TY - JOUR A1 - Schiefler, Carlotta A1 - Piontek, Guido A1 - Doescher, Johannes A1 - Schuettler, Dominik A1 - Mißlbeck, Martin A1 - Rudelius, Martina A1 - Haug, Anna A1 - Reiter, Rudolf A1 - Brockhoff, Gero A1 - Pickhard, Anja T1 - Inhibition of SphK1 reduces radiation-induced migration and enhances sensitivity to cetuximab treatment by affecting the EGFR/SphK1 crosstalk JF - Oncotarget N2 - SphK1 is known to play a role in tumor progression, resistance to radiochemotherapy, and migration patterns. As the overall survival rates of squamous cell carcinoma of the head and neck (HNSCC) remain poor due to limitations in surgery and irradiation and chemotherapy resistance, SphK1 is an important enzyme to investigate. The purpose of this study was to elucidate the impact of SphK1 on irradiation efficacy of HNSCC in-vitro with emphasis on EGFR signaling. By immunhistochemical staining we found a positive correlation between EGFR and SphK1 expression in patient specimens. In colony formation assays irradiation sensitive cell lines showed a poor response to cetuximab, an EGFR inhibitor, and SKI-II, a SphK1 inhibitor, and vice versa. In irradiation sensitive cells an enhanced reduction of cell migration and survival was found upon simultaneous targeting of EGFR and SphK1. In the present study, we elucidated a linkage between the two signaling pathways with regard to the efficacy of cetuximab treatment and the impact on the migration behavior of tumor cells. We investigated the biological impact of inhibiting these pathways and examined the biochemical implications after different treatments. An understanding of the processes involved could help to improve the treatment of patients with HNSCC. KW - radiation-induced migration KW - radiation KW - HNSCC KW - EGFR KW - SphK1 Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-120929 SN - 1949-2553 VL - 5 IS - 20 ER - TY - JOUR A1 - Pickhard, Anja A1 - Siegl, Michael A1 - Baumann, Alexander A1 - Huhn, Maximilian A1 - Wirth, Markus A1 - Reiter, Rudolf A1 - Rudelius, Martina A1 - Piontek, Guido A1 - Brockhoff, Gero T1 - The response of head and neck squamous cell carcinoma to cetuximab treatment depends on Aurora kinase A polymorphism JF - Oncotarget N2 - Objectives: The aim of this study was to evaluate the efficiency of cetuximab-based anti-EGFR treatment and Aurora kinase A / B knockdown as a function of Aurora kinase polymorphism in HNSCC cell lines. Materials and methods: First, protein expression of Aurora kinase A / B and EGFR and Aurora kinase A polymorphism were studied in tumour samples. The survival and proliferation of Aurora kinase A homo- (Cal27) and heterozygous (HN) HNSCC cell lines was evaluated using a colony formation assay and a flow cytometric assay. Also, aneuploidy was determined. EGFR signalling pathway were visualised by western blotting. Results: Immunohistochemistry revealed the overexpression of Aurora kinase A / B in HNSCC. The knockdown of each kinase caused a significant decrease in clonogenic survival, independent of Aurora kinase A polymorphism. In contrast, cetuximab treatment impaired clonogenic survival only in the Aurora kinase A-homozygous cell line (Cal27). Conclusion: This study provides in vitro evidence for the predictive value of Aurora kinase A polymorphism in the efficiency of cetuximab treatment. Resistance to cetuximab treatment can be overcome by simultaneous Aurora kinase A/B knockdown. KW - aurora kinase A polymorphism KW - aurorakinase B KW - cetuximab KW - HNSCC Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-120757 VL - 5 IS - 14 ER - TY - JOUR A1 - Herrmann, Ken A1 - Buck, Andreas K. A1 - Schuster, Tibor A1 - Abbrederis, Kathrin A1 - Blümel, Christina A1 - Santi, Ivan A1 - Rudelius, Martina A1 - Wester, Hans-Jürgen A1 - Peschel, Christian A1 - Schwaiger, Markus A1 - Dechow, Tobias A1 - Keller, Ulrich T1 - Week one FLT-PET response predicts complete remission to R-CHOP and survival in DLBCL JF - Oncotarget N2 - Despite improved survival in the Rituximab (R) era, a considerable number of patients with diffuse large B-cell lymphoma (DLBCL) ultimately die from the disease. Functional imaging using [18F]fluorodeoxyglucose-PET is suggested for assessment of residual viable tumor very early during treatment but is compromised by non-specific tracer retention in inflammatory lesions. The PET tracer [18F]fluorodeoxythymidine (FLT) as surrogate marker of tumor proliferation may overcome this limitation. We present results of a prospective clinical study testing FLT-PET as superior and early predictor of response to chemotherapy and outcome in DLBCL. 54 patients underwent FLT-PET prior to and one week after the start of R-CHOP chemotherapy. Repetitive FLT-PET imaging was readily implemented into the diagnostic work-up. Our data demonstrate that the reduction of FLT standard uptake valuemean (SUVmean) and SUVmax one week after chemotherapy was significantly higher in patients achieving complete response (CR, n=48; non-CR, n=6; p<0.006). Martingale-residual and Cox proportional hazard analyses showed a significant monotonous decrease of mortality risk with increasing change in SUV. Consistent with these results, early FLT-PET response showed relevant discriminative ability in predicting CR. In conclusion, very early FLT-PET in the course of R-CHOP chemotherapy is feasible and enables identification of patients at risk for treatment failure. KW - [18F]Fluorodeoxythymidine KW - FLT-PET KW - positron emission tomography KW - DLBCL KW - lymphoma Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-120659 SN - 1949-2553 VL - 5 IS - 12 ER - TY - JOUR A1 - Müller-Thomas, Catharina A1 - Rudelius, Martina A1 - Rondak, Ina-Christine A1 - Haferlach, Torsten A1 - Schanz, Julie A1 - Huberle, Christina A1 - Schmidt, Burkard A1 - Blaser, Rainer A1 - Kremer, Marcus A1 - Peschel, Christian A1 - Germing, Ulrich A1 - Platzbecker, Uwe A1 - Goetze, Katharina T1 - Response to azacitidine is independent of p53 expression in higher-risk myelodysplastic syndromes and secondary acute myeloid leukemia JF - HAEMATOLOGICA N2 - No abstract available. KW - TP53 mutations KW - DEL(5Q) KW - MDS KW - p53 expression KW - azacitidine KW - scoring system KW - prognosis KW - karyotype Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-115313 SN - 1592-8721 VL - 99 IS - 10 ER - TY - JOUR A1 - Gewies, Andreas A1 - Gorka, Oliver A1 - Bergmann, Hanna A1 - Pechloff, Konstanze A1 - Petermann, Franziska A1 - Jeltsch, Katharina M. A1 - Rudelius, Martina A1 - Kriegsmann, Mark A1 - Weichert, Wilko A1 - Horsch, Marion A1 - Beckers, Johannes A1 - Wurst, Wolfgang A1 - Heikenwalder, Mathias A1 - Korn, Thomas A1 - Heissmeyer, Vigo A1 - Ruland, Juergen T1 - Uncoupling Malt1 Threshold Function from Paracaspase Activity Results in Destructive Autoimmune Inflammation JF - Cell Reports N2 - The paracaspase Malt1 is a central regulator of antigen receptor signaling that is frequently mutated in human lymphoma. As a scaffold, it assembles protein complexes for NF-kappa B activation, and its proteolytic domain cleaves negative NF-kappa B regulators for signal enforcement. Still, the physiological functions of Malt1-protease are unknown. We demonstrate that targeted Malt1-paracaspase inactivation induces a lethal inflammatory syndrome with lymphocyte-dependent neurodegeneration in vivo. Paracaspase activity is essential for regulatory T cell (Treg) and innate-like B cell development, but it is largely dispensable for overcoming Malt1-dependent thresholds for lymphocyte activation. In addition to NF-kappa B inhibitors, Malt1 cleaves an entire set of mRNA stability regulators, including Roquin-1, Roquin-2, and Regnase-1, and paracaspase inactivation results in excessive interferon gamma (IFN gamma) production by effector lymphocytes that drive pathology. Together, our results reveal distinct threshold and modulatory functions of Malt1 that differentially control lymphocyte differentiation and activation pathways and demonstrate that selective paracaspase blockage skews systemic immunity toward destructive autoinflammation. KW - helper T-cells KW - combined immunodeficiency KW - messenger RNA KW - roquin KW - mice KW - NF-KAPPA-B KW - lymphoid-tissue KW - activation KW - cleavage KW - mutations Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-114627 VL - 9 IS - 4 ER -