseigenschaften, Positivität aller Temperaturen, das H-Theorem und Maxwellverteilungen im Gleichgewicht, erfüllt. Des Weiteren können die üblichen makroskopischen Gleichungen daraus hergeleitet werden. In der Literatur gibt es ein weiteres vorgeschlagenes Modell für Gasgemische mit nur einem Wechselwirkungsterm von Andries, Aoki und Perthame. In dieser Arbeit werden die Vorteile dieses Modells aus der Literatur und des hier vorgeschlagenen Modells diskutiert. Es wird die Nützlichkeit des hier vorgeschlagenen Modells illustriert, indem es dazu benutzt wird eine unbekannte Funktion in dem makroskopischen Modell für Gasgemische von Dellacherie herzuleiten. Des Weiteren wird für jedes dieser beiden Modelle Existenz, Eindeutigkeit und Positivität der Lösungen gezeigt. Dann wird das hier vorgeschlagene Modell auf bestimmte physikalische Situationen angewandt: auf Elektronen und Ionen in einem Plasma, auf ein Gasgemisch, welches sich nicht im Gleichgewicht befindet und ein Gasgemisch bestehend aus Molekülen mit zusätzlichen inneren Freiheitsgraden. Als erste Anwendung wird das Modell für geladene Teilchen erweitert und auf ein Gemisch aus Elektronen und Ionen angewandt, welches sich teilweise im Gleichgewicht befindet, teilweise nicht. Man findet solch eine Konstellation zum Beispiel bei der Fusion in einem Tokamak. Das Modell, welches hier vorgestellt wird, wird hier benutzt, da es die Wechselwirkungen zwischen Teilchen von der gleichen Sorte und Wechselwirkungen zwischen Teilchen verschiedener Sorten separiert. Dann wird ein neues Modell mithilfe der Mikro-Makro-Zerlegung hergeleitet, welches numerisch in einem Regime angewandt wird, in dem Gase teilweise im Gleichgewicht sind, teilweise nicht. Es werden theoretische Ergebnisse vorgestellt, zum einen Konvergenzraten gegen das Gleichgewicht im räumlich homogenen Fall, zum anderen die Landau-Dämpfung für Gasgemische, um sie mit Ergebnissen aus numerischen Simulationen vergleichen zu können. Als zweite Anwendung wird ein Gasgemisch betrachtet, welches eine Abweichung vom Gleichgewichtszustand hat und makroskopisch mithilfe der Navier-Stokes-Gleichungen beschrieben wird. In dieser makroskopischen Beschreibung erwartet man vier physikalische Größen, die das physikalische Verhalten eines Gases beschreiben, den Diffusionskoeffizienten, den Viskositätskoeffizienten, die Wärmeleitfähigkeit und den thermischen Diffusionsparameter. Es wird eine Chapman-Enskog-Entwicklung des hier vorgestellten Modells durchgeführt, um drei dieser vier physikalischen Größen zu bestimmen. Zusatzlich werden mehrere mögliche Erweiterungen zu einem ES-BGK-Modell für Gasgemische vorgeschlagen um die vierte physikalische Größe zu bestimmen. Es wird eine Erweiterung präsentiert, die möglichst einfach gehalten ist, eine intuitive Erweiterung, die den Fall einer Gassorte ähnelt und eine Erweiterung, die die physikalische Motivation des Physikers Holway, der das ES-BGK-Modell erfunden hat, berücksichtigt. Es wird gezeigt, dass die Erweiterungen die Erhaltungseigenschaften erfüllen, alle Temperaturen positiv sind und das H-Theorem erfüllt ist. Als dritte Anwendung wird das hier vorgestellte Modell zu einem Modell für Moleküle mit zusätzlichen inneren Freiheitsgraden erweitert. Die zwei Gassorten dürfen dabei eine unterschiedliche Anzahl an inneren Freiheitsgraden haben und werden beschrieben durch ein System von kinetischen ES-BGK-Gleichungen. Es wird gezeigt, dass das Modell die Erhaltungseigenschaften erfülllt, dass alle Temperaturen positiv sind und dass das H-Theorem erfüllt ist. Für numerische Zwecke wird die Chu-Reduktion angewandt um die Komplexität des Modells zu reduzieren und eine Anwendung gezeigt, bei dem eine Gassorte keine inneren Freiheitsgrade hat und die andere Sorte zwei Rotationsfreiheitsgrade besitzt. Als letztes wird der Grenzwert des hier vorgestellten Modells zu den dissipativen Eulergleichungen bewiesen. N2 - The present thesis considers the modelling of gas mixtures via a kinetic description. Fundamentals about the Boltzmann equation for gas mixtures and the BGK approximation are presented. Especially, issues in extending these models to gas mixtures are discussed. A non-reactive two component gas mixture is considered. The two species mixture is modelled by a system of kinetic BGK equations featuring two interaction terms to account for momentum and energy transfer between the two species. The model presented here contains several models from physicists and engineers as special cases. Consistency of this model is proven: conservation properties, positivity of all temperatures and the H-theorem. The form in global equilibrium as Maxwell distributions is specified. Moreover, the usual macroscopic conservation laws can be derived. In the literature, there is another type of BGK model for gas mixtures developed by Andries, Aoki and Perthame, which contains only one interaction term. In this thesis, the advantages of these two types of models are discussed and the usefulness of the model presented here is shown by using this model to determine an unknown function in the energy exchange of the macroscopic equations for gas mixtures described in the literature by Dellacherie. In addition, for each of the two models existence and uniqueness of mild solutions is shown. Moreover, positivity of classical solutions is proven. Then, the model presented here is applied to three physical applications: a plasma consisting of ions and electrons, a gas mixture which deviates from equilibrium and a gas mixture consisting of polyatomic molecules. First, the model is extended to a model for charged particles. Then, the equations of magnetohydrodynamics are derived from this model. Next, we want to apply this extended model to a mixture of ions and electrons in a special physical constellation which can be found for example in a Tokamak. The mixture is partly in equilibrium in some regions, in some regions it deviates from equilibrium. The model presented in this thesis is taken for this purpose, since it has the advantage to separate the intra and interspecies interactions. Then, a new model based on a micro-macro decomposition is proposed in order to capture the physical regime of being partly in equilibrium, partly not. Theoretical results are presented, convergence rates to equilibrium in the space-homogeneous case and the Landau damping for mixtures, in order to compare it with numerical results. Second, the model presented here is applied to a gas mixture which deviates from equilibrium such that it is described by Navier-Stokes equations on the macroscopic level. In this macroscopic description it is expected that four physical coefficients will show up, characterizing the physical behaviour of the gases, namely the diffusion coefficient, the viscosity coefficient, the heat conductivity and the thermal diffusion parameter. A Chapman-Enskog expansion of the model presented here is performed in order to capture three of these four physical coefficients. In addition, several possible extensions to an ellipsoidal statistical model for gas mixtures are proposed in order to capture the fourth coefficient. Three extensions are proposed: An extension which is as simple as possible, an intuitive extension copying the one species case and an extension which takes into account the physical motivation of the physicist Holway who invented the ellipsoidal statistical model for one species. Consistency of the extended models like conservation properties, positivity of all temperatures and the H-theorem are proven. The shape of global Maxwell distributions in equilibrium are specified. Third, the model presented here is applied to polyatomic molecules. A multi component gas mixture with translational and internal energy degrees of freedom is considered. The two species are allowed to have different degrees of freedom in internal energy and are modelled by a system of kinetic ellipsoidal statistical equations. Consistency of this model is shown: conservation properties, positivity of the temperature, H-theorem and the form of Maxwell distributions in equilibrium. For numerical purposes the Chu reduction is applied to the developed model for polyatomic gases to reduce the complexity of the model and an application for a gas consisting of a mono-atomic and a diatomic gas is given. Last, the limit from the model presented here to the dissipative Euler equations for gas mixtures is proven. KW - Polyatomare Verbindungen KW - Gasgemisch KW - Transportkoeffizient KW - Plasma KW - multi-fluid mixture KW - kinetic description of gases KW - entropy inequality KW - transport coefficients KW - Modellierung KW - well posedness KW - plasma modelling KW - polyatomic molecules KW - hydrodynamic limits Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-161077 SN - 978-3-95826-080-1 (Print) SN - 978-3-95826-081-8 (Online) N1 - Parallel erschienen als Druckausgabe in Würzburg University Press, ISBN 978-3-95826-080-1, 27,80 EUR. PB - Würzburg University Press CY - Würzburg ET - 1. Auflage ER - TY - THES A1 - Heinrich, Robert T1 - Multi-species gas detection based on an external-cavity quantum cascade laser spectrometer in the mid-infrared fingerprint region T1 - Multikomponenten Gasdetektion basierend auf einem Externen-Kavitäts-Quantenkaskadenlaser im mittleren Infrarot-Fingerprint-Bereich N2 - Laser spectroscopic gas sensing has been applied for decades for several applications as atmospheric monitoring, industrial combustion gas analysis or fundamental research. The availability of new laser sources in the mid-infrared opens the spectral fingerprint range to the technology where multiple molecules possess their fundamental ro-vibrational absorption features that allow very sensitive detection and accurate discrimination of the species. The increasing maturity of quantum cascade lasers that cover this highly interesting spectral range motivated this research to gain fundamental knowledge about the spectra of hydrocarbon gases in pure composition and in complex mixtures as they occur in the petro-chemical industry. The long-term target of developing accurate and fast hydrocarbon gas analyzers, capable of real-time operation while enabling feedback-loops, would lead to a paradigm change in this industry. This thesis aims to contribute to a higher accuracy and more comprehensive understanding of the sensing of hydrocarbon gas mixtures. This includes the acquisition of yet unavailable high resolution and high accuracy reference spectra of the respective gases, the investigation of their spectral behavior in mixtures due to collisional broadening of their transitions and the verification of the feasibility to quantitatively discriminate the spectra when several overlapping species are simultaneously measured in gas mixtures. To achieve this knowledge a new laboratory environment was planned and built up to allow for the supply of the individual gases and their arbitrary mixing. The main element was the development of a broadly tunable external-cavity quantum cascade laser based spectrometer to record the required spectra. This also included the development of a new measurement method to obtain highly resolved and nearly gap-less spectral coverage as well as a sophisticated signal post-processing that was crucial to achieve the high accuracy of the measurements. The spectroscopic setup was used for a thorough investigation of the spectra of the first seven alkanes as of their mixtures. Measurements were realized that achieved a spectral resolution of 0.001 cm-1 in the range of 6-11 µm while ensuring an accuracy of 0.001 cm-1 of the spectra and attaining a transmission sensitivity of 2.5 x 10-4 for long-time averaging of the acquired spectra. These spectral measurements accomplish a quality that compares to state-of-the art spectral databases and revealed so far undocumented details of several of the investigated gases that have not been measured with this high resolution before at the chosen measurement conditions. The results demonstrate the first laser spectroscopic discrimination of a seven component gas mixture with absolute accuracies below 0.5 vol.% in the mid-infrared provided that a sufficiently broad spectral range is covered in the measurements. Remaining challenges for obtaining improved spectral models of the gases and limitations of the measurement accuracy and technology are discussed. N2 - Laserspektroskopie ist eine seit Jahrezehnten verbreitete Methodik zur Gasmessung. Zu den Anwendungen zählen Atmosphärenuntersuchungen, die Analyse von industriellen Verbrennungsgasen oder Grundlagenforschung der Gasspektren. Die Verfügbarkeit neuer Laserquellen im mittleren Infrarotbereich eröffnet den sogenannten spektralen "Fingerprint-Bereich", in welchem eine Vielzahl von Molekülen ihre spezifischen Rotations- Vibrations-Grundschwingungen haben, und damit sehr genaue Konzentrationsbestimmung und exakte Unterscheidung der Gase ermöglicht. Die zunehmende Reife von Quantenkaskadenlasern motivierte diese Forschungsarbeit, um Grundlagenwissen über pure Kohlenwasserstoffspektren und deren Mischungen, wie sie beispielsweise in der petrochemischen Industrie auftreten, zu erlangen. Das langfristige Ziel der Entwicklung eines hochgenauen und schnellen Analysators für Kohlenwasserstoffgemische, welcher Echtzeit-Messungen und damit direkte Rückkopplungsschleifen ermöglicht, würde zu einem Paradigmenwechsel in der Prozesskontrolle vieler Industriebereiche führen. Diese Doktorarbeit leistet einen Beitrag für ein umfassenderes Verständnis und höhere Genauigkeit der Messung von Kohlenwasserstoffgemischen. Dies beinhaltet die Aufnahme bisher nicht verfügbarer hochaufgelöster und hochgenauer Referenzspektren der untersuchten Gase, die Untersuchung ihres spektralen Verhaltens bei Stoßverbreiterung in Mischungen und der quantitativen Unterscheidbarkeit, wenn Moleküle mit überlappenden Spektren gleichzeitig gemessen werden. Um dieses Wissen zu erlangen, wurde ein neuer Laboraufbau zur Untersuchung einzelner Gase sowie deren Gemische geplant und aufgebaut. Die Hauptkomponente bildet eine weit abstimmbares Externe-Kavität- Quantenkaskadenlaser-Spektrometer. Weitere Teile der Entwicklung waren zudem eine neue Messmethodik, um hochaufgelöste und im untersuchten Spektralbereich nahezu lückenlose Spektren zu erhalten, sowie eine umfangreiche Nachverarbeitung der Messdaten, welche essentiell war, um die hohe Genauigkeit der Messungen zu ermöglichen. Der Spektrometeraufbau wurde zur Untersuchung der Spektren der ersten sieben Alkane und ihrer Mischungen verwendet. Die Messungen erreichen eine spektrale Auslösung von 0.001 cm-1 im Spektralbereich von 6-11 µm und garantieren gleichzeitig eine Genauigkeit von 0.001 cm-1. Eine Sensitivität von 2.5x10-4 konnte durch das Mitteln mehrer Messungen erreicht werden. Die Qualität der Spektren ist damit vergleichbar zu aktuellen Spektren-Datenbanken und zeigt zudem bisher undokumentierte Details in mehreren Spektren der gemessenen Gase auf, welche unter den gewählten Messbedingungen bisher nicht so hochaufgelöst gemessen wurden. Die Ergebnisse demonstrieren die erste laserspektrokopische Unterscheidung eines Siebenkomponentengemisches von Kohlenwasserstoffen im mittleren Infrarotbereich mit einer absoluten Konzentrationsgenauigkeit von unter 0.5 vol.% je Komponenten. Weitere Herausforderungen zur Verbesserung spektraler Modelle der Gase sowie die Grenzen der Messgenauigkeit und der verwendeten Technologie werden diskutiert. KW - Quantenkaskadenlaser KW - Laserspektroskopie KW - Absorptionsspektroskopie KW - Externer-Kavitäts-Quanten-Kaskaden-Laser KW - Laserabsorptionspektroskopie KW - Gasförmige Kohlenwasserstoffe KW - Gasgemisch KW - MIR-Spektroskopie KW - External-Cavity Quantum Cascade Laser KW - Laser absorption spectroscopy KW - Gaseous Hydrocarbons KW - Gas mixtures KW - MIR spectroscopy Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-268640 ER - TY - THES A1 - Warnecke, Sandra T1 - Numerical schemes for multi-species BGK equations based on a variational procedure applied to multi-species BGK equations with velocity-dependent collision frequency and to quantum multi-species BGK equations T1 - Numerische Verfahren für multispezies BGK Gleichungen mittels Variationsansatz angewandt auf multispezies BGK Gleichungen mit geschwindigkeitsabhängiger Stoßfrequenz sowie auf quantenmechanische multispezies BGK Gleichungen N2 - We consider a multi-species gas mixture described by a kinetic model. More precisely, we are interested in models with BGK interaction operators. Several extensions to the standard BGK model are studied. Firstly, we allow the collision frequency to vary not only in time and space but also with the microscopic velocity. In the standard BGK model, the dependence on the microscopic velocity is neglected for reasons of simplicity. We allow for a more physical description by reintroducing this dependence. But even though the structure of the equations remains the same, the so-called target functions in the relaxation term become more sophisticated being defined by a variational procedure. Secondly, we include quantum effects (for constant collision frequencies). This approach influences again the resulting target functions in the relaxation term depending on the respective type of quantum particles. In this thesis, we present a numerical method for simulating such models. We use implicit-explicit time discretizations in order to take care of the stiff relaxation part due to possibly large collision frequencies. The key new ingredient is an implicit solver which minimizes a certain potential function. This procedure mimics the theoretical derivation in the models. We prove that theoretical properties of the model are preserved at the discrete level such as conservation of mass, total momentum and total energy, positivity of distribution functions and a proper entropy behavior. We provide an array of numerical tests illustrating the numerical scheme as well as its usefulness and effectiveness. N2 - Wir betrachten ein Gasgemisch, das aus mehreren Spezies zusammengesetzt ist und durch kinetische Modelle beschrieben werden kann. Dabei interessieren wir uns vor allem für Modelle mit BGK-Wechselwirkungsoperatoren. Verschiedene Erweiterungen des Standard-BGK-Modells werden untersucht. Im ersten Modell nehmen wir eine Abhängigkeit der Stoßfrequenzen von der mikroskopischen Geschwindigkeit hinzu. Im Standard-BGK-Modell wird diese Abhängigkeit aus Gründen der Komplexität vernachlässigt. Wir nähern uns der physikalischen Realität weiter an, indem wir die Abhängigkeit von der mikroskopischen Geschwindigkeit beachten. Die Struktur der Gleichungen bleibt erhalten, allerdings hat dies Auswirkungen auf die sogenannten Zielfunktionen im Relaxationsterm, welche sodann durch einen Variationsansatz definiert werden. Das zweite Modell berücksichtigt Quanteneffekte (für konstante Stoßfrequenzen), was wiederum die Zielfunktionen im Relaxationsterm beeinflusst. Diese unterscheiden sich abhängig von den jeweils betrachteten, quantenmechanischen Teilchentypen. In dieser Doktorarbeit stellen wir numerische Verfahren vor, die auf oben beschriebene Modelle angewandt werden können. Wir legen eine implizite-explizite Zeitdiskretisierung zu Grunde, da die Relaxationsterme für große Stoßfrequenzen steif werden können. Das Kernstück ist ein impliziter Löser, der eine gewisse Potenzialfunktion minimiert. Dieses Vorgehen imitiert die theoretische Herleitung in den Modellen. Wir zeigen, dass die Eigenschaften des Modells auch auf der diskreten Ebene vorliegen. Dies beinhaltet die Massen-, Gesamtimpuls- und Gesamtenergieerhaltung, die Positivität von Verteilungsfunktionen sowie das gewünschte Verhalten der Entropie. Wir führen mehrere numerische Tests durch, die die Eigenschaften, die Nützlichkeit und die Zweckmäßigkeit des numerischen Verfahrens aufzeigen. N2 - Many applications require reliable numerical simulations of realistic set-ups e.g. plasma physics. This book gives a short introduction into kinetic models of gas mixtures describing the time evolution of rarefied gases and plasmas. Recently developed models are presented which extend existing literature by including more physical phenomena. We develop a numerical scheme for these more elaborated equations. The scheme is proven to maintain the physical properties of the models at the discrete level. We show several numerical test cases inspired by physical experiments. KW - Kinetische Gastheorie KW - Simulation KW - Numerisches Verfahren KW - Gasgemisch KW - Plasma KW - multi-fluid mixture KW - kinetic model KW - entropy minimization KW - IMEX KW - velocity-dependent collision frequency Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-282378 SN - 978-3-95826-192-1 SN - 978-3-95826-193-8 N1 - Parallel erschienen als Druckausgabe in Würzburg University Press, ISBN 978-3-95826-192-1, 32,90 EUR. PB - Würzburg University Press CY - Würzburg ET - 1. Auflage ER -