TY - JOUR A1 - Dischinger, Ulrich A1 - Heckel, Tobias A1 - Bischler, Thorsten A1 - Hasinger, Julia A1 - Königsrainer, Malina A1 - Schmitt-Böhrer, Angelika A1 - Otto, Christoph A1 - Fassnacht, Martin A1 - Seyfried, Florian A1 - Hankir, Mohammed Khair T1 - Roux-en-Y gastric bypass and caloric restriction but not gut hormone-based treatments profoundly impact the hypothalamic transcriptome in obese rats JF - Nutrients N2 - Background: The hypothalamus is an important brain region for the regulation of energy balance. Roux-en-Y gastric bypass (RYGB) surgery and gut hormone-based treatments are known to reduce body weight, but their effects on hypothalamic gene expression and signaling pathways are poorly studied. Methods: Diet-induced obese male Wistar rats were randomized into the following groups: RYGB, sham operation, sham + body weight-matched (BWM) to the RYGB group, osmotic minipump delivering PYY3-36 (0.1 mg/kg/day), liraglutide s.c. (0.4 mg/kg/day), PYY3-36 + liraglutide, and saline. All groups (except BWM) were kept on a free choice of high- and low-fat diets. Four weeks after interventions, hypothalami were collected for RNA sequencing. Results: While rats in the RYGB, BWM, and PYY3-36 + liraglutide groups had comparable reductions in body weight, only RYGB and BWM treatment had a major impact on hypothalamic gene expression. In these groups, hypothalamic leptin receptor expression as well as the JAK–STAT, PI3K-Akt, and AMPK signaling pathways were upregulated. No significant changes could be detected in PYY3-36 + liraglutide-, liraglutide-, and PYY-treated groups. Conclusions: Despite causing similar body weight changes compared to RYGB and BWM, PYY3-36 + liraglutide treatment does not impact hypothalamic gene expression. Whether this striking difference is favorable or unfavorable to metabolic health in the long term requires further investigation. KW - obesity KW - Roux-en-Y gastric bypass surgery KW - liraglutide KW - PYY3-36 KW - hypothalamic gene expression Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-252392 SN - 2072-6643 VL - 14 IS - 1 ER - TY - JOUR A1 - Delgobo, Murilo A1 - Heinrichs, Margarete A1 - Hapke, Nils A1 - Ashour, DiyaaElDin A1 - Appel, Marc A1 - Srivastava, Mugdha A1 - Heckel, Tobias A1 - Spyridopoulos, Ioakim A1 - Hofmann, Ulrich A1 - Frantz, Stefan A1 - Ramos, Gustavo Campos T1 - Terminally Differentiated CD4\(^+\) T Cells Promote Myocardial Inflammaging JF - Frontiers in Immunology N2 - The cardiovascular and immune systems undergo profound and intertwined alterations with aging. Recent studies have reported that an accumulation of memory and terminally differentiated T cells in elderly subjects can fuel myocardial aging and boost the progression of heart diseases. Nevertheless, it remains unclear whether the immunological senescence profile is sufficient to cause age-related cardiac deterioration or merely acts as an amplifier of previous tissue-intrinsic damage. Herein, we sought to decompose the causality in this cardio-immune crosstalk by studying young mice harboring a senescent-like expanded CD4\(^+\) T cell compartment. Thus, immunodeficient NSG-DR1 mice expressing HLA-DRB1*01:01 were transplanted with human CD4\(^+\) T cells purified from matching donors that rapidly engrafted and expanded in the recipients without causing xenograft reactions. In the donor subjects, the CD4\(^+\) T cell compartment was primarily composed of naïve cells defined as CCR7\(^+\)CD45RO\(^-\). However, when transplanted into young lymphocyte-deficient mice, CD4\(^+\) T cells underwent homeostatic expansion, upregulated expression of PD-1 receptor and strongly shifted towards effector/memory (CCR7\(^-\) CD45RO\(^+\)) and terminally-differentiated phenotypes (CCR7\(^-\)CD45RO\(^-\)), as typically seen in elderly. Differentiated CD4\(^+\) T cells also infiltrated the myocardium of recipient mice at comparable levels to what is observed during physiological aging. In addition, young mice harboring an expanded CD4\(^+\) T cell compartment showed increased numbers of infiltrating monocytes, macrophages and dendritic cells in the heart. Bulk mRNA sequencing analyses further confirmed that expanding T-cells promote myocardial inflammaging, marked by a distinct age-related transcriptomic signature. Altogether, these data indicate that exaggerated CD4\(^+\) T-cell expansion and differentiation, a hallmark of the aging immune system, is sufficient to promote myocardial alterations compatible with inflammaging in juvenile healthy mice. KW - CD4+ T-cells KW - myocardial aging KW - inflammaging KW - NSG animals KW - immunosenescence KW - lymphocytes Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-229612 SN - 1664-3224 VL - 12 ER -