TY - JOUR A1 - Baum, Petra A1 - Toyka, Klaus V. A1 - Blüher, Matthias A1 - Kosacka, Joanna A1 - Nowicki, Marcin T1 - Inflammatory mechanisms in the pathophysiology of diabetic peripheral neuropathy (DN) — new aspects JF - International Journal of Molecular Sciences N2 - The pathogenesis of diabetic neuropathy is complex, and various pathogenic pathways have been proposed. A better understanding of the pathophysiology is warranted for developing novel therapeutic strategies. Here, we summarize recent evidence from experiments using animal models of type 1 and type 2 diabetes showing that low-grade intraneural inflammation is a facet of diabetic neuropathy. Our experimental data suggest that these mild inflammatory processes are a likely common terminal pathway in diabetic neuropathy associated with the degeneration of intraepidermal nerve fibers. In contrast to earlier reports claiming toxic effects of high-iron content, we found the opposite, i.e., nutritional iron deficiency caused low-grade inflammation and fiber degeneration while in normal or high non-heme iron nutrition no or only extremely mild inflammatory signs were identified in nerve tissue. Obesity and dyslipidemia also appear to trigger mild inflammation of peripheral nerves, associated with neuropathy even in the absence of overt diabetes mellitus. Our finding may be the experimental analog of recent observations identifying systemic proinflammatory activity in human sensorimotor diabetic neuropathy. In a rat model of type 1 diabetes, a mild neuropathy with inflammatory components could be induced by insulin treatment causing an abrupt reduction in HbA1c. This is in line with observations in patients with severe diabetes developing a small fiber neuropathy upon treatment-induced rapid HbA1c reduction. If the inflammatory pathogenesis could be further substantiated by data from human tissues and intervention studies, anti-inflammatory compounds with different modes of action may become candidates for the treatment or prevention of diabetic neuropathy. KW - diabetic neuropathy KW - pathogenesis KW - inflammation KW - iron KW - treatment-induced neuropathy in diabetes (TIND) Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-284556 SN - 1422-0067 VL - 22 IS - 19 ER - TY - JOUR A1 - Baum, Petra A1 - Koj, Severin A1 - Klöting, Nora A1 - Blüher, Matthias A1 - Classen, Joseph A1 - Paeschke, Sabine A1 - Gericke, Martin A1 - Toyka, Klaus V. A1 - Nowicki, Marcin A1 - Kosacka, Joanna T1 - Treatment-induced neuropathy in diabetes (TIND) — Developing a disease model in type 1 diabetic rats JF - International Journal of Molecular Sciences N2 - Treatment-induced neuropathy in diabetes (TIND) is defined by the occurrence of an acute neuropathy within 8 weeks of an abrupt decrease in glycated hemoglobin-A1c (HbA1c). The underlying pathogenic mechanisms are still incompletely understood with only one mouse model being explored to date. The aim of this study was to further explore the hypothesis that an abrupt insulin-induced fall in HbA1c may be the prime causal factor of developing TIND. BB/OKL (bio breeding/OKL, Ottawa Karlsburg Leipzig) diabetic rats were randomized in three groups, receiving insulin treatment by implanted subcutaneous osmotic insulin pumps for 3 months, as follows: Group one received 2 units per day; group two 1 unit per day: and group three 1 unit per day in the first month, followed by 2 units per day in the last two months. We serially examined blood glucose and HbA1c levels, motor- and sensory/mixed afferent conduction velocities (mNCV and csNCV) and peripheral nerve morphology, including intraepidermal nerve fiber density and numbers of Iba-1 (ionized calcium binding adaptor molecule 1) positive macrophages in the sciatic nerve. Only in BB/OKL rats of group three, with a rapid decrease in HbA1c of more than 2%, did we find a significant decrease in mNCV in sciatic nerves (81% of initial values) after three months of treatment as compared to those group three rats with a less marked decrease in HbA1c <2% (mNCV 106% of initial values, p ≤ 0.01). A similar trend was observed for sensory/mixed afferent nerve conduction velocities: csNCV were reduced in BB/OKL rats with a rapid decrease in HbA1c >2% (csNCV 90% of initial values), compared to those rats with a mild decrease <2% (csNCV 112% of initial values, p ≤ 0.01). Moreover, BB/OKL rats of group three with a decrease in HbA1c >2% showed significantly greater infiltration of macrophages by about 50% (p ≤ 0.01) and a decreased amount of calcitonin gene related peptide (CGRP) positive nerve fibers as compared to the animals with a milder decrease in HbA1c. We conclude that a mild acute neuropathy with inflammatory components was induced in BB/OKL rats as a consequence of an abrupt decrease in HbA1c caused by high-dose insulin treatment. This experimentally induced neuropathy shares some features with TIND in humans and may be further explored in studies into the pathogenesis and treatment of TIND. KW - BB/OKL rats KW - peripheral neuropathy KW - sciatic nerve KW - TIND KW - Type 1 diabetes Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-285793 SN - 1422-0067 VL - 22 IS - 4 ER - TY - JOUR A1 - Hoffmann, Annett A1 - Ebert, Thomas A1 - Hankir, Mohammed K. A1 - Flehmig, Gesine A1 - Klöting, Nora A1 - Jessnitzer, Beate A1 - Lössner, Ulrike A1 - Stumvoll, Michael A1 - Blüher, Matthias A1 - Fasshauer, Mathias A1 - Tönjes, Anke A1 - Miehle, Konstanze A1 - Kralisch, Susan T1 - Leptin improves parameters of brown adipose tissue thermogenesis in lipodystrophic mice JF - Nutrients N2 - Lipodystrophy syndromes (LD) are a heterogeneous group of very rare congenital or acquired disorders characterized by a generalized or partial lack of adipose tissue. They are strongly associated with severe metabolic dysfunction due to ectopic fat accumulation in the liver and other organs and the dysregulation of several key adipokines, including leptin. Treatment with leptin or its analogues is therefore sufficient to reverse some of the metabolic symptoms of LD in patients and in mouse models through distinct mechanisms. Brown adipose tissue (BAT) thermogenesis has emerged as an important regulator of systemic metabolism in rodents and in humans, but it is poorly understood how leptin impacts BAT in LD. Here, we show in transgenic C57Bl/6 mice overexpressing sterol regulatory element-binding protein 1c in adipose tissue (Tg (aP2-nSREBP1c)), an established model of congenital LD, that daily subcutaneous administration of 3 mg/kg leptin for 6 to 8 weeks increases body temperature without affecting food intake or body weight. This is associated with increased protein expression of the thermogenic molecule uncoupling protein 1 (UCP1) and the sympathetic nerve marker tyrosine hydroxylase (TH) in BAT. These findings suggest that leptin treatment in LD stimulates BAT thermogenesis through sympathetic nerves, which might contribute to some of its metabolic benefits by providing a healthy reservoir for excess circulating nutrients. KW - lipodystrophy KW - leptin KW - brown adipose tissue KW - thermogenesis KW - uncoupling protein 1 KW - sympathetic nervous system Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-242787 SN - 2072-6643 VL - 13 IS - 8 ER -