TY - THES A1 - Bartossek, Thomas T1 - Structural and functional analysis of the trypanosomal variant surface glycoprotein using x-ray scattering techniques and fluorescence microscopy T1 - Strukturelle und funktionale Analyse des variablen Oberflächenproteins von Trypanosoma brucei mithilfe vön Röntgenstreutechniken und Fluoreszenzmikroskopie N2 - Trypanosoma brucei is an obligate parasite and causative agent of severe diseases affecting humans and livestock. The protist lives extracellularly in the bloodstream of the mammalian host, where it is prone to attacks by the host immune system. As a sophisticated means of defence against the immune response, the parasite’s surface is coated in a dense layer of the variant surface glycoprotein (VSG), that reduces identification of invariant epitopes on the cell surface by the immune system to levels that prevent host immunity. The VSG has to form a coat that is both dense and mobile, to shield invariant surface proteins from detection and to allow quick recycling of the protective coat during immune evasion. This coat effectively protects the parasite from the harsh environment that is the mammalian bloodstream and leads to a persistent parasitemia if the infection remains untreated. The available treatment against African Trypanosomiasis involves the use of drugs that are themselves severely toxic and that can lead to the death of the patient. Most of the drugs used as treatment were developed in the early-to-mid 20th century, and while developments continue, they still represent the best medical means to fight the parasite. The discovery of a fluorescent VSG gave rise to speculations about a potential interaction between the VSG coat and components of the surrounding medium, that could also lead to a new approach in the treatment of African Trypanosomiasis that involves the VSG coat. The initially observed fluorescence signal was specific for a combination of a VSG called VSG’Y’ and the triphenylmethane (TPM) dye phenol red. Exchanging this TPM to a bromo-derivative led to the observation of another fluorescence effect termed trypanicidal effect which killed the parasite independent of the expressed VSG and suggests a structurally conserved feature between VSGs that could function as a specific drug target against T. b. brucei. The work of this thesis aims to identify the mechanisms that govern the unique VSG’Y’ fluorescence and the trypanocidal effect. Fluorescence experiments and protein mutagenesis of VSG’Y’ as well as crystallographic trials with a range of different VSGs were utilized in the endeavour to identify the binding mechanisms between TPM compounds and VSGs, to find potentially conserved structural features between VSGs and to identify the working mechanisms of VSG fluorescence and the trypanocidal effect. These trials have the potential to lead to the formulation of highly specific drugs that target the parasites VSG coat. During the crystallographic trials of this thesis, the complete structure of a VSG was solved experimentally for the first time. This complete structure is a key component in furthering the understanding of the mechanisms governing VSG coat formation. X-ray scattering techniques, involving x-ray crystallography and small angle x-ray scattering were applied to elucidate the first complete VSG structures, which reveal high flexibility of the protein and supplies insight into the importance of this flexibility in the formation of a densely packed but highly mobile surface coat. N2 - Trypanosoma brucei ist ein eukaryotischer Parasit welcher bei Menschen und Nutztieren schwere Krankheiten auslöst. Der Protist lebt extrazellulär im Blutstrom seines Säugetier-Wirtes, in welchem er unter konstantem Angriff durch das Wirts-Immunsystem steht. Als ausgeklügelte Methode zur Umgehung der Immunantwort besitzt der Parasit einen dichten Oberflächenmantel des variablen Oberflächen-Glycoproteins (VSG), welcher die Identifikation invariabler Oberflächenproteine durch das Immunsystem erschwert und Wirts-Immunität gegen den Parasiten verhindert. Der gebildete VSG-Mantel muss gleichzeitig eine hohe Dichte besitzt, um invariable Oberflächenproteine vor Immundetektion zu beschützen, und eine hohe Mobilität aufweisen, um ein schnelles Recycling des Schutzmantels während Immunantworten zu gewährleisten. Dieser Mantel schützt den Parasiten effektiv vor dem Wirts-Immunsystem und führt bei fehlender Behandlung des Patienten zur persistenten Parasitemie durch Trypanosoma brucei. Die verfügbaren Behandlung gegen die Afrikanische Trypanosomiasis beinhaltet die Benutzung von Medikamenten welche ihrerseits z.T. stark toxisch sind und den Tod des Patienten verursachen können. Ein Großteil der verfügbaren Medikamente wurden zu Beginn des letzten Jahrhunderts entwickelt und stellen trotz anhaltenden Entwicklungen noch immer die beste Lösung im Kampf gegen den Parasiten dar. Die Entdeckung eines fluoreszierenden VSGs deutete auf eine Interaktionen zwischen dem VSG Mantel und Bestandteilen des umgebenden Medium hin, welche die Entwicklung von Medikamenten mit dem VSG Mantel als Drug Target ermöglichen könnte. Das ursprünglich beobachtete Fluoreszenz-Signal war spezifisch für eine Kombination eines VSG namens VSG’Y’ und dem Triphenylmethan (TPM) Phenolrot. Der Austausch von Phenolrot gegen ein Brom-Derivat führte zur Beobachtung eines weiteren Fluoreszenz-Effekts, welcher unabhängig vom exprimierten VSG auftritt und letal für den Parasiten ist. Dieser so genannten Trypanozide Effekt lässt auf konservierte Strukturen schließen, welche von allen VSGs geteilt werden und als hochspezifisches Drug Target gegen T. b. brucei fungieren könnten. Das Ziel der vorliegenden Arbeit war es, die Mechanismen zu identifizieren, welche die einzigartige VSG’Y’-Fluoreszenz und den Trypanoziden Effekt auslösen. Fluoreszenz-Experimente und Protein-Mutagenese von VSG’Y’, sowie röntgenkristallographische Analysen mit mehreren unterschiedlichen VSGs wurden in dem Bestreben durchgeführt, die Bindung zwischen VSGs und TPMs zu charakterisieren, potentiell konservierte Strukturen von VSGs zu finden und die Mechanismen der einzigartigen VSG’Y’-Fluoreszenz und des Trypanoziden Effekts zu identifizieren. Diese Arbeiten haben das Potenzial die Formulierung hochspezifischer Medikamente mit VSGs als Drug Target anzutreiben. Im Rahmen der kristallographischen Analysen wurden die ersten vollständigen VSG Strukturen ermittelt, welche eine hohe Bedeutung für das Verständnis über die Bildung des VSG-Mantels haben. Die VSG Strukturen wurden u.a. per Röntgenkristallographie und Kleinwinkel-Röntgenstreuung aufgeschlüsselt und zeigten dass VSGs ein hohes Maß an Flexibilität besitzen. Diese Flexibilität ist wichtig für die Bildung eines dichten und hochmobilen VSG-Mantels. KW - Trypanosoma brucei brucei KW - Röntgenstrukturanalyse KW - Röntgen-Kleinwinkelstreuung KW - Mutagenese KW - Fluoreszenzmikroskopie KW - Variables Oberflächen Glycoprotein KW - VSG Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-144775 ER - TY - THES A1 - Stahl, Andreas T1 - Röntgenstrukturuntersuchungen an spintronischen Halbleiter- und Halbmetall-Dünnschichtsystemen T1 - X-ray analysis of spintronic semiconductor and half metal thin film systems N2 - In dieser Arbeit wurden die strukturellen Eigenschaften von spintronischen Halbleiter- und Halbmetall-Dünnschichtsystemen untersucht. Mit Röntgenreflektivitätsmessungen konnten die Schichtdicken und Grenzflächenrauigkeiten der Mehrschichtsysteme sehr genau bestimmt werden. Hierfür wurde die Software Fewlay verwendet, welche den Parratt-Formalismus zur Berechnung der Reflektivität nutzt. An reziproken Gitterkarten, die an möglichst hoch indizierten Bragg-Reflexen gemessen wurden, konnte das Relaxationsverhalten der Schichtsysteme untersucht werden. N2 - In this work the structural properties of spintronic semiconductor and halfmetalic thinfilm systems were investigated. The layer thicknesses and interface routhnesses of the multi-layer systems were estimated by X-ray reflectivity measurements. The fits were performed using the software Fewlay which uses the parratt formalism to calculate the reflectivities. The relaxation of the films was analyzed by reciprocal space mapping on preferably highly indexed bragg reflexes. KW - Halbleiterschicht KW - Spintronik KW - Röntgenstrukturanalyse KW - Halbmetall KW - Röngenbeugung KW - semiconductor KW - half metal KW - x-ray diffraction Y1 - 2010 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-49309 ER - TY - THES A1 - Niederdraenk, Franziska T1 - Ensemble-Modellierung von Röntgenbeugungsdaten zur Strukturbestimmung von Nanopartikeln T1 - Ensemble modeling of X-ray diffraction data for the geometric structure determination of nanoparticles N2 - Ziel dieser Arbeit war es, die geometrische Struktur von Nanopartikeln mittels Pulver-Röntgenbeugung und einem neuen Analyse-Verfahren, der Ensemble-Modellierung (EM), zu ermitteln. Die genaue Aufklärung der kristallinen Struktur ist ein Schlüssel für die Entwicklung exakter theoretischer Modelle und damit für ein besseres Verständnis der Nanoteilchen und deren Eigenschaften. Dabei fußt die Methode auf einem atomaren Modell und berechnet daraus das Beugungsbild der Teilchen. Neben der Auswertung verschiedener Proben sollte ebenso das Potential der Methode überprüft werden - auch im Vergleich zu Standardmethoden wie der Rietveld-Verfeinerung oder einer Einzellinien-Anpassung. Im Gegensatz zur EM beinhalten letztere kein explizites Nanoteilchenmodell. Insgesamt kamen drei typische Nanopartikel-Systeme zum Einsatz: Zunächst wurden fünf ZnO-Proben untersucht, die aufgrund ihrer verschiedenen Liganden deutlich unterschiedliche Partikelgrößen zeigten. Die präsentierten CdS-Nanoteilchen bildeten dagegen mit unter 100 Atomen bereits den Übergang zur Clusterphysik. Das letzte Kapitel stellte schließlich drei Proben mit deutlich komplexeren Core-Shell-Partikeln vor, welche aus einem CdSe-Kern und einer ZnS-Schale bestehen. Dabei konnten mit Hilfe der EM für alle Systeme sehr viel detailliertere Aussagen gemacht werden, als mit den Standardmethoden. Anhand der ersten vorgestellten ZnO-Probe wurde gezeigt, wie man sich bei der Auswertung mit der EM schrittweise dem besten Modell nähert, indem man, startend mit der Partikelform, anschließend weitere komplexe Merkmale implementiert. In dem ZnO-Kapitel wurde ersichtlich, dass die Liganden eine große Rolle spielen - nicht nur für die Größe der Nanopartikel, sondern auch für deren Qualität. Weiterhin wurde festgestellt, dass der Ligand TG beinahe defektfreie Nanoteilchen liefert, während die Stabilisatoren DACH und DMPDA den Einbau von Stapelfehlern begünstigen. In den jeweiligen Vergleichen mit der Rietveld- und Einzellinien-Anpassung fiel auf, dass diese Methoden für kleine Nanoteilchen Resultate liefern, die als deutlich weniger vertrauenswürdig einzustufen sind als jene, die mit der EM erhalten wurden. Der Grund sind die für kleine Teilchen nicht vernachlässigbaren Faktoren wie eine (anisotrope) Form, Oberflächeneffekte, Parameter-Verteilungen etc., welche nur mit der EM berücksichtigt werden können. Noch ungenauer fällt die Analyse per Absorptionsspektroskopie plus theoretischen Methoden aus. Die einzige CdS-Probe wies mit ca. 1.3 nm Durchmesser besonders kleine Nanoteilchen auf. Das zugehörige Beugungsbild zeigte daher nur noch sehr wenige Strukturen, was bereits die Bestimmung der Kristallstruktur erschwerte. Bei nur noch einigen gestapelten Schichten verloren auch die Stapelfehler ihre ursprüngliche Bedeutung. Die maßgebliche Frage bestand somit darin, ob man bei Kristalliten mit unter 100 Atomen noch von einer "normalen" Kristallstruktur sprechen kann, oder ob hier bereits andere Strukturformen vorliegen, z.B. ähnlich den C60-Molekülen. Da die EM solche Hohl-Strukturen ebenfalls simulieren kann, wäre der nächste Schritt, diese für sehr kleine Partikel im Vergleich zu den üblichen Kristallstrukturen zu testen. Bei den drei betrachteten Core-Shell-Proben zeigte die EM abermals ihre große Stärke, indem sie es ermöglichte, die deutlich komplexeren Teilchen realistisch zu simulieren. So war es möglich, die experimentellen Röntgenbeugungs-Daten hervorragend wiederzugeben, was mit keiner der Standardmethoden gelang. Hierfür war es nötig, neben dem CdSe-Kern eine zusätzliche ZnS-Schalenstruktur einzuführen. Zwar konnte bei den Proben mit der EM alleine nicht eindeutig festgestellt werden, welcher ZnS-Schalentypus vorliegt, es wurden jedoch diverse Anhaltspunkte gefunden, die für ein lokal-epitaktisches Wachstum auf dem CdSe-Kern sprechen. Für die Methode der EM selbst lässt sich in der Retrospektive folgendes fest halten: Sie ist den Standard-Techniken wie der Rietveld-Verfeinerung für sehr kleine Nanopartikel deutlich überlegen. Der Grund dafür sind die vielfältig modellierbaren Strukturen, welche Defekte, Oberflächeneffekte, Parameterverteilungen etc. beinhalten können. Ein weiterer großer Pluspunkt der EM gegenüber anderen Methoden besteht in der Möglichkeit, die immer populärer werdenden Core-Shell-Partikel mit vielfältigen Schalenarten zu simulieren, wobei hier auch noch weitere komplexere Optionen für Schalen, z.B. zweierlei Schalen (Core-Shell-Shell-Teilchen), vorstellbar sind. Die Tatsache, dass all diese Merkmale zudem intrinsisch in dem berechneten Beugungsbild enthalten sind, ist von besonderem Gewicht, da dies bedeutet, keine künstlichen Parameter einführen und diese interpretieren zu müssen. Solange eine gewisse Atomanzahl pro Partikel nicht überschritten wird, und v.a. bei defektbehafteten Nanoteilchen, stellt die EM somit die erste Wahl dar. N2 - The goal of this thesis was to determine the geometric structure of very small nanoparticles by means of powder x-ray diffraction and a novel analysis method called Ensemble Modeling (EM). The knowledge of the crystalline structure is a key feature to develop new theoretical models and thus to better understand the particles' properties. The analysis method itself is based on an atomic model of the particles, which is used to calculate the diffraction pattern via the Debye formula. Apart from the investigation of several nanoparticle samples, the capability of the new technique was tested - especially in comparison to commonly used standard methods like the Rietveld refinement or single-line fits. In contrast to the EM, these methods do not contain a real model of the particles. Altogether, three characteristic nanoparticle systems were used: First of all, five ZnO samples were investigated, which showed different particle sizes (2-15 nm) due to the use of different stabilizing molecules. In contrast, the CdS particles presented here had a diameter of only 1.3 nm, which is already at the transition to cluster physics. The last chapter introduced three samples of the more complex core-shell-nanoparticles, which, in this case, consisted of a CdSe core and a ZnS shell. By applying the EM as analysis method, all particle systems could be investigated in much more detail than with other analysis methods. The first ZnO sample served as an example to explain the stepwise procedure of the EM. After the particle shape was determined, more and more complex features were implemented in order to eventually arrive at the atomic model best reproducing the real particle ensemble. In case of the ZnO samples it was shown that the ligands play a significant role - not only for the size of the particles but also for their structural quality. A further finding due to the analysis with the EM is the high amount of stacking faults for particles stabilized with the ligands DACH or DMPDA, while TG favors a defect-free growth of ZnO nanoparticles. In comparison to the Rietveld method or to a single-line fit, the results for small nanoparticles given by the EM are much more reliable, since none of the other fitting methods can take features like the (anisotropic) particle shape, surface effects or parameter distributions into account. The same holds for a particles' size analysis via UV/Vis absorption spectroscopy together with theoretical models. The EM, in contrast, can account for all of these sophisticated structural features. The only CdS sample in this work contained extremely small particles of about 1.3 nm in diameter. The according diffraction pattern thus shows very broad reflections and little usable structure, thereby hindering a straight-forward analysis. Since the CdS particles consisted of only a few stacked layers, even the concept of stacking faults looses its meaning. The question arises, whether the term "crystal structure" is still appropriate for a particle with less than 100 Atoms. For instance, it would be possible that the particles form hollow structures similar to the C60 molecules. Since these structures can be simulated with the EM as well, this could be one next step to further analyse the XRD data of the CdS sample. The last chapter of this thesis introduced three samples of core-shell-nanoparticles, each with a CdSe core and a ZnS shell. Here again, the power of the EM method was demonstrated by forming a realistic model of these much complexer particles. The calculated diffraction patterns reproduced the experimental data very well - in contrast to all other analysis methods. The success of the EM was due to the implementation of an additional ZnS structure in the simulated model. Even if the shell type of this additional structure could not clearly be identified by XRD and our analysis, there is some strong evidence for a local epitaxy of the ZnS on the CdSe core. In conclusion, it was demonstrated that the EM method is far superior to any of the standard techniques for the diffraction pattern analysis of small nanoparticles. The particular strengths of the EM are the manifold structures, which can be simulated, together with defects, surface effects, parameter distributions etc. A further advantage over the other analysis methods is the possibility to form realistic core-shell-particles with a diversity of shell types. Even more complex shells are conceivable, e.g. a mixed shell or the double shell of the core-shell-shell-particles. All these features are intrinsically included in the models and thus in the diffraction patterns, i.e., no artificial parameters must be introduced and later be interpreted. As long as a certain amount of atoms per particle is not exceeded, and, especially for particles containing many defects, the EM introduced here should thus be preferred. KW - Nanopartikel KW - Röntgenstrukturanalyse KW - Ensemble-Modellierung KW - Core-shell Nanoteilchen KW - CdSe/ZnS Nanoteilchen KW - Strukturbestimmung KW - Röntgenbeugung KW - Zinkoxid KW - Cadmiumselenid KW - XRD KW - structure determination KW - nanoparticles KW - ensemble modeling Y1 - 2009 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-52218 ER -