TY - JOUR A1 - Gentschev, Ivaylo A1 - Müller, Meike A1 - Adelfinger, Marion A1 - Weibel, Stephanie A1 - Grummt, Friedrich A1 - Zimmermann, Martina A1 - Bitzer, Michael A1 - Heisig, Martin A1 - Zhang, Qian A1 - Yu, Yong A. A1 - Chen, Nanhai G. A1 - Stritzker, Jochen A1 - Lauer, Ulrich M. A1 - Szalay, Aladar A. T1 - Efficient Colonization and Therapy of Human Hepatocellular Carcinoma (HCC) Using the Oncolytic Vaccinia Virus Strain GLV-1h68 JF - PLOS ONE N2 - Virotherapy using oncolytic vaccinia virus strains is one of the most promising new strategies for cancer therapy. In this study, we analyzed for the first time the therapeutic efficacy of the oncolytic vaccinia virus GLV-1h68 in two human hepatocellular carcinoma cell lines HuH7 and PLC/PRF/5 (PLC) in cell culture and in tumor xenograft models. By viral proliferation assays and cell survival tests, we demonstrated that GLV-1h68 efficiently colonized, replicated in, and did lyse these cancer cells in culture. Experiments with HuH7 and PLC xenografts have revealed that a single intravenous injection (i.v.) of mice with GLV-1h68 resulted in a significant reduction of primary tumor sizes compared to uninjected controls. In addition, replication of GLV-1h68 in tumor cells led to strong inflammatory and oncolytic effects resulting in intense infiltration of MHC class II-positive cells like neutrophils, macrophages, B cells and dendritic cells and in up-regulation of 13 pro-inflammatory cytokines. Furthermore, GLV-1h68 infection of PLC tumors inhibited the formation of hemorrhagic structures which occur naturally in PLC tumors. Interestingly, we found a strongly reduced vascular density in infected PLC tumors only, but not in the non-hemorrhagic HuH7 tumor model. These data demonstrate that the GLV-1h68 vaccinia virus may have an enormous potential for treatment of human hepatocellular carcinoma in man. KW - Breast-tumors KW - Nude-mice KW - In-vivo KW - Cancer KW - Inhibitor KW - Tissue KW - Agent KW - COX-2 Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-135319 VL - 6 IS - 7 ER - TY - JOUR A1 - Schierack, Peter A1 - Kleta, Sylvia A1 - Tedin, Karsten A1 - Babila, Julius Tachu A1 - Oswald, Sibylle A1 - Oelschlaeger, Tobias A. A1 - Hiemann, Rico A1 - Paetzold, Susanne A1 - Wieler, Lothar H. T1 - E. coli Nissle 1917 Affects Salmonella Adhesion to Porcine Intestinal Epithelial Cells JF - PLoS ONE N2 - Background: The probiotic Escherichia coli strain Nissle 1917 (EcN) has been shown to interfere in a human in vitro model with the invasion of several bacterial pathogens into epithelial cells, but the underlying molecular mechanisms are not known. Methodology/Principal Findings: In this study, we investigated the inhibitory effects of EcN on Salmonella Typhimurium invasion of porcine intestinal epithelial cells, focusing on EcN effects on the various stages of Salmonella infection including intracellular and extracellular Salmonella growth rates, virulence gene regulation, and adhesion. We show that EcN affects the initial Salmonella invasion steps by modulating Salmonella virulence gene regulation and Salmonella SiiE-mediated adhesion, but not extra-and intracellular Salmonella growth. However, the inhibitory activity of EcN against Salmonella invasion always correlated with EcN adhesion capacities. EcN mutants defective in the expression of F1C fimbriae and flagellae were less adherent and less inhibitory toward Salmonella invasion. Another E. coli strain expressing F1C fimbriae was also adherent to IPEC-J2 cells, and was similarly inhibitory against Salmonella invasion like EcN. Conclusions: We propose that EcN affects Salmonella adhesion through secretory components. This mechanism appears to be common to many E. coli strains, with strong adherence being a prerequisite for an effective reduction of SiiE-mediated Salmonella adhesion. KW - Nonpathogenic Escherichia-coli KW - Enterica serovar typhimurium KW - Strain nissle-1917 KW - In-vitro KW - Invasion genes KW - Diarrhea KW - Growth KW - Expression KW - Infection KW - PPGPP Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-135298 VL - 6 IS - 2 ER - TY - JOUR A1 - Hertlein, Tobias A1 - Sturm, Volker A1 - Kircher, Stefan A1 - Basse-Lüsebrink, Thomas A1 - Haddad, Daniel A1 - Ohlsen, Knut A1 - Jakob, Peter T1 - Visualization of Abscess Formation in a Murine Thigh Infection Model of \(Staphylococcus\) \(aureus\) by (19)F-Magnetic Resonance Imaging (MRI) JF - PLoS ONE N2 - Background: During the last years, (19)F-MRI and perfluorocarbon nanoemulsion (PFC) emerged as a powerful contrast agent methodology to track cells and to visualize inflammation. We applied this new modality to visualize deep tissue abscesses during acute and chronic phase of inflammation caused by Staphylococcus aureus infection. Methodology and Principal Findings: In this study, a murine thigh infection model was used to induce abscess formation and PFC or CLIO (cross linked ironoxides) was administered during acute or chronic phase of inflammation. 24 h after inoculation, the contrast agent accumulation was imaged at the site of infection by MRI. Measurements revealed a strong accumulation of PFC at the abscess rim at acute and chronic phase of infection. The pattern was similar to CLIO accumulation at chronic phase and formed a hollow sphere around the edema area. Histology revealed strong influx of neutrophils at the site of infection and to a smaller extend macrophages during acute phase and strong influx of macrophages at chronic phase of inflammation. Conclusion and Significance: We introduce (19)F-MRI in combination with PFC nanoemulsions as a new platform to visualize abscess formation in a murine thigh infection model of S. aureus. The possibility to track immune cells in vivo by this modality offers new opportunities to investigate host immune response, the efficacy of antibacterial therapies and the influence of virulence factors for pathogenesis. KW - Soft-tissue infection KW - In-vivo KW - Iron-oxide KW - F-19 MRI KW - Inflammation KW - Particles KW - Tracking KW - Lesions KW - Images KW - Rats Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-142846 VL - 6 IS - 3 ER - TY - JOUR A1 - Cull, Benjamin A1 - Lima Prado Godinho, Joseane A1 - Fernandes Rodrigues, Juliany Cola A1 - Frank, Benjamin A1 - Schurigt, Uta A1 - Williams, Roderick AM A1 - Coombs, Graham H A1 - Mottram, Jeremy C T1 - Glycosome turnover in Leishmania major is mediated by autophagy JF - Autophagy N2 - Autophagy is a central process behind the cellular remodeling that occurs during differentiation of Leishmania, yet the cargo of the protozoan parasite's autophagosome is unknown. We have identified glycosomes, peroxisome-like organelles that uniquely compartmentalize glycolytic and other metabolic enzymes in Leishmania and other kinetoplastid parasitic protozoa, as autophagosome cargo. It has been proposed that the number of glycosomes and their content change during the Leishmania life cycle as a key adaptation to the different environments encountered. Quantification of RFP-SQL-labeled glycosomes showed that promastigotes of L. major possess ~20 glycosomes per cell, whereas amastigotes contain ~10. Glycosome numbers were significantly greater in promastigotes and amastigotes of autophagy-defective L. major Δatg5 mutants, implicating autophagy in glycosome homeostasis and providing a partial explanation for the previously observed growth and virulence defects of these mutants. Use of GFP-ATG8 to label autophagosomes showed glycosomes to be cargo in ~15% of them; glycosome-containing autophagosomes were trafficked to the lysosome for degradation. The number of autophagosomes increased 10-fold during differentiation, yet the percentage of glycosome-containing autophagosomes remained constant. This indicates that increased turnover of glycosomes was due to an overall increase in autophagy, rather than an upregulation of autophagosomes containing this cargo. Mitophagy of the single mitochondrion was not observed in L. major during normal growth or differentiation; however, mitochondrial remnants resulting from stress-induced fragmentation colocalized with autophagosomes and lysosomes, indicating that autophagy is used to recycle these damaged organelles. These data show that autophagy in Leishmania has a central role not only in maintaining cellular homeostasis and recycling damaged organelles but crucially in the adaptation to environmental change through the turnover of glycosomes. KW - ATG8 KW - Leishmania KW - TEM KW - glycosome KW - protozoan parasite KW - ATG KW - autophagy-related KW - GFP KW - green fluorescent protein KW - MVT KW - multivesicular tubule KW - RFP KW - red fluorescent protein KW - transmission electron microscopy KW - adaptation KW - autophagy KW - mC KW - mCherry KW - fluorescent protein Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-150277 VL - 10 IS - 12 ER - TY - JOUR A1 - Bergmiller, Tobias A1 - Pena-Miller, Rafael A1 - Boehm, Alexander A1 - Ackermann, Martin T1 - Single-cell time-lapse analysis of depletion of the universally conserved essential protein YgjD JF - BMC Microbiology N2 - Background: The essential Escherichia coli gene ygjD belongs to a universally conserved group of genes whose function has been the focus of a number of recent studies. Here, we put ygjD under control of an inducible promoter, and used time-lapse microscopy and single cell analysis to investigate the phenotypic consequences of the depletion of YgjD protein from growing cells. Results: We show that loss of YgjD leads to a marked decrease in cell size and termination of cell division. The transition towards smaller size occurs in a controlled manner: cell elongation and cell division remain coupled, but cell size at division decreases. We also find evidence that depletion of YgjD leads to the synthesis of the intracellular signaling molecule (p) ppGpp, inducing a cellular reaction resembling the stringent response. Concomitant deletion of the relA and spoT genes - leading to a strain that is uncapable of synthesizing (p) ppGpp abrogates the decrease in cell size, but does not prevent termination of cell division upon YgjD depletion. Conclusions: Depletion of YgjD protein from growing cells leads to a decrease in cell size that is contingent on (p) ppGpp, and to a termination of cell division. The combination of single-cell time-lapse microscopy and statistical analysis can give detailed insights into the phenotypic consequences of the loss of essential genes, and can thus serve as a new tool to study the function of essential genes. KW - Transfer-RNA modification KW - Escherichia-coli K-12 KW - Gene KW - Division KW - Expression KW - Inactivation KW - Maintenance KW - Growth KW - Level KW - Ftsz Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-142324 VL - 11 IS - 118 ER - TY - JOUR A1 - Chen, Nanhai G. A1 - Yu, Yong A. A1 - Zhang, Qian A1 - Szalay, Aladar A. T1 - Replication efficiency of oncolytic vaccinia virus in cell cultures prognosticates the virulence and antitumor efficacy in mice JF - Journal of Translational Medicine N2 - Background: We have shown that insertion of the three vaccinia virus (VACV) promoter-driven foreign gene expression cassettes encoding Renilla luciferase-Aequorea GFP fusion protein, beta-galactosidase, and beta-glucuronidase into the F14.5L, J2R, and A56R loci of the VACV LIVP genome, respectively, results in a highly attenuated mutant strain GLV 1h68. This strain shows tumor specific replication and is capable of eradicating tumors with little or no virulence in mice. This study aimed to distinguish the contribution of added VACV promoter-driven transcriptional units as inserts from the effects of insertional inactivation of three viral genes, and to determine the correlation between replication efficiency of oncolytic vaccinia virus in cell cultures and the virulence and antitumor efficacy in mice Methods: A series of recombinant VACV strains was generated by replacing one, two, or all three of the expression cassettes in GLV 1h68 with short non coding DNA sequences. The replication efficiency and tumor cell killing capacity of these newly generated VACV strains were compared with those of the parent virus GLV-1h68 in cell cultures. The virus replication efficiency in tumors and antitumor efficacy as well as the virulence were evaluated in nu/nu (nude) mice bearing human breast tumor xenografts. Results: we found that virus replication efficiency increased with removal of each of the expression cassettes. The increase in virus replication efficiency was proportionate to the strength of removed VACV promoters linked to foreign genes. The replication efficiency of the new VACV strains paralleled their cytotoxicity in cell cultures. The increased replication efficiency in tumor xenografts resulted in enhanced antitumor efficacy in nude mice. Similarly, the enhanced virus replication efficiency was indicative of increased virulence in nude mice. Conclusions: These data demonstrated that insertion of VACV promoter-driven transcriptional units into the viral genome for the purpose of insertional mutagenesis did modulate the efficiency of virus replication together with antitumor efficacy as well as virulence. Replication efficiency of oncolytic VACV in cell cultures can predict the virulence and therapeutic efficacy in nude mice. These findings may be essential for rational design of safe and potent VACV strains for vaccination and virotherapy of cancer in humans and animals. KW - Recombinant vaccinia KW - Nude-mice KW - Cancer KW - GLV-1H68 KW - Therapy KW - Agent KW - Regression KW - Carcinoma KW - Deletion KW - Protein KW - modulation of virus replication KW - GI-101A tumor xenografts KW - oncolytic virotherapy Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-142268 VL - 9 IS - 164 ER - TY - THES A1 - Lerch, Maike Franziska T1 - Characterisation of a novel non-coding RNA and its involvement in polysaccharide intercellular adhesin (PIA)-mediated biofilm formation of \(Staphylococcus\) \(epidermidis\) T1 - Charakterisierung einer neuen nicht-kodierenden RNA und deren Beteiligung an der PIA-vermittelten Biofilmbildung von \(Staphylococcus\) \(epidermidis\) N2 - Coagulase-negative staphylococci, particularly Staphylococcus epidermidis, have been recognised as an important cause of health care-associated infections due to catheterisation, and livestock-associated infections. The colonisation of indwelling medical devices is achieved by the formation of biofilms, which are large cell-clusters surrounded by an extracellular matrix. This extracellular matrix consists mainly of PIA (polysaccharide intercellular adhesin), which is encoded by the icaADBC-operon. The importance of icaADBC in clinical strains provoking severe infections initiated numerous investigations of this operon and its regulation within the last two decades. The discovery of a long transcript being located next to icaADBC, downstream of the regulator gene icaR, led to the hypothesis of a possible involvement of this transcript in the regulation of biofilm formation (Eckart, 2006). Goal of this work was to characterise this transcript, named ncRNA IcaZ, in molecular detail and to uncover its functional role in S. epidermidis. The ~400 nt long IcaZ is specific for ica-positive S. epidermidis and is transcribed in early- and mid-exponential growth phase as primary transcript. The promotor sequence and the first nucleotides of icaZ overlap with the 3' UTR of the preceding icaR gene, whereas the terminator sequence is shared by tRNAThr-4, being located convergently to icaZ. Deletion of icaZ resulted in a macroscopic biofilm-negative phenotype with highly diminished PIA-biofilm. Biofilm composition was analysed in vitro by classical crystal violet assays and in vivo by confocal laser scanning microscopy under flow conditions to display biofilm formation in real-time. The mutant showed clear defects in initial adherence and decreased cell-cell adherence, and was therefore not able to form a proper biofilm under flow in contrast to the wildtype. Restoration of PIA upon providing icaZ complementation from plasmids revealed inconsistent results in the various mutant backgrounds. To uncover the functional role of IcaZ, transcriptomic and proteomic analysis was carried out, providing some hints on candidate targets, but the varying biofilm phenotypes of wildtype and icaZ mutants made it difficult to identify direct IcaZ mRNA targets. Pulse expression of icaZ was then used as direct fishing method and computational target predictions were executed with candidate mRNAs from aforesaid approaches. The combined data of these analyses suggested an involvement of icaR in IcaZ-mediated biofilm control. Therefore, RNA binding assays were established for IcaZ and icaR mRNA. A positive gel shift was maintained with icaR 3' UTR and with 5'/3' icaR mRNA fusion product, whereas no gel shift was obtained with icaA mRNA. From these assays, it was assumed that IcaZ regulates icaR mRNA expression in S. epidermidis. S. aureus instead lacks ncRNA IcaZ and its icaR mRNA was shown to undergo autoregulation under so far unknown circumstances by intra- or intermolecular binding of 5' UTR and 3' UTR (Ruiz de los Mozos et al., 2013). Here, the Shine-Dalgarno sequence is blocked through 5'/3' UTR base pairing and RNase III, an endoribonuclease, degrades icaR mRNA, leading to translational blockade. In this work, icaR mRNA autoregulation was therefore analysed experimentally in S. epidermidis and results showed that this specific autoregulation does not take place in this organism. An involvement of RNase III in the degradation process could not be verified here. GFP-reporter plasmids were generated to visualise the interaction, but have to be improved for further investigations. In conclusion, IcaZ was found to interact with icaR mRNA, thereby conceivably interfering with translation initiation of repressor IcaR, and thus to promote PIA synthesis and biofilm formation. In addition, the environmental factor ethanol was found to induce icaZ expression, while only weak or no effects were obtained with NaCl and glucose. Ethanol, actually is an ingredient of disinfectants in hospital settings and known as efficient effector for biofilm induction. As biofilm formation on medical devices is a critical factor hampering treatment of S. epidermidis infections in clinical care, the results of this thesis do not only contribute to better understanding of the complex network of biofilm regulation in staphylococci, but may also have practical relevance in the future. N2 - Koagulase-negative Staphylokokken besiedeln die menschliche und tierische Haut, sowie die Schleimhäute. Durch Läsionen oder das Einbringen von medizinischen Instrumenten wie Kathetern gelangen sie in tiefere Hautschichten oder die Blutbahn und können dort schwerwiegende Infektionen auslösen, vor Allem bei Risikopersonen. Besonders Staphylococcus epidermidis hat sich als Verursacher von nosokomialen Infektionen, aber auch als Pathogen in der Tierhaltung etabliert. Die Bakterien bilden bei der Besiedlung sogenannte Biofilme aus (d.h. eine Akkumulation der Keime, die von einer extrazellulären Matrix umgeben sind). Diese Matrix besteht neben Proteinen und eDNA hauptsächlich aus einem Polysaccharid, dem interzellulären Adhäsin PIA (engl.: polysaccharide intercellular adhesin). Dieses wird durch die Ica-Proteine synthetisiert, die im icaADBC-Operon (engl.: intercellular adhesin operon) kodiert sind. Das Operon hat große Bedeutung in klinischen Stämmen und wurde daher innerhalb der letzten beiden Jahrzehnte eingehend untersucht, auch im Hinblick auf seine Regulation. In der unmittelbaren Umgebung des icaADBC-Operons, stromabwärts des icaR Gens, das für den Repressor des ica-Operons (IcaR) kodiert, wurde ein großes Transkript identifiziert, von dem vermutet wird, dass es möglicherweise an der Regulation der Biofilmbildung beteiligt ist (Eckart, 2006). Ziel dieser Arbeit war es, dieses Transkript zu charakterisieren und seine Funktion in S. epidermidis aufzudecken. Die nicht-kodierende RNA, genannt IcaZ, hat eine Länge von ~400 nt und ist spezifisch für ica-positive S. epidermidis. Sie wird in der frühen bis mittleren exponentiellen Phase temperaturabhängig exprimiert. Stromaufwärts überlappt das icaZ-Gen und dessen Promotor mit der 3' UTR vom icaR-Gen. Stromabwärts wird das icaZ-Gen vom einem Transkriptionsterminator begrenzt, der auch für das tRNAThr-4-Gen benutzt wird, das auf dem gegenüberliegenden Strang in Richtung des icaZ-Gens lokalisiert ist. Die Deletion der RNA führte zu einem makroskopisch sichtbaren Biofilm-negativen Phänotyp mit deutlich verminderter PIA Bildung. Die Biofilmzusammensetzung wurde in vitro mittels eines klassischen Kristallviolett-Assays gemessen und die Biofilmbildung in vivo in Echtzeit mittels konfokaler Mikroskopie (CLSM) betrachtet. Dabei wurde mit einer peristaltischen Pumpe ein Mediumfluss appliziert. Die Mutante zeigte klare Defekte in der initialen Adhärenz und in der Zell-Zell Adhäsion. Sie bildete im Gegensatz zum Wildtyp keinen strukturierten Biofilm aus. Zur Komplementierung des Biofilms wurde die IcaZ von einem Plasmid exprimiert und die Biofilmzusammensetzung nach 18-20 Stunden Wachstum gemessen. Die Ergebnisse dieser Untersuchungen in den verschiedenen Mutanten waren nicht eindeutig. Um die Funktion von IcaZ aufzudecken, wurden Transkriptom- und Proteomvergleiche zwischen Wildtyp und Mutante gemacht. Diese lieferten einige Hinweise, aber da der metabolische Unterschied eines Biofilmbildners zu einem Nicht-Biofilmbildner zu groß war, wurde eine direktere Methode angewandt, die induzierte Expression (Pulsexpression). Zudem wurden potentielle Interaktionspartner der IcaZ mittels computer-basierter Bindungsvorhersagen analysiert. Die icaR mRNA kristallisierte sich dabei als Target heraus und die Interaktion zwischen IcaZ und icaR mRNA wurde mit Gelshift-Assays (EMSA) untersucht. Eine Bandenverschiebung wurde mit icaR 3' UTR und mit dem icaR-5'-3' UTR-Fusionsprodukt detektiert, wohingegen keine Interaktion zwischen IcaZ und icaA mRNA stattfand. Aufgrund dieser Assays wurde vermutet, dass IcaZ die Translation von icaR in S. epidermidis reguliert. In S. aureus fehlt die nicht-kodierende RNA IcaZ und für icaR mRNA wurde eine Autoregulation gezeigt, bei der die icaR 5' UTR mit der icaR 3' UTR intramolekular oder intermolekular durch Basenpaarung interagiert, wodurch die Shine-Dalgarno Sequenz blockiert wird und es aufgrund dessen zu einer Hemmung der Translation kommt. Die Umweltfaktoren, die dazu führen sind bisher unbekannt. Der Komplex wird durch eine Endoribonuklease, RNase III, abgebaut (Ruiz de los Mozos et al., 2013). In S. epidermidis wurde eine solche Interaktion theoretisch ausgeschlossen. Experimentelle Analysen dieser Arbeit haben gezeigt, dass diese Autoregulation in S. epidermidis nicht stattfinden kann und es wird angenommen, dass IcaZ diese Regulation übernimmt. Um die Interaktion zu visualisieren wurden GFP-Reporter Plasmide generiert, die aber für weitere Experimente noch zu verbessern sind. Zusammenfassend lässt sich sagen, dass IcaZ mit der icaR mRNA interagiert, was höchstwahrscheinlich zu einer Hemmung der Translation des Repressors IcaR führt und damit letztlich PIA-Synthese und Biofilmbildung positiv reguliert. Zusätzlich wurde gefunden, dass Ethanol die Expression der IcaZ-RNA induziert, während NaCl nur schwache Effekte zeigte und Glucose keinen Einfluss auf die Expression von icaZ hatte. Ethanol ist ein Bestandteil von Desinfektionsmitteln, die in Krankenhäusern verwendet werden und ist bekannt dafür Biofilmbildung auszulösen. Da die Bildung von Biofilmen auf medizinischen Geräten kritisch ist und diese die Behandlung von S. epidermidis Infektionen erschweren, tragen die Ergebnisse dieser Arbeit nicht nur zu einem besseren Verständnis des komplexen Netzwerks der Biofilmregulation bei, sondern haben möglicherweise auch praktischen Nutzen in der Zukunft. KW - Biofilm KW - Staphylococcus epidermidis KW - Non-coding RNA KW - Hospitalismus KW - icaADBC KW - Nosocomial Infections KW - Polysaccharide intercellular adhesin (PIA) KW - Biofilm formation KW - non-coding RNA KW - ncRNA KW - Nosokomiale Infektionen Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-155777 ER - TY - JOUR A1 - Boes, Alexander A1 - Spiegel, Holger A1 - Voepel, Nadja A1 - Edgue, Gueven A1 - Beiss, Veronique A1 - Kapelski, Stephanie A1 - Fendel, Rolf A1 - Scheuermayer, Matthias A1 - Pradel, Gabriele A1 - Bolscher, Judith M. A1 - Behet, Marije C. A1 - Dechering, Koen J. A1 - Hermsen, Cornelus C. A1 - Sauerwein, Robert W. A1 - Schillberg, Stefan A1 - Reimann, Andreas A1 - Fischer, Rainer T1 - Analysis of a multi-component multi-stage malaria vaccine candidate—tackling the cocktail challenge JF - PLoS ONE N2 - Combining key antigens from the different stages of the P. falciparum life cycle in the context of a multi-stage-specific cocktail offers a promising approach towards the development of a malaria vaccine ideally capable of preventing initial infection, the clinical manifestation as well as the transmission of the disease. To investigate the potential of such an approach we combined proteins and domains (11 in total) from the pre-erythrocytic, blood and sexual stages of P. falciparum into a cocktail of four different components recombinantly produced in plants. After immunization of rabbits we determined the domain-specific antibody titers as well as component-specific antibody concentrations and correlated them with stage specific in vitro efficacy. Using purified rabbit immune IgG we observed strong inhibition in functional in vitro assays addressing the pre-erythrocytic (up to 80%), blood (up to 90%) and sexual parasite stages (100%). Based on the component-specific antibody concentrations we calculated the IC50 values for the pre-erythrocytic stage (17–25 μg/ml), the blood stage (40–60 μg/ml) and the sexual stage (1.75 μg/ml). While the results underline the feasibility of a multi-stage vaccine cocktail, the analysis of component-specific efficacy indicates significant differences in IC50 requirements for stage-specific antibody concentrations providing valuable insights into this complex scenario and will thereby improve future approaches towards malaria vaccine cocktail development regarding the selection of suitable antigens and the ratios of components, to fine tune overall and stage-specific efficacy. KW - malaria KW - vaccines KW - antibodies KW - P. falciparum Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-173092 VL - 10 IS - 7 ER - TY - JOUR A1 - Hill, Philip J. A1 - Stritzker, Jochen A1 - Scadeng, Miriam A1 - Geissinger, Ulrike A1 - Haddad, Daniel A1 - Basse-Lüsebrink, Thomas C. A1 - Gbureck, Uwe A1 - Jakob, Peter A1 - Szalay, Aladar A. T1 - Magnetic Resonance Imaging of Tumors Colonized with Bacterial Ferritin-Expressing \(Escherichia\) \(coli\) JF - PLoS ONE N2 - Background: Recent studies have shown that human ferritin can be used as a reporter of gene expression for magnetic resonance imaging (MRI). Bacteria also encode three classes of ferritin-type molecules with iron accumulation properties. Methods and Findings: Here, we investigated whether these bacterial ferritins can also be used as MRI reporter genes and which of the bacterial ferritins is the most suitable reporter. Bacterial ferritins were overexpressed in probiotic E. coli Nissle 1917. Cultures of these bacteria were analyzed and those generating highest MRI contrast were further investigated in tumor bearing mice. Among members of three classes of bacterial ferritin tested, bacterioferritin showed the most promise as a reporter gene. Although all three proteins accumulated similar amounts of iron when overexpressed individually, bacterioferritin showed the highest contrast change. By site-directed mutagenesis we also show that the heme iron, a unique part of the bacterioferritin molecule, is not critical for MRI contrast change. Tumor-specific induction of bacterioferritin-expression in colonized tumors resulted in contrast changes within the bacteria-colonized tumors. Conclusions: Our data suggest that colonization and gene expression by live vectors expressing bacterioferritin can be monitored by MRI due to contrast changes. KW - Blood-brain barrier KW - Gene-expression KW - Salmonella-typhimurium KW - Sugar-transport KW - Breast-tumors KW - MRI reporter KW - Iron-uptake KW - Proteins KW - Therapy KW - Mice Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-140920 VL - 6 IS - 10 ER - TY - JOUR A1 - Firdessa, Rebuma A1 - Good, Liam A1 - Amstalden, Maria Cecilia A1 - Chindera, Kantaraja A1 - Kamaruzzaman, Nor Fadhilah A1 - Schultheis, Martina A1 - Röger, Bianca A1 - Hecht, Nina A1 - Oelschlaeger, Tobias A. A1 - Meinel, Lorenz A1 - Lühmann, Tessa A1 - Moll, Heidrun T1 - Pathogen- and host-directed antileishmanial effects mediated by polyhexanide (PHMB) JF - PLoS Neglected Tropical Diseases N2 - Background Cutaneous leishmaniasis (CL) is a neglected tropical disease caused by protozoan parasites of the genus Leishmania. CL causes enormous suffering in many countries worldwide. There is no licensed vaccine against CL, and the chemotherapy options show limited efficacy and high toxicity. Localization of the parasites inside host cells is a barrier to most standard chemo- and immune-based interventions. Hence, novel drugs, which are safe, effective and readily accessible to third-world countries and/or drug delivery technologies for effective CL treatments are desperately needed. Methodology/Principal Findings Here we evaluated the antileishmanial properties and delivery potential of polyhexamethylene biguanide (PHMB; polyhexanide), a widely used antimicrobial and wound antiseptic, in the Leishmania model. PHMB showed an inherent antileishmanial activity at submicromolar concentrations. Our data revealed that PHMB kills Leishmania major (L. major) via a dual mechanism involving disruption of membrane integrity and selective chromosome condensation and damage. PHMB's DNA binding and host cell entry properties were further exploited to improve the delivery and immunomodulatory activities of unmethylated cytosine-phosphate-guanine oligodeoxynucleotides (CpG ODN). PHMB spontaneously bound CpG ODN, forming stable nanopolyplexes that enhanced uptake of CpG ODN, potentiated antimicrobial killing and reduced host cell toxicity of PHMB. Conclusions Given its low cost and long history of safe topical use, PHMB holds promise as a drug for CL therapy and delivery vehicle for nucleic acid immunomodulators. KW - resistance KW - activation KW - dendritic cells KW - Cutaneous leishmaniasis KW - topical treatment KW - biocide polyhexamethylene biguanide KW - experimental visceral leishmaniasis KW - drug-delivery systems KW - therapy KW - paromomycin Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-148162 VL - 9 IS - 10 ER - TY - JOUR A1 - Belair, Cédric A1 - Baud, Jessica A1 - Chabas, Sandrine A1 - Sharma, Cynthia M A1 - Vogel, Jörg A1 - Staedel, Cathy A1 - Darfeuille, Fabien T1 - Helicobacter pylori interferes with an embryonic stem cell micro RNA cluster to block cell cycle progression JF - Silence : a Journal of RNA regulation N2 - Background MicroRNAs, post-transcriptional regulators of eukaryotic gene expression, are implicated in host defense against pathogens. Viruses and bacteria have evolved strategies that suppress microRNA functions, resulting in a sustainable infection. In this work we report that Helicobacter pylori, a human stomach-colonizing bacterium responsible for severe gastric inflammatory diseases and gastric cancers, downregulates an embryonic stem cell microRNA cluster in proliferating gastric epithelial cells to achieve cell cycle arrest. Results Using a deep sequencing approach in the AGS cell line, a widely used cell culture model to recapitulate early events of H. pylori infection of gastric mucosa, we reveal that hsa-miR-372 is the most abundant microRNA expressed in this cell line, where, together with hsa-miR-373, it promotes cell proliferation by silencing large tumor suppressor homolog 2 (LATS2) gene expression. Shortly after H. pylori infection, miR-372 and miR-373 synthesis is highly inhibited, leading to the post-transcriptional release of LATS2 expression and thus, to a cell cycle arrest at the G1/S transition. This downregulation of a specific cell-cycle-regulating microRNA is dependent on the translocation of the bacterial effector CagA into the host cells, a mechanism highly associated with the development of severe atrophic gastritis and intestinal-type gastric carcinoma. Conclusions These data constitute a novel example of host-pathogen interplay involving microRNAs, and unveil the couple LATS2/miR-372 and miR-373 as an unexpected mechanism in infection-induced cell cycle arrest in proliferating gastric cells, which may be relevant in inhibition of gastric epithelium renewal, a major host defense mechanism against bacterial infections. KW - MicroRNAs KW - cell cycle KW - Helicobacter pylori KW - gastric cancer Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-140438 VL - 2 IS - 7 ER - TY - JOUR A1 - Okoro, Chinyere K. A1 - Barquist, Lars A1 - Connor, Thomas R. A1 - Harris, Simon R. A1 - Clare, Simon A1 - Stevens, Mark P. A1 - Arends, Mark J. A1 - Hale, Christine A1 - Kane, Leanne A1 - Pickard, Derek J. A1 - Hill, Jennifer A1 - Harcourt, Katherine A1 - Parkhill, Julian A1 - Dougan, Gordon A1 - Kingsley, Robert A. T1 - Signatures of adaptation in human invasive Salmonella Typhimurium ST313 populations from sub-Saharan Africa JF - PLoS Neglected Tropical Diseases N2 - Two lineages of Salmonella enterica serovar Typhimurium (S. Typhimurium) of multi-locus sequence type ST313 have been linked with the emergence of invasive Salmonella disease across sub-Saharan Africa. The expansion of these lineages has a temporal association with the HIV pandemic and antibiotic usage. We analysed the whole genome sequence of 129 ST313 isolates representative of the two lineages and found evidence of lineage-specific genome degradation, with some similarities to that observed in S. Typhi. Individual ST313 S. Typhimurium isolates exhibit a distinct metabolic signature and modified enteropathogenesis in both a murine and cattle model of colitis, compared to S. Typhimurium outside of the ST313 lineages. These data define phenotypes that distinguish ST313 isolates from other S. Typhimurium and may represent adaptation to a distinct pathogenesis and lifestyle linked to an-immuno-compromised human population. KW - genome sequence KW - infection KW - pathogenicity KW - children KW - disease KW - adults KW - identification KW - Escherichia coli KW - virulence Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-143779 VL - 9 IS - 3 ER - TY - JOUR A1 - Dembek, Marcin A1 - Barquist, Lars A1 - Boinett, Christine J. A1 - Cain, Amy K. A1 - Mayho, Matthew A1 - Lawley, Trevor D. A1 - Fairweather, Neil F. A1 - Fagan, Robert P. T1 - High-throughput analysis of gene essentiality and sporulation in Clostridium difficile JF - mBio N2 - Clostridium difficile is the most common cause of antibiotic-associated intestinal infections and a significant cause of morbidity and mortality. Infection with C. difficile requires disruption of the intestinal microbiota, most commonly by antibiotic usage. Therapeutic intervention largely relies on a small number of broad-spectrum antibiotics, which further exacerbate intestinal dysbiosis and leave the patient acutely sensitive to reinfection. Development of novel targeted therapeutic interventions will require a detailed knowledge of essential cellular processes, which represent attractive targets, and species-specific processes, such as bacterial sporulation. Our knowledge of the genetic basis of C. difficile infection has been hampered by a lack of genetic tools, although recent developments have made some headway in addressing this limitation. Here we describe the development of a method for rapidly generating large numbers of transposon mutants in clinically important strains of C. difficile. We validated our transposon mutagenesis approach in a model strain of C. difficile and then generated a comprehensive transposon library in the highly virulent epidemic strain R20291 (027/BI/NAP1) containing more than 70,000 unique mutants. Using transposon-directed insertion site sequencing (TraDIS), we have identified a core set of 404 essential genes, required for growth in vitro. We then applied this technique to the process of sporulation, an absolute requirement for C. difficile transmission and pathogenesis, identifying 798 genes that are likely to impact spore production. The data generated in this study will form a valuable resource for the community and inform future research on this important human pathogen. KW - Bacillus subtilis KW - expression KW - spores KW - toxin KW - transcription KW - germination KW - transposition KW - metabolism KW - infection KW - in vitro Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-143745 VL - 6 IS - 2 ER - TY - JOUR A1 - Berg, Stefan A1 - Schelling, Esther A1 - Hailu, Elena A1 - Firdessa, Rebuma A1 - Gumi, Balako A1 - Erenso, Girume A1 - Gadisa, Endalamaw A1 - Mengistu, Araya A1 - Habtamu, Meseret A1 - Hussein, Jemal A1 - Kiros, Teklu A1 - Bekele, Shiferaw A1 - Mekonnen, Wondale A1 - Derese, Yohannes A1 - Zinsstag, Jakob A1 - Ameni, Gobena A1 - Gagneux, Sebastien A1 - Robertson, Brian D A1 - Tschopp, Rea A1 - Hewinson, Glyn A1 - Yamuah, Lawrence A1 - Gordon, Stephen V A1 - Aseffa, Abraham T1 - Investigation of the high rates of extrapulmonary tuberculosis in Ethiopia reveals no single driving factor and minimal evidence for zoonotic transmission of Mycobacterium bovis infection JF - BMC Infectious Diseases N2 - Background: Ethiopia, a high tuberculosis (TB) burden country, reports one of the highest incidence rates of extra-pulmonary TB dominated by cervical lymphadenitis (TBLN). Infection with Mycobacterium bovis has previously been excluded as the main reason for the high rate of extra-pulmonary TB in Ethiopia. Methods: Here we examined demographic and clinical characteristics of 953 pulmonary (PTB) and 1198 TBLN patients visiting 11 health facilities in distinct geographic areas of Ethiopia. Clinical characteristics were also correlated with genotypes of the causative agent, Mycobacterium tuberculosis. Results: No major patient or bacterial strain factor could be identified as being responsible for the high rate of TBLN, and there was no association with HIV infection. However, analysis of the demographic data of involved patients showed that having regular and direct contact with live animals was more associated with TBLN than with PTB, although no M. bovis was isolated from patients with TBLN. Among PTB patients, those infected with Lineage 4 reported "contact with other TB patient" more often than patients infected with Lineage 3 did (OR = 1.6, CI 95% 1.0-2.7; p = 0.064). High fever, in contrast to low and moderate fever, was significantly associated with Lineage 4 (OR = 2.3; p = 0.024). On the other hand, TBLN cases infected with Lineage 4 tended to get milder symptoms overall for the constitutional symptoms than those infected with Lineage 3. Conclusions: The study suggests a complex role for multiple interacting factors in the epidemiology of extra-pulmonary TB in Ethiopia, including factors that can only be derived from population-based studies, which may prove to be significant for TB control in Ethiopia. KW - zoonotic KW - Mycobacterium KW - Ethiopia KW - tuberculosis KW - Bovis KW - pulmonary KW - extrapulmonary KW - lymphadenitis Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-143935 VL - 15 IS - 112 ER - TY - JOUR A1 - Böhm, Lena A1 - Torsin, Sanda A1 - Tint, Su Hlaing A1 - Eckstein, Marie Therese A1 - Ludwig, Tobias A1 - Pérez, J. Christian T1 - The yeast form of the fungus Candida albicans promotes persistence in the gut of gnotobiotic mice JF - PLoS Pathogens N2 - Many microorganisms that cause systemic, life-threatening infections in humans reside as harmless commensals in our digestive tract. Yet little is known about the biology of these microbes in the gut. Here, we visualize the interface between the human commensal and pathogenic fungus Candida albicans and the intestine of mice, a surrogate host. Because the indigenous mouse microbiota restricts C. albicans settlement, we compared the patterns of colonization in the gut of germ free and antibiotic-treated conventionally raised mice. In contrast to the heterogeneous morphologies found in the latter, we establish that in germ free animals the fungus almost uniformly adopts the yeast cell form, a proxy of its commensal state. By screening a collection of C. albicans transcription regulator deletion mutants in gnotobiotic mice, we identify several genes previously unknown to contribute to in vivo fitness. We investigate three of these regulators—ZCF8, ZFU2 and TRY4—and show that indeed they favor the yeast form over other morphologies. Consistent with this finding, we demonstrate that genetically inducing non-yeast cell morphologies is detrimental to the fitness of C. albicans in the gut. Furthermore, the identified regulators promote adherence of the fungus to a surface covered with mucin and to mucus-producing intestinal epithelial cells. In agreement with this result, histology sections indicate that C. albicans dwells in the murine gut in close proximity to the mucus layer. Thus, our findings reveal a set of regulators that endows C. albicans with the ability to endure in the intestine through multiple mechanisms. KW - Candida albicans KW - deletion mutagenesis KW - gastrointestinal tract KW - fungi KW - regulator genes KW - gene regulation KW - mouse models KW - fungal genetics Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-159120 VL - 13 IS - 10 ER - TY - JOUR A1 - Hampe, Irene A. I. A1 - Friedman, Justin A1 - Edgerton, Mira A1 - Morschhäuser, Joachim T1 - An acquired mechanism of antifungal drug resistance simultaneously enables Candida albicans to escape from intrinsic host defenses JF - PLoS Pathogens N2 - The opportunistic fungal pathogen Candida albicans frequently produces genetically altered variants to adapt to environmental changes and new host niches in the course of its life-long association with the human host. Gain-of-function mutations in zinc cluster transcription factors, which result in the constitutive upregulation of their target genes, are a common cause of acquired resistance to the widely used antifungal drug fluconazole, especially during long-term therapy of oropharyngeal candidiasis. In this study, we investigated if C. albicans also can develop resistance to the antimicrobial peptide histatin 5, which is secreted in the saliva of humans to protect the oral mucosa from pathogenic microbes. As histatin 5 has been shown to be transported out of C. albicans cells by the Flu1 efflux pump, we screened a library of C. albicans strains that contain artificially activated forms of all zinc cluster transcription factors of this fungus for increased FLU1 expression. We found that a hyperactive Mrr1, which confers fluconazole resistance by upregulating the multidrug efflux pump MDR1 and other genes, also causes FLU1 overexpression. Similarly to the artificially activated Mrr1, naturally occurring gain-of-function mutations in this transcription factor also caused FLU1 upregulation and increased histatin 5 resistance. Surprisingly, however, Mrr1-mediated histatin 5 resistance was mainly caused by the upregulation of MDR1 instead of FLU1, revealing a previously unrecognized function of the Mdr1 efflux pump. Fluconazole-resistant clinical C. albicans isolates with different Mrr1 gain-of-function mutations were less efficiently killed by histatin 5, and this phenotype was reverted when MRR1 was deleted. Therefore, antimycotic therapy can promote the evolution of strains that, as a consequence of drug resistance mutations, simultaneously have acquired increased resistance against an innate host defense mechanism and are thereby better adapted to certain host niches. KW - antimicrobial resistance KW - transcriptional control KW - Candida albicans KW - transcription factors KW - mutation KW - hyperexpression techniques KW - antifungals KW - point mutation Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-158883 VL - 13 IS - 9 ER - TY - JOUR A1 - Tawk, Caroline A1 - Sharan, Malvika A1 - Eulalio, Ana A1 - Vogel, Jörg T1 - A systematic analysis of the RNA-targeting potential of secreted bacterial effector proteins JF - Scientific Reports N2 - Many pathogenic bacteria utilize specialized secretion systems to deliver proteins called effectors into eukaryotic cells for manipulation of host pathways. The vast majority of known effector targets are host proteins, whereas a potential targeting of host nucleic acids remains little explored. There is only one family of effectors known to target DNA directly, and effectors binding host RNA are unknown. Here, we take a two-pronged approach to search for RNA-binding effectors, combining biocomputational prediction of RNA-binding domains (RBDs) in a newly assembled comprehensive dataset of bacterial secreted proteins, and experimental screening for RNA binding in mammalian cells. Only a small subset of effectors were predicted to carry an RBD, indicating that if RNA targeting was common, it would likely involve new types of RBDs. Our experimental evaluation of effectors with predicted RBDs further argues for a general paucity of RNA binding activities amongst bacterial effectors. We obtained evidence that PipB2 and Lpg2844, effector proteins of Salmonella and Legionella species, respectively, may harbor novel biochemical activities. Our study presenting the first systematic evaluation of the RNA-targeting potential of bacterial effectors offers a basis for discussion of whether or not host RNA is a prominent target of secreted bacterial proteins. KW - pathogens KW - bacterial secretion Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-158815 VL - 7 ER - TY - JOUR A1 - Rakette, Sonja A1 - Donat, Stefanie A1 - Ohlsen, Knut A1 - Stehle, Thilo T1 - Structural Analysis of Staphylococcus aureus Serine/Threonine Kinase PknB JF - PLoS One N2 - Effective treatment of infections caused by the bacterium Staphylococcus aureus remains a worldwide challenge, in part due to the constant emergence of new strains that are resistant to antibiotics. The serine/threonine kinase PknB is of particular relevance to the life cycle of S. aureus as it is involved in the regulation of purine biosynthesis, autolysis, and other central metabolic processes of the bacterium. We have determined the crystal structure of the kinase domain of PknB in complex with a non-hydrolyzable analog of the substrate ATP at 3.0 angstrom resolution. Although the purified PknB kinase is active in solution, it crystallized in an inactive, autoinhibited state. Comparison with other bacterial kinases provides insights into the determinants of catalysis, interactions of PknB with ligands, and the pathway of activation. KW - SER/THR kinase KW - domain KW - subunit KW - dependent protein-kinase KW - mycobacterium-tuberculosis KW - activation mechanism KW - crystal structure KW - antibiotic resistance KW - catalytic KW - methicillin KW - inhibitor Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-135369 VL - 7 IS - 6 ER - TY - THES A1 - Hampe, Irene Aurelia Ida T1 - Analysis of the mechanism and the regulation of histatin 5 resistance in \(Candida\) \(albicans\) T1 - Analyse des Mechanismus und der Regulierung von Histatin 5 Resistenz in \(Candida\) \(albicans\) N2 - Antimycotics such as fluconazole are frequently used to treat C. albicans infections of the oral mucosa. Prolonged treatment of the fungal infection with fluconazole pose a risk to resistance development. C. albicans can adapt to these stressful environmental changes by regulation of gene expression or by producing genetically altered variants that arise in the population. Adapted variants frequently carry activating mutations in zinc cluster transcription factors, which cause the upregulation of their target genes, including genes encoding efflux pumps that confer drug resistance. MDR1, regulated by the zinc cluster transcription factor Mrr1, as well as CDR1 and CDR2, regulated by the zinc cluster transcription factor Tac1, are well-known examples of genes encoding efflux pumps that extrude the antimycotic fluconazole from the fungal cell and thus contribute to the survival of the fungus. In this study, it was investigated if C. albicans can develop resistance to the antimicrobial peptide histatin 5, which serves as the first line of defence in the oral cavity of the human host. Recently, it was shown that C. albicans transports histatin 5 outside of the Candia cell via the efflux pump Flu1. As efflux pumps are often regulated by zinc cluster transcription factors, the Flu1 efflux pump could also be regulated by a zinc cluster transcription factor which could in a hyperactive form upregulate the expression of the efflux pump, resulting in increased export of histatin 5 and consequently in histatin 5 resistance. In order to find a zinc cluster transcription factor that upregulates FLU1 expression, a comprehensive library of C. albicans strains containing artificially activated forms of zinc cluster transcription factors was screened for suitable candidates. The screening was conducted on medium containing mycophenolic acid because mycophenolic acid is also a substrate of Flu1 and a strain expressing a hyperactive zinc cluster transcription factor that upregulates FLU1 expression should exhibit an easily recognisable mycophenolic acid-resistant phenotype. Further, FACS analysis, quantitative real-time RT-PCR analysis, broth microdilution assays as well as histatin 5 assays were conducted to analyse the mechanism and the regulation of histatin 5 resistance. Several zinc cluster transcription factors caused mycophenolic acid resistance and upregulated FLU1 expression. Of those, only hyperactive Mrr1 was able to confer increased histatin 5 resistance. Finding Mrr1 to confer histatin 5 resistance was highly interesting as fluconazole-resistant strains with naturally occurring Mrr1 gain of function mutations exist, which were isolated from HIV-infected patients with oral candidiasis. These Mrr1 gain of function mutations as well as artificially activated Mrr1 cause fluconazole resistance by upregulation of the efflux pump MDR1 and other target genes. In the course of the study, it was found that expression of different naturally occurring MRR1 gain-of-function mutations in the SC5314 wild type background caused increased FLU1 expression and increased histatin 5 resistance. The same was true for fluconazole-resistant clinical isolates with Mrr1 gain of function mutations, which also caused the overexpression of FLU1. Those cells were less efficiently killed by histatin 5 dependent on Mrr1. Surprisingly, FLU1 contributed only little to histatin 5 resistance, rather, overexpression of MDR1 mainly contributed to the Mrr1-mediated histatin 5 resistance, but also additional Mrr1-target genes were involved. These target genes are yet to be uncovered. Moreover, if a link between the yet unknown Mrr1-target genes contributing to fluconazole resistance and increased histatin 5 resistance can be drawn remains to be discovered upon finding of the responsible target genes. Collectively, this study contributes to the understanding of the impact of prolonged antifungal exposure on the interaction between host and fungus. Drug therapy can give rise to resistance evolution resulting in strains that have not only developed resistance to fluconazole but also to an innate host mechanism, which allows adaption to the host niche even in the absence of the drug. N2 - Antimykotika wie Fluconazol werden häufig zur Behandlung von C. albicans Infektionen der Mundschleimhaut verwendet. Dabei stellt eine langzeitige Behandlung der Pilzinfektion mit Fluconazol ein Risiko zur Resistenzentwicklung dar. C. albicans kann sich an solche Umweltveränderungen anpassen, indem es die Genexpression reguliert oder genetisch veränderte Varianten produziert, welche in der Population entstehen. Adaptierte Varianten tragen häufig aktivierende Mutationen in Zink-Cluster-Transkriptionsfaktoren, welche die Hochregulierung der Expression von Genen verursachen, darunter solche, die für Multidrug-Effluxpumpen kodieren und dadurch Antimykotikaresistenz verleihen können. MDR1, reguliert durch den Zink-Cluster-Transkriptionsfaktor Mrr1, sowie CDR1 und CDR2, reguliert durch den Zink-Cluster-Transkriptionsfaktor Tac1, sind bekannte Beispiele für Effluxpumpen, die das Antimykotikum Fluconazol aus der Pilzzelle extrudieren und somit zum Überleben der Pilzzelle beitragen. In dieser Arbeit wurde untersucht, ob C. albicans eine Resistenz gegen das antimikrobielle Peptid Histatin 5 entwickeln kann, das in der Mundhöhle des menschlichen Wirtes als erste Verteidigungsbarriere gegen den Pilz dient. Kürzlich wurde gezeigt, dass C. albicans Histatin 5 über die Effluxpumpe Flu1 aus der Candia-Zelle heraustransportiert (Li et al., 2013). Da Effluxpumpen häufig durch Zink-Cluster-Transkriptionsfaktoren reguliert werden, könnte auch die Flu1-Effluxpumpe durch solch einen Transkriptionsfaktor reguliert werden, der in einer hyperaktiven Form die Expression der Effluxpumpe hochregulieren könnte, was wiederrum zu einem erhöhten Export von Histatin 5 und folglich zur Histatin 5 Resistenz führen könnte. Um einen Zink-Cluster-Transkriptionsfaktor zu finden, der die FLU1-Expression hochreguliert, wurde mit Hilfe einer Bibliothek von C. albicans-Stämmen, die künstlich aktivierte Formen von Zink-Cluster-Transkriptionsfaktoren enthält, nach geeigneten Kandidaten gesucht. Das Screening wurde auf Mycophenolsäure-haltigem Medium durchgeführt, da Mycophenolsäure ebenfalls ein Substrat von Flu1 ist. Folglich sollte ein Stamm mit hyperaktivem Zink-Cluster-Transkriptionsfaktor, welcher die FLU1-Expression hochreguliert, einen leicht erkennbaren Mycophenolsäure-resistenten Phänotyp aufweisen. Weiterhin wurden FACS-Analysen, quantitative real-time RT-PCR-Analysen, Broth microdilution-Assays sowie Histatin 5-Assays durchgeführt, um den Mechanismus und die Regulierung der Histatin-5-Resistenz zu analysieren. Mehrere Zink-Cluster-Transkriptionsfaktoren verursachten Mycophenolsäure-Resistenz und erhöhten die FLU1-Expression. Von diesen war nur hyperaktives Mrr1 in der Lage, eine erhöhte Histatin-5-Resistenz zu verleihen. Das Auffinden von Mrr1 als Regulator der Histatin 5-Resistenz war hochinteressant, da fluconazolresistente Stämme mit natürlich vorkommenden MRR1 gain-of-function Mutationen existieren, die aus HIV-infizierten Patienten mit oropharyngealer Candidiasis isoliert wurden. Diese gain-of-function Mutationen sowie künstlich aktivierendes Mrr1 verursachen Fluconazol-Resistenz durch Hochregulation der Effluxpumpe MDR1 und anderer Zielgene. Im Verlauf der Studie wurde herausgefunden, dass verschiedene natürlich vorkommende MRR1 gain-of-function Mutationen im SC5314 Wildtyp Hintergrund eine erhöhte FLU1-Expression und eine erhöhte Histatin-5-Resistenz verursachten. Das Gleiche galt für Fluconazol-resistente klinische Isolate mit Mrr1 gain-of-function Mutationen, welche die Überexpression von FLU1 verursachten. Zellen dieser Isolate wurden, abhängig von Mrr1, weniger wirksam durch Histatin 5 abgetötet. Überraschenderweise trug FLU1 nur wenig zur Histatin-5-Resistenz bei, vielmehr trug die Überexpression von MDR1 hauptsächlich zur Mrr1-vermittelten Histatin-5-Resistenz bei, aber auch weitere Mrr1-Zielgene waren daran beteiligt. Diese Mrr1-Zielgene gilt es nun noch zu entdecken. Ob ein Zusammenhang zwischen diesen noch unbekannten Mrr1-Zielgenen hergestellt werden kann, die zur Fluconazolresistenz sowie zu einer erhöhten Histatin-5-Resistenz beitragen, wird erst nach dem Auffinden der verantwortlichen Zielgene geprüft werden können. Zusammenfassend trägt diese Studie zum Verständnis der Auswirkungen einer anhaltenden antimykotischen Exposition auf die Interaktion zwischen Wirt und Pilz bei. Eine medikamentöse Therapie kann zu einer Resistenzentwicklung führen, aus der Stämme hervorgehen, welche nicht nur eine Resistenz gegen Fluconazol entwickelt haben, sondern gleichzeitig eine Resistenz gegen einen angeborenen Wirtsabwehrmechanismus, der eine Adaption an die Wirtsnische auch in Abwesenheit des Antimykotikums ermöglicht. KW - Histatin 5 KW - Candida albicans KW - Efflux pump KW - MDR1 KW - MRR1 KW - Mrr1 KW - MDR1 KW - Fluconazole KW - Efflux pump Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-159634 ER - TY - JOUR A1 - Sunkavalli, Ushasree A1 - Aguilar, Carmen A1 - Silva, Ricardo Jorge A1 - Sharan, Malvika A1 - Cruz, Ana Rita A1 - Tawk, Caroline A1 - Maudet, Claire A1 - Mano, Miguel A1 - Eulalio, Ana T1 - Analysis of host microRNA function uncovers a role for miR-29b-2-5p in Shigella capture by filopodia JF - PLoS Pathogens N2 - MicroRNAs play an important role in the interplay between bacterial pathogens and host cells, participating as host defense mechanisms, as well as exploited by bacteria to subvert host cellular functions. Here, we show that microRNAs modulate infection by Shigella flexneri, a major causative agent of bacillary dysentery in humans. Specifically, we characterize the dual regulatory role of miR-29b-2-5p during infection, showing that this microRNA strongly favors Shigella infection by promoting both bacterial binding to host cells and intracellular replication. Using a combination of transcriptome analysis and targeted high-content RNAi screening, we identify UNC5C as a direct target of miR-29b-2-5p and show its pivotal role in the modulation of Shigella binding to host cells. MiR-29b-2-5p, through repression of UNC5C, strongly enhances filopodia formation thus increasing Shigella capture and promoting bacterial invasion. The increase of filopodia formation mediated by miR-29b-2-5p is dependent on RhoF and Cdc42 Rho-GTPases. Interestingly, the levels of miR-29b-2-5p, but not of other mature microRNAs from the same precursor, are decreased upon Shigella replication at late times post-infection, through degradation of the mature microRNA by the exonuclease PNPT1. While the relatively high basal levels of miR-29b-2-5p at the start of infection ensure efficient Shigella capture by host cell filopodia, dampening of miR-29b-2-5p levels later during infection may constitute a bacterial strategy to favor a balanced intracellular replication to avoid premature cell death and favor dissemination to neighboring cells, or alternatively, part of the host response to counteract Shigella infection. Overall, these findings reveal a previously unappreciated role of microRNAs, and in particular miR-29b-2-5p, in the interaction of Shigella with host cells. KW - hos tcells KW - Salmonellosis KW - Shigellosis KW - microRNAs KW - Shigella KW - small interfering RNAs KW - HeLa cells KW - Cell binding Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-158204 VL - 13 IS - 4 ER - TY - JOUR A1 - Sharan, Malvika A1 - Förstner, Konrad U. A1 - Eulalio, Ana A1 - Vogel, Jörg T1 - APRICOT: an integrated computational pipeline for the sequence-based identification and characterization of RNA-binding proteins JF - Nucleic Acids Research N2 - RNA-binding proteins (RBPs) have been established as core components of several post-transcriptional gene regulation mechanisms. Experimental techniques such as cross-linking and co-immunoprecipitation have enabled the identification of RBPs, RNA-binding domains (RBDs) and their regulatory roles in the eukaryotic species such as human and yeast in large-scale. In contrast, our knowledge of the number and potential diversity of RBPs in bacteria is poorer due to the technical challenges associated with the existing global screening approaches. We introduce APRICOT, a computational pipeline for the sequence-based identification and characterization of proteins using RBDs known from experimental studies. The pipeline identifies functional motifs in protein sequences using position-specific scoring matrices and Hidden Markov Models of the functional domains and statistically scores them based on a series of sequence-based features. Subsequently, APRICOT identifies putative RBPs and characterizes them by several biological properties. Here we demonstrate the application and adaptability of the pipeline on large-scale protein sets, including the bacterial proteome of Escherichia coli. APRICOT showed better performance on various datasets compared to other existing tools for the sequence-based prediction of RBPs by achieving an average sensitivity and specificity of 0.90 and 0.91 respectively. The command-line tool and its documentation are available at https://pypi.python.org/pypi/bio-apricot. KW - RNA-binding proteins KW - identification KW - characterization Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-157963 VL - 45 IS - 11 ER - TY - JOUR A1 - Jäger, Dominik A1 - Pernitzsch, Sandy R. A1 - Richter, Andreas S. A1 - Backofen, Rolf A1 - Sharma, Cynthia M. A1 - Schmitz, Ruth A. T1 - An archaeal sRNA targeting cis- and trans-encoded mRNAs via two distinct domains JF - Nucleic Acids Research N2 - We report on the characterization and target analysis of the small (s) RNA\(_{162}\) in the methanoarchaeon Methanosarcina mazei. Using a combination of genetic approaches, transcriptome analysis and computational predictions, the bicistronic MM2441-MM2440 mRNA encoding the transcription factor MM2441 and a protein of unknown function was identified as a potential target of this sRNA, which due to processing accumulates as three stabile 5' fragments in late exponential growth. Mobility shift assays using various mutants verified that the non-structured single-stranded linker region of sRNA\(_{162}\) (SLR) base-pairs with the MM2440-MM2441 mRNA internally, thereby masking the predicted ribosome binding site of MM2441. This most likely leads to translational repression of the second cistron resulting in dis-coordinated operon expression. Analysis of mutant RNAs in vivo confirmed that the SLR of sRNA\(_{162}\) is crucial for target interactions. Furthermore, our results indicate that sRNA\(_{162}\)-controlled MM2441 is involved in regulating the metabolic switch between the carbon sources methanol and methylamine. Moreover, biochemical studies demonstrated that the 50 end of sRNA\(_{162}\) targets the 5'-untranslated region of the cis-encoded MM2442 mRNA. Overall, this first study of archaeal sRNA/mRNA-target interactions unraveled that sRNA\(_{162}\) acts as an antisense (as) RNA on cis- and trans-encoded mRNAs via two distinct domains, indicating that cis-encoded asRNAs can have larger target regulons than previously anticipated. KW - strain KW - escherichia coli KW - methanosarcina mazei GO1 KW - methanol methyltransferase isozymes KW - small nucleolar RNAs KW - acetivorans C2A KW - antisense RNAs KW - GO1 KW - transcriptional regulator KW - translational initiation KW - pyrococcus furiosus Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-134972 VL - 40 IS - 21 ER - TY - THES A1 - Oesterreich, Babett T1 - Preclinical development of an immunotherapy against antibiotic-resistant Staphylococcus aureus T1 - Präklinische Entwicklung einer Immuntherapie zur Behandlung Antibiotika-resistenter Staphylococcus aureus N2 - The Gram-positive bacterium Staphylococcus aureus is the leading cause of nosocomial infections. In particular, diseases caused by methicillin-resistant S. aureus (MRSA) are associated with higher morbidity, mortality and medical costs due to showing resistance to several classes of established antibiotics and their ability to develop resistance mechanisms against new antibiotics rapidly. Therefore, strategies based on immunotherapy approaches have the potential to close the gap for an efficient treatment of MRSA. In this thesis, a humanized antibody specific for the immunodominant staphylococcal antigen A (IsaA) was generated and thoroughly characterized as potential candidate for an antibody based therapy. A murine monoclonal antibody was selected for humanization based on its binding characteristics and the ability of efficient staphylococcal killing in mouse infection models. The murine antibody was humanized by CDR grafting and mouse and humanized scFv as well as scFv-Fc fragments were constructed for comparative binding studies to analyse the successful humanization. After these studies, the full antibody with the complete Fc region was constructed as isotype IgG1, IgG2 and IgG4, respectively to assess effector functions, including antibody-dependent killing of S. aureus. The biological activity of the humanized antibody designated hUK-66 was analysed in vitro with purified human PMNs and whole blood samples taken from healthy donors and patients at high risk of S. aureus infections, such as those with diabetes, end-stage renal disease, or artery occlusive disease (AOD). Results of the in vitro studies show, that hUK-66 was effective in antibody-dependent killing of S. aureus in blood from both healthy controls and patients vulnerable to S. aureus infections. Moreover, the biological activity of hUK-66 and hUK-66 combined with a humanized anti-alpha-toxin antibody (hUK-tox) was investigated in vivo using a mouse pneumonia model. The in vivo results revealed the therapeutic efficacy of hUK-66 and the antibody combination of hUK-66 and hUK-tox to prevent staphylococcal induced pneumonia in a prophylactic set up. Based on the experimental data, hUK-66 represents a promising candidate for an antibody-based therapy against antibiotic resistant MRSA. N2 - Staphylococcus aureus ist ein bedeutender nosokomialer Erreger, der eine Vielzahl von Infektionen im Menschen verursacht. Besonders Krankheiten, die durch Methicillin resistente S. aureus (MRSA) verursacht werden, sind mit einer erhöhten Morbidität, einer höheren Sterblichkeitsrate und hohen medizinischen Kosten verbunden. Seine besondere medizinische Bedeutung erlangte S. aureus durch die Ausbildung von Resistenzen gegen eine Vielzahl von Antibiotika und seiner Fähigkeit auch gegen neu entwickelte Antibiotika schnell Resistenzmechanismen auszubilden. Aus diesem Grund, ist die Entwicklung von neuen Therapieansätzen von besonderer Bedeutung, um die entstandene Lücke für eine effektive MRSA-Therapie zu schließen. In dieser Arbeit wurde ein humanisierter monoklonaler Antikörper entwickelt und charakterisiert, der spezifisch an das „immunodominant staphylococcal antigen A“ (IsaA) bindet. Dieser Antiköper wurde auf Grund seiner Eigenschaft, in einem Mausmodell effektiv S. aureus abzutöten, als vielversprechender Kandidat für eine Antikörper-Therapie ausgewählt. Der murine Vorläuferantikörper wurde mittels „CDR grafting“ humanisiert und durch die Generierung von humanisierten und murinen scFv und scFv-Fc Fragmenten, die in vergleichenden Bindungsstudien getestet wurden, konnte der Erfolg der Humanisierung beurteilt werden. Im Anschluss wurde der vollständige Antikörper mit vollständig funktionaler Fc-Region in den Isotypen IgG1, IgG2 und IgG4 hergestellt. Die Funktionalität des humanisierten Antikörpers wurde in vitro mittels aufgereinigter PMNs und Blutproben von gesunden Spendern und Patienten bestimmt, die ein hohes Risiko für S. aureus Infektionen besitzen wie Diabetiker, Dialyse-Patienten und Patienten mit arterieller Verschlusskrankheit. Die Ergebnisse der in vitro-Studien zeigen, dass der anti-IsaA-Antikörper hUK-66 nicht nur S. aureus effektiv in Blutproben von gesunden Spendern abtötet, sondern auch in Blutproben von Patienten mit erhöhter Anfälligkeit für S. aureus Infektionen. Darüber hinaus wurde die biologische Aktivität des humanisierten Antikörpers gegen IsaA als Monotherapie und in Kombination mit einem humanisierten anti-alpha-Toxin-Antikörper (hUK-tox) in vivo in einem Maus Pneumonie Modell untersucht. Hierbei konnte gezeigt werden, dass die prophylaktische Verabreichung von hUK-66 sowie die Kombination von hUK-66 und hUK-tox, die Bildung einer Staphylokokken-induzierten Pneumonie mit Todesfolge signifikant senkt. KW - Staphylococcus KW - Immunotherapy Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-123237 ER - TY - THES A1 - Leimbach, Andreas T1 - Genomics of pathogenic and commensal \(Escherichia\) \(coli\) T1 - Genomik pathogener und kommensaler \(Escherichia\) \(coli\) N2 - High-throughput sequencing (HTS) has revolutionized bacterial genomics. Its unparalleled sensitivity has opened the door to analyzing bacterial evolution and population genomics, dispersion of mobile genetic elements (MGEs), and within-host adaptation of pathogens, such as Escherichia coli. One of the defining characteristics of intestinal pathogenic E. coli (IPEC) pathotypes is a specific repertoire of virulence factors (VFs). Many of these IPEC VFs are used as typing markers in public health laboratories to monitor outbreaks and guide treatment options. Instead, extraintestinal pathogenic E. coli (ExPEC) isolates are genotypically diverse and harbor a varied set of VFs -- the majority of which also function as fitness factors (FFs) for gastrointestinal colonization. The aim of this thesis was the genomic characterization of pathogenic and commensal E. coli with respect to their virulence- and antibiotic resistance-associated gene content as well as phylogenetic background. In order to conduct the comparative analyses, I created a database of E. coli VFs, ecoli_VF_collection, with a focus on ExPEC virulence-associated proteins (Leimbach, 2016b). Furthermore, I wrote a suite of scripts and pipelines, bac-genomics-scripts, that are useful for bacterial genomics (Leimbach, 2016a). This compilation includes tools for assembly and annotation as well as comparative genomics analyses, like multi-locus sequence typing (MLST), assignment of Clusters of Orthologous Groups (COG) categories, searching for protein homologs, detection of genomic regions of difference (RODs), and calculating pan-genome-wide association statistics. Using these tools we were able to determine the prevalence of 18 autotransporters (ATs) in a large, phylogenetically heterogeneous strain panel and demonstrate that many AT proteins are not associated with E. coli pathotypes. According to multivariate analyses and statistics the distribution of AT variants is instead significantly dependent on phylogenetic lineages. As a consequence, ATs are not suitable to serve as pathotype markers (Zude et al., 2014). During the German Shiga toxin-producing E. coli (STEC) outbreak in 2011, the largest to date, we were one of the teams capable of analyzing the genomic features of two isolates. Based on MLST and detection of orthologous proteins to known E. coli reference genomes the close phylogenetic relationship and overall genome similarity to enteroaggregative E. coli (EAEC) 55989 was revealed. In particular, we identified VFs of both STEC and EAEC pathotypes, most importantly the prophage-encoded Shiga toxin (Stx) and the pAA-type plasmid harboring aggregative adherence fimbriae. As a result, we could show that the epidemic was caused by an unusual hybrid pathotype of the O104:H4 serotype. Moreover, we detected the basis of the antibiotic multi-resistant phenotype on an extended-spectrum beta-lactamase (ESBL) plasmid through comparisons to reference plasmids. With this information we proposed an evolutionary horizontal gene transfer (HGT) model for the possible emergence of the pathogen (Brzuszkiewicz et al., 2011). Similarly to ExPEC, E. coli isolates of bovine mastitis are genotypically and phenotypically highly diverse and many studies struggled to determine a positive association of putative VFs. Instead the general E. coli pathogen-associated molecular pattern (PAMP), lipopolysaccharide (LPS), is implicated as a deciding factor for intramammary inflammation. Nevertheless, a mammary pathogenic E. coli (MPEC) pathotype was proposed presumably encompassing strains more adapted to elicit bovine mastitis with virulence traits differentiating them from commensals. We sequenced eight E. coli isolates from udder serous exudate and six fecal commensals (Leimbach et al., 2016). Two mastitis isolate genomes were closed to a finished-grade quality (Leimbach et al., 2015). The genomic sequence of mastitis-associated E. coli (MAEC) strain 1303 was used to elucidate the biosynthesis gene cluster of its O70 LPS O-antigen. We analyzed the phylogenetic genealogy of our strain panel plus eleven bovine-associated E. coli reference strains and found that commensal or MAEC could not be unambiguously allocated to specific phylogroups within a core genome tree of reference E. coli. A thorough gene content analysis could not identify functional convergence of either commensal or MAEC, instead both have only very few gene families enriched in either pathotype. Most importantly, gene content and ecoli_VF_collection analyses showed that no virulence determinants are significantly associated with MAEC in comparison to bovine fecal commensals, disproving the MPEC hypothesis. The genetic repertoire of bovine-associated E. coli, again, is dominated by phylogenetic background. This is also mostly the case for large virulence-associated E. coli gene cluster previously associated with mastitis. Correspondingly, MAEC are facultative and opportunistic pathogens recruited from the bovine commensal gastrointestinal microbiota (Leimbach et al., 2017). Thus, E. coli mastitis should be prevented rather than treated, as antibiotics and vaccines have not proven effective. Although traditional E. coli pathotypes serve a purpose for diagnostics and treatment, it is clear that the current typing system is an oversimplification of E. coli's genomic plasticity. Whole genome sequencing (WGS) revealed many nuances of pathogenic E. coli, including emerging hybrid or heteropathogenic pathotypes. Diagnostic and public health microbiology need to embrace the future by implementing HTS techniques to target patient care and infection control more efficiently. N2 - Eines der definierenden Charakteristika intestinal pathogener E. coli (IPEC) Pathotypen ist ein spezifisches Repertoire an Virulenzfaktoren (VFs). Viele dieser IPEC VFs werden als Typisierungsmarker benutzt. Stattdessen sind Isolate extraintestinal pathogener E. coli (ExPEC) genotypisch vielfältig und beherbergen verschiedenartige VF Sets, welche in der Mehrheit auch als Fitnessfaktoren (FFs) für die gastrointestinale Kolonialisierung fungieren. Das Ziel dieser Dissertation war die genomische Charakterisierung pathogener und kommensaler E. coli in Bezug auf ihren Virulenz- und Antibiotikaresistenz-assoziierten Gengehalt sowie ihre phylogenetische Abstammung. Als Voraussetzung für die vergleichenden Analysen erstellte ich eine E. coli VF-Datenbank, ecoli_VF_collection, mit Fokus auf Virulenz-assoziierte Proteine von ExPEC (Leimbach, 2016b). Darüber hinaus programmierte ich mehrere Skripte und Pipelines zur Anwendung in der bakteriellen Genomik, bac-genomics-scripts (Leimbach, 2016a). Diese Sammlung beinhaltet Tools zur Unterstützung von Assemblierung und Annotation sowie komparativer Genomanalysen, wie Multilokus-Sequenztypisierung (MLST), Zuweisung von Clusters of Orthologous Groups (COG) Kategorien, Suche nach homologen Proteinen, Identifizierung von genomisch unterschiedlichen Regionen (RODs) und Berechnung Pan-genomweiter Assoziationsstatistiken. Mithilfe dieser Tools konnten wir die Prävalenz von 18 Autotransportern (ATs) in einer großen, phylogenetisch heterogenen Stammsammlung bestimmen und nachweisen, dass viele AT-Proteine nicht mit E. coli Pathotypen assoziiert sind. Multivariate Analysen und Statistik legten offen, dass die Verteilung von AT-Varianten vielmehr signifikant von phylogenetischen Abstammungslinien abhängt. Deshalb sind ATs nicht als Marker für Pathotypen geeignet (Zude et al., 2014). Während des bislang größten Ausbruchs von Shiga-Toxin-produzierenden E. coli (STEC) im Jahre 2011 in Deutschland waren wir eines der Teams, welches die genomischen Eigenschaften zweier Isolate analysieren konnte. Basierend auf MLST und Detektion orthologer Proteine zu bekannten E. coli Referenzgenomen konnte ihre enge phylogenetische Verwandschaft und Ähnlichkeit des gesamten Genoms zum enteroaggregativen E. coli (EAEC) 55989 aufgedeckt werden. Im Detail identifizierten wir VFs von STEC und EAEC Pathotypen, vor allem das Prophagen-kodierte Shiga-Toxin (Stx) und ein Plasmid des pAA-Typs kodierend für aggregative Adhärenz-Fimbrien. Die Epidemie wurde demnach durch einen ungewöhnlichen Hybrid-Pathotyp vom O104:H4 Serotyp verursacht. Zusätzlich identifizierten wir die Grundlage für den multiresistenten Phänotyp dieser Ausbruchsstämme auf einem Extended-Spektrum-beta-Laktamase (ESBL) Plasmid über Vergleiche mit Referenzplasmiden. Mit diesen Informationen konnten wir ein horizontales Gentransfer-Modell (HGT) zum Auftreten dieses Pathogenen vorschlagen (Brzuszkiewicz et al., 2011). Ähnlich zu ExPEC sind E. coli Isolate boviner Mastitiden genotypisch und phänotypisch sehr divers, und viele Studien scheiterten am Versuch eine positive Assoziation vermeintlicher VFs nachzuweisen. Stattdessen gilt Lipopolysaccharid (LPS) als entscheidender Faktor zur intramammären Entzündung. Gleichwohl wurde ein mammärer pathogener E. coli (MPEC) Pathotyp vorgeschlagen, der mutmaßlich Stämme umfasst, welche eher geeignet sind eine bovine Mastitis auszulösen und über Virulenz-Merkmale von Kommensalen abgegrenzt werden können. Wir sequenzierten acht E. coli Isolate aus serösem Eutersekret und sechs fäkale Kommensale (Leimbach et al., 2016). Bei zwei Mastitisisolaten wurden die Genome vollständig geschlossen (Leimbach et al., 2015). Anhand der genomischen Sequenz des Mastitis-assoziierten E. coli (MAEC) Stamms 1303 wurde das Gencluster zur Biosynthese seines O70 LPS O-Antigens aufgeklärt. Wir analysierten die phylogenetische Abstammung unserer Stammsammlung plus elf bovin-assoziierter E. coli Referenzstämme, aber konnten weder MAEC noch Kommensale bestimmten Phylogruppen innerhalb eines Core-Genom Stammbaums aus Referenz-E. coli eindeutig zuordnen. Eine ausführliche Gengehalt-Analyse konnte keine funktionelle Konvergenz innerhalb von Kommensalen oder MAEC identifizieren. Stattdessen besitzen beide nur sehr wenige Genfamilien, die bevorzugt in einer der beiden Pathotypen vorkommen. Weder eine Gengehalt- noch eine ecoli_VF_collection-Analyse konnte zeigen, dass eine signifikante Assoziation von bestimmten Virulenzfaktoren mit MAEC, im Vergleich zu bovinen fäkalen Kommensalen, besteht. Damit wurde die MPEC Hypothese widerlegt. Auch das genetische Repertoire von Rinder-assoziierten E. coli wird durch die phylogenetische Abstammung bestimmt. Dies ist überwiegend auch bei großen Virulenz-assoziierten Genclustern der Fall, die bisher mit Mastitis in Verbindung gebracht wurden. Dementsprechend sind MAEC fakultative und opportunistische Pathogene, die ihren Ursprung als Kommensale in der bovinen gastrointestinalen Mikrobiota haben (Leimbach et al., 2017). Obwohl traditionelle E. coli Pathotypen in der Diagnostik und Behandlung einen Zweck erfüllen, ist es offensichtlich, dass das derzeitige Typisierungs-System die genomische Plastizität von E. coli zu sehr vereinfacht. Die Gesamtgenom-Sequenzierung (WGS) deckte viele Nuancen pathogener E. coli auf, einschließlich entstehender hybrider oder heteropathogener Pathotypen. Diagnostische und medizinische Mikrobiologie müssen einen Schritt in Richtung Zukunft gehen und HTS-Technologien anwenden, um Patientenversorgung und Infektionskontrolle effizienter zu unterstützen. KW - Escherichia coli KW - Autotransporter KW - STEC KW - Bovine Mastitis KW - high-throughput sequencing KW - virulence factors KW - pathotypes KW - phylogeny KW - ecoli_VF_collection KW - bac-genomics-scripts KW - autotransporter KW - entero-aggregative-haemorrhagic Escherichia coli (EAHEC) KW - mastitis-associated Escherichia coli (MAEC) Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-154539 ER - TY - JOUR A1 - Hickey, Scott F. A1 - Sridhar, Malathy A1 - Westermann, Alexander J. A1 - Qin, Qian A1 - Vijayendra, Pooja A1 - Liou, Geoffrey A1 - Hammond, Ming C. T1 - Transgene regulation in plants by alternative splicing of a suicide exon JF - Nucleic Acids Research N2 - Compared to transcriptional activation, other mechanisms of gene regulation have not been widely exploited for the control of transgenes. One barrier to the general use and application of alternative splicing is that splicing-regulated transgenes have not been shown to be reliably and simply designed. Here, we demonstrate that a cassette bearing a suicide exon can be inserted into a variety of open reading frames (ORFs), generating transgenes whose expression is activated by exon skipping in response to a specific protein inducer. The surprisingly minimal sequence requirements for the maintenance of splicing fidelity and regulation indicate that this splicing cassette can be used to regulate any ORF containing one of the amino acids Glu, Gln or Lys. Furthermore, a single copy of the splicing cassette was optimized by rational design to confer robust gene activation with no background expression in plants. Thus, conditional splicing has the potential to be generally useful for transgene regulation. KW - kingdom KW - pre-messenger RNA KW - gene expression KW - elements KW - decay KW - arabidopsis KW - eukaryotes KW - mechanisms Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-134724 VL - 40 IS - 10 ER - TY - JOUR A1 - Afonso-Grunz, Fabian A1 - Hoffmeier, Klaus A1 - Müller, Sören A1 - Westermann, Alexander J. A1 - Rotter, Björn A1 - Vogel, Jörg A1 - Winter, Peter A1 - Kahl, Günter T1 - Dual 3'Seq using deepSuperSAGE uncovers transcriptomes of interacting Salmonella enterica Typhimurium and human host cells JF - BMC Genomics N2 - Background: The interaction of eukaryotic host and prokaryotic pathogen cells is linked to specific changes in the cellular proteome, and consequently to infection-related gene expression patterns of the involved cells. To simultaneously assess the transcriptomes of both organisms during their interaction we developed dual 3'Seq, a tag-based sequencing protocol that allows for exact quantification of differentially expressed transcripts in interacting pro-and eukaryotic cells without prior fixation or physical disruption of the interaction. Results: Human epithelial cells were infected with Salmonella enterica Typhimurium as a model system for invasion of the intestinal epithelium, and the transcriptional response of the infected host cells together with the differential expression of invading and intracellular pathogen cells was determined by dual 3'Seq coupled with the next-generation sequencing-based transcriptome profiling technique deepSuperSAGE (deep Serial Analysis of Gene Expression). Annotation to reference transcriptomes comprising the operon structure of the employed S. enterica Typhimurium strain allowed for in silico separation of the interacting cells including quantification of polycistronic RNAs. Eighty-nine percent of the known loci are found to be transcribed in prokaryotic cells prior or subsequent to infection of the host, while 75% of all protein-coding loci are represented in the polyadenylated transcriptomes of human host cells. Conclusions: Dual 3'Seq was alternatively coupled to MACE (Massive Analysis of cDNA ends) to assess the advantages and drawbacks of a library preparation procedure that allows for sequencing of longer fragments. Additionally, the identified expression patterns of both organisms were validated by qRT-PCR using three independent biological replicates, which confirmed that RELB along with NFKB1 and NFKB2 are involved in the initial immune response of epithelial cells after infection with S. enterica Typhimurium. KW - complete genome sequence KW - secretion systems KW - RNA-Seq KW - deepSuperSAGE KW - transcriptome KW - gene expression KW - serovar Typhimurium KW - human macrophages KW - epithelial cells KW - infection KW - SuperSAGE KW - receptors KW - Dual 3'seq KW - MACE KW - tag based KW - simultaneous KW - genome wide KW - gene expression profiling KW - host pathogen interaction KW - Salmonella enterica Typhimurium strain SL1344 Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-143230 VL - 16 IS - 323 ER - TY - JOUR A1 - Rodriguez, Héctor A1 - Rico, Sergio A1 - Yepes, Ana A1 - Franco-Echevarría, Elsa A1 - Antoraz, Sergio A1 - Santamaría, Ramón I. A1 - Díaz, Margerita T1 - The two kinases, AbrC1 and AbrC2, of the atypical two-component system AbrC are needed to regulate antibiotic production and differentiation in Streptomyces coelicolor JF - Frontiers in Microbiology N2 - Two-component systems (TCSs) are the most important sensing mechanisms in bacteria. In Streptomyces, TCSs-mediated responses to environmental stimuli are involved in the regulation of antibiotic production. This study examines the individual role of two histidine kinases (HKs), AbrC1 and AbrC2, which form part of an atypical TCS in Streptomyces coelicolor. gRT-PCR analysis of the expression of both kinases demonstrated that both are expressed at similar levels in NB and NMMP media. Single deletion of abrC1 elicited a significant increase in antibiotic production, while deletion of abrC2 did not have any clear effect. The origin of this phenotype, probably related to the differential phosphorylation ability of the two kinases, was also explored indirectly, analyzing the toxic phenotypes associated with high levels of phosphorylated RR. The higher the AbrC3 regulator phosphorylation rate, the greater the cell toxicity. For the first time, the present work shows in Streptomyces the combined involvement of two different HKs in the response of a regulator to environmental signals. Regarding the possible applications of this research, the fact that an abrC1 deletion mutant overproduces three of the S. coelicolor antibiotics makes this strain an excellent candidate as a host for the heterologous production of secondary metabolites. KW - halstedii JM8 KW - biosynthesis KW - expression mutants KW - domain genes A3(2) KW - two-component systems KW - Streptomyces KW - antibiotic production KW - histidine kinases KW - heterologous production KW - activation KW - response regulator KW - PCR Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-143048 VL - 6 IS - 450 ER - TY - JOUR A1 - Nguyen, Minh Thu A1 - Kraft, Beatrice A1 - Yu, Wenqi A1 - Demicrioglu, Dogan Doruk A1 - Hertlein, Tobias A1 - Burian, Marc A1 - Schmaler, Mathias A1 - Boller, Klaus A1 - Bekeredjian-Ding, Isabelle A1 - Ohlsen, Knut A1 - Schittek, Birgit A1 - Götz, Friedrich T1 - The vSa\(\alpha\) Specific Lipoprotein Like Cluster (lpl) of S. aureus USA300 Contributes to Immune Stimulation and Invasion in Human Cells JF - PLoS Pathogens N2 - All Staphylococcus aureus genomes contain a genomic island, which is termed vSa\(\alpha\) and characterized by two clusters of tandem repeat sequences, i.e. the exotoxin (set) and 'lipoprotein-like' genes (lpl). Based on their structural similarities the vSa\(\alpha\) islands have been classified as type I to IV. The genomes of highly pathogenic and particularly epidemic S. aureus strains (USA300, N315, Mu50, NCTC8325, Newman, COL, JH1 or JH9) belonging to the clonal complexes CC5 and CC8 bear a type I vSa\(\alpha\) island. Since the contribution of the lpl gene cluster encoded in the vSa\(\alpha\) island to virulence is unclear to date, we deleted the entire lpl gene cluster in S. aureus USA300. The results showed that the mutant was deficient in the stimulation of pro-inflammatory cytokines in human monocytes, macrophages and keratinocytes. Purified lipoprotein Lpl1 was further shown to elicit a TLR2-dependent response. Furthermore, heterologous expression of the USA300 lpl cluster in other S. aureus strains enhanced their immune stimulatory activity. Most importantly, the lpl cluster contributed to invasion of S. aureus into human keratinocytes and mouse skin and the non-invasive S. carnosus expressing the lpl gene cluster became invasive. Additionally, in a murine kidney abscess model the bacterial burden in the kidneys was higher in wild type than in mutant mice. In this infection model the lpl cluster, thus, contributes to virulence. The present report is one of the first studies addressing the role of the vSa\(\alpha\) encoded lpl gene cluster in staphylococcal virulence. The finding that the lpl gene cluster contributes to internalization into non-professional antigen presenting cells such as keratinocytes high-lights the lpl as a new cell surface component that triggers host cell invasion by S. aureus. Increased invasion in murine skin and an increased bacterial burden in a murine kidney abscess model suggest that the lpl gene cluster serves as an important virulence factor. KW - resistant Staphylococcus-aureus KW - bacterial lipoproteins KW - internalization KW - evolution KW - fibronectin-binding protein KW - toll-like receptor 2 KW - epithelial cells KW - genome sequence KW - activation KW - mechanisms Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-151856 VL - 11 IS - 6 ER - TY - JOUR A1 - Espina, Laura A1 - Pagán, Rafael A1 - López, Daniel A1 - García-Gonzalo, Diego T1 - Individual Constituents from Essential Oils Inhibit Biofilm Mass Production by Multi-Drug Resistant Staphylococcus aureus JF - Molecules N2 - Biofilm formation by Staphylococcus aureus represents a problem in both the medical field and the food industry, because the biofilm structure provides protection to embedded cells and it strongly attaches to surfaces. This circumstance is leading to many research programs seeking new alternatives to control biofilm formation by this pathogen. In this study we show that a potent inhibition of biofilm mass production can be achieved in community-associated methicillin-resistant S. aureus (CA-MRSA) and methicillin-sensitive strains using plant compounds, such as individual constituents (ICs) of essential oils (carvacrol, citral, and (+)-limonene). The Crystal Violet staining technique was used to evaluate biofilm mass formation during 40 h of incubation. Carvacrol is the most effective IC, abrogating biofilm formation in all strains tested, while CA-MRSA was the most sensitive phenotype to any of the ICs tested. Inhibition of planktonic cells by ICs during initial growth stages could partially explain the inhibition of biofilm formation. Overall, our results show the potential of EOs to prevent biofilm formation, especially in strains that exhibit resistance to other antimicrobials. As these compounds are food additives generally recognized as safe, their anti-biofilm properties may lead to important new applications, such as sanitizers, in the food industry or in clinical settings. KW - Listeria monocytogenes KW - carvacrol KW - strains KW - essential oils KW - anti-biofilm KW - bacterial biofilms KW - food industry KW - antibacterial KW - inactivation KW - components KW - citrus KW - biofilms KW - Staphylococcus aureus KW - (+)-limonene KW - citral Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-151845 VL - 20 SP - 11357 EP - 11372 ER - TY - INPR A1 - Bartfeld, Sina T1 - Modeling infectious diseases and host-microbe interactions in gastrointestinal organoids T2 - Developmental Biology N2 - Advances in stem cell research have allowed the development of 3-dimensional (3D) primary cell cultures termed organoid cultures, as they closely mimic the in vivo organization of different cell lineages. Bridging the gap between 2-dimensional (2D) monotypic cancer cell lines and whole organisms, organoids are now widely applied to model development and disease. Organoids hold immense promise for addressing novel questions in host-microbe interactions, infectious diseases and the resulting inflammatory conditions. Researchers have started to use organoids for modeling infection with pathogens, such as Helicobacter pylori or Salmonella enteritica, gut- microbiota interactions and inflammatory bowel disease. Future studies will broaden the spectrum of microbes used and continue to establish organoids as a standard model for human host-microbial interactions. Moreover, they will increasingly exploit the unique advantages of organoids, for example to address patient-specific responses to microbes. KW - gastrointestinal disease KW - salmonella KW - microbiota KW - inflammatory bowel disease KW - organoid culture KW - helicobacter KW - rotavirus KW - norovirus Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-138788 UR - http://www.sciencedirect.com/science/article/pii/S0012160616304602 SN - 0012-1606 N1 - This is the accepted version of the following article: Bartfeld, Sina, Modeling infectious diseases and host-microbe interactions in gastrointestinal organoids, Developmental Biology, 2016, 420, 2, 262-270. http://dx.doi.org/10.1016/j.ydbio.2016.09.014 ER - TY - THES A1 - Sharan, Malvika T1 - Bio-computational identification and characterization of RNA-binding proteins in bacteria T1 - Bioinformatische Identifikation und Charakterisierung von RNA-bindenden Proteinen in Bakterien N2 - RNA-binding proteins (RBPs) have been extensively studied in eukaryotes, where they post-transcriptionally regulate many cellular events including RNA transport, translation, and stability. Experimental techniques, such as cross-linking and co-purification followed by either mass spectrometry or RNA sequencing has enabled the identification and characterization of RBPs, their conserved RNA-binding domains (RBDs), and the regulatory roles of these proteins on a genome-wide scale. These developments in quantitative, high-resolution, and high-throughput screening techniques have greatly expanded our understanding of RBPs in human and yeast cells. In contrast, our knowledge of number and potential diversity of RBPs in bacteria is comparatively poor, in part due to the technical challenges associated with existing global screening approaches developed in eukaryotes. Genome- and proteome-wide screening approaches performed in silico may circumvent these technical issues to obtain a broad picture of the RNA interactome of bacteria and identify strong RBP candidates for more detailed experimental study. Here, I report APRICOT (“Analyzing Protein RNA Interaction by Combined Output Technique”), a computational pipeline for the sequence-based identification and characterization of candidate RNA-binding proteins encoded in the genomes of all domains of life using RBDs known from experimental studies. The pipeline identifies functional motifs in protein sequences of an input proteome using position-specific scoring matrices and hidden Markov models of all conserved domains available in the databases and then statistically score them based on a series of sequence-based features. Subsequently, APRICOT identifies putative RBPs and characterizes them according to functionally relevant structural properties. APRICOT performed better than other existing tools for the sequence-based prediction on the known RBP data sets. The applications and adaptability of the software was demonstrated on several large bacterial RBP data sets including the complete proteome of Salmonella Typhimurium strain SL1344. APRICOT reported 1068 Salmonella proteins as RBP candidates, which were subsequently categorized using the RBDs that have been reported in both eukaryotic and bacterial proteins. A set of 131 strong RBP candidates was selected for experimental confirmation and characterization of RNA-binding activity using RNA co-immunoprecipitation followed by high-throughput sequencing (RIP-Seq) experiments. Based on the relative abundance of transcripts across the RIP-Seq libraries, a catalogue of enriched genes was established for each candidate, which shows the RNA-binding potential of 90% of these proteins. Furthermore, the direct targets of few of these putative RBPs were validated by means of cross-linking and co-immunoprecipitation (CLIP) experiments. This thesis presents the computational pipeline APRICOT for the global screening of protein primary sequences for potential RBPs in bacteria using RBD information from all kingdoms of life. Furthermore, it provides the first bio-computational resource of putative RBPs in Salmonella, which could now be further studied for their biological and regulatory roles. The command line tool and its documentation are available at https://malvikasharan.github.io/APRICOT/. N2 - RNA-bindende Proteine (RBPs) wurden umfangreich in Eukaryoten erforscht, in denen sie viele Prozesse wie RNA-Transport, -Translation und -Stabilität post-transkriptionell regulieren. Experimentelle Methoden wie Cross-linking and Koimmunpräzipitation mit nachfolgedener Massenspektromentrie / RNA-Sequenzierung ermöglichten eine weitreichende Charakterisierung von RBPs, RNA-bindenden Domänen (RBDs) und deren regulatorischen Rollen in eukaryotischen Spezies wie Mensch und Hefe. Weitere Entwicklungen im Bereich der hochdurchsatzbasierten Screeningverfahren konnten das Verständnis von RBPs in Eukaryoten enorm erweitern. Im Gegensatz dazu ist das Wissen über die Anzahl und die potenzielle Vielfalt von RBPs in Bakterien dürftig. In der vorliegenden Arbeit präsentiere ich APRICOT, eine bioinformatische Pipeline zur sequenzbasierten Identifikation und Charakterisierung von Proteinen aller Domänen des Lebens, die auf RBD-Informationen aus experimentellen Studien aufbaut. Die Pipeline nutzt Position Specific Scoring Matrices und Hidden-MarkovModelle konservierter Domänen, um funktionelle Motive in Proteinsequenzen zu identifizieren und diese anhand von sequenzbasierter Eigenschaften statistisch zu bewerten. Anschließend identifiziert APRICOT mögliche RBPs und charakterisiert auf Basis ihrer biologischeren Eigenschaften. In Vergleichen mit ähnlichen Werkzeugen übertraf APRICOT andere Programme zur sequenzbasierten Vorhersage von RBPs. Die Anwendungsöglichkeiten und die Flexibilität der Software wird am Beispiel einiger großer RBP-Kollektionen, die auch das komplette Proteom von Salmonella Typhimurium SL1344 beinhalten, dargelegt. APRICOT identifiziert 1068 Proteine von Salmonella als RBP-Kandidaten, die anschließend unter Nutzung der bereits bekannten bakteriellen und eukaryotischen RBDs klassifiziert wurden. 131 der RBP-Kandidaten wurden zur Charakterisierung durch RNA co-immunoprecipitation followed by high-throughput sequencing (RIP-seq) ausgewählt. Basierend auf der relativen Menge an Transkripten in den RIP-seq-Bibliotheken wurde ein Katalog von angereicherten Genen erstellt, der auf eine potentielle RNA-bindende Funktion in 90% dieser Proteine hindeutet. Weiterhin wurden die Bindungstellen einiger dieser möglichen RBPs mit Cross-linking and Co-immunoprecipitation (CLIP) bestimmt. Diese Doktorarbeit beschreibt die bioinformatische Pipeline APRICOT, die ein globales Screening von RBPs in Bakterien anhand von Informationen bekannter RBDs ermöglicht. Zudem enthält sie eine Zusammenstellung aller potentieller RPS in Salmonella, die nun auf ihre biologsche Funktion hin untersucht werden können. Das Kommondozeilen-Programm und seine Dokumentation sind auf https://malvikasharan.github.io/APRICOT/ verfügbar. KW - Bioinformatics Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-153573 ER - TY - JOUR A1 - Masic, Anita A1 - Hurdayal, Ramona A1 - Nieuwenhuizen, Natalie E. A1 - Brombacher, Frank A1 - Moll, Heidrun T1 - Dendritic Cell-Mediated Vaccination Relies on Interleukin-4 Receptor Signaling to Avoid Tissue Damage after Leishmania major Infection of BALB/c Mice JF - PLoS Neglected Tropical Diseases N2 - Prevention of tissue damages at the site of Leishmania major inoculation can be achieved if the BALB/c mice are systemically given L. major antigen (LmAg)-loaded bone marrow-derived dendritic cells (DC) that had been exposed to CpG-containing oligodeoxynucleotides (CpG ODN). As previous studies allowed establishing that interleukin-4 (IL-4) is involved in the redirection of the immune response towards a type 1 profile, we were interested in further exploring the role of IL-4. Thus, wild-type (wt) BALB/c mice or DC-specific IL-4 receptor \(\alpha\) (IL-4R \(\alpha\))-deficient (CD11c\(^{cre}\)IL-4R \(\alpha^{-/lox}\) BALB/c mice were given either wt or IL-4R \(\alpha\)-deficient LmAg-loaded bone marrow-derived DC exposed or not to CpG ODN prior to inoculation of 2x10\(^5\) stationary-phase L. major promastigotes into the BALB/c footpad. The results provide evidence that IL4/IL-4R alpha-mediated signaling in the vaccinating DC is required to prevent tissue damage at the site of L. major inoculation, as properly conditioned wt DC but not IL-4R alpha-deficient DC were able to confer resistance. Furthermore, uncontrolled L. major population size expansion was observed in the footpad and the footpad draining lymph nodes of CD11c\(^{cre}\)IL-4R \(\alpha^{-/lox}\) mice immunized with CpG ODN-exposed LmAg-loaded IL-4R \(\alpha\)-deficient DC, indicating the influence of IL-4R \(\alpha\)-mediated signaling in host DC to control parasite replication. In addition, no footpad damage occurred in BALB/c mice that were systemically immunized with LmAg-loaded wt DC doubly exposed to CpG ODN and recombinant IL-4. We discuss these findings and suggest that the IL4/IL4R \(\alpha\) signaling pathway could be a key pathway to trigger when designing vaccines aimed to prevent damaging processes in tissues hosting intracellular microorganisms. KW - cytokines KW - necrosis-factor-alpha KW - T helper cell KW - visceral leishmaniasis KW - intracellular pathogen KW - interferon-gamma KW - IL-12 production KW - deficient mice KW - resistance KW - responses Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-133869 VL - 6 IS - 7 ER - TY - THES A1 - Hagmann [geb. Kischkies], Laura Violetta T1 - Stringent response regulation and its impact on ex vivo survival in the commensal pathogen \(Neisseria\) \(meningitidis\) T1 - Regulation der stringenten Kontrolle und ihre Auswirkungen auf das ex vivo Überleben des kommensalen Erregers \(Neisseria\) \(meningitidis\) N2 - Neisseria meningitidis is a commensal bacterium which sometimes causes serious disease in humans. Recent studies in numerous human pathogenic bacteria have shown that the stringent response contributes to bacterial virulence. Therefore, this study analyzed the regulation of the stringent response in meningococci and in particular of RelA as well as its contribution to ex vivo fitness in a strain- and condition- dependent manner by using the carriage strain α522 and the hyperinvasive strain MC58 in different in vitro and ex vivo conditions. Growth experiments revealed that both wild-type strains were almost indistinguishable in their ex vivo phenotypes. However, quantitative real time PCR (qRT-PCR) found differences in the gene expression of relA between both strains. Furthermore, in contrast to the MC58 RelA mutant strain α522 deficient in RelA was unable to survive in human whole blood, although both strains showed the same ex vivo phenotypes in saliva and cerebrospinal fluid. Moreover, strain α522 was depended on a short non-coding AT-rich repeat element (ATRrelA) in the promoter region of relA to survive in human blood. Furthermore, cell culture experiments with human epithelial cells revealed that in both strains the deletion of relA resulted in a significantly decreased invasion rate while not significantly affecting adhesion. In order to better understand the conditional lethality of the relA deletion, computational and experimental analyses were carried out to unravel differences in amino acid biosynthetic pathways between both strains. Whereas strain MC58 is able to synthesize all 20 amino acids, strain α522 has an auxotrophy for cysteine and glutamine. In addition, the in vitro growth experiments found that RelA is required for growth in the absence of external amino acids in both strains. Furthermore, the mutant strain MC58 harboring an ATRrelA in its relA promoter region showed improved growth in minimal medium supplemented with L-cysteine and/or L-glutamine compared to the wild-type strain. Contrary, in strain α522 no differences between the wild-type and the ATRrelA deletion mutant were observed. Together this indicates that ATRrelA interferes with the complex regulatory interplay between the stringent response pathway and L-cysteine as well as L-glutamine metabolism. It further suggests that meningococcal virulence is linked to relA in a strain- and condition- depended manner. In conclusion, this work highlighted the role of the stringent response and of non-coding regulatory elements for bacterial virulence and indicates that virulence might be related to the way how meningococci accomplish growth within the host environments. N2 - Neisseria meningitidis ist ein kommensal lebendes, fakultativ pathogenes Bakterium, welches unter nicht vollständig verstandenen Umständen lebensbedrohliche Krankheitsbilder bei Menschen verursacht. Aktuelle Studien haben gezeigt, dass die stringente Antwort einen Einfluss auf die bakterielle Virulenz haben kann. Aus diesem Grund untersucht diese Arbeit die Regulation der stringenten Antwort, insbesondere die Rolle von RelA, sowie den Einfluss der stringenten Antwort auf die Ex-vivo-Fitness der Meningokokken. Die Ergebnisse wurden für den Trägerstamm α522 und den hyperinvasiven Stamm MC58 erhoben und miteinander verglichen. Wachstumsexperimente zeigten, dass sich beide Wildtyp-Stämme in ihren Ex-vivo-Phänotypen nicht unterscheiden. Jedoch wurden mittels quantitativer Echtzeit-PCR (qRT-PCR) Unterschiede zwischen beiden Stämmen in der Genexpression von relA gefunden. Zudem war die α522 relA Mutante im Gegensatz zu der MC58 relA Mutante nicht in der Lage, in menschlichem Vollblut zu überleben. Allerdings zeigten in Saliva und Liquor beide Stämme den gleichen Phänotyp. Außerdem war der Trägerstamm auf eine kurze, nicht-codierende AT-reiche Region (ATRrelA) in der Promotorregion von relA angewiesen, um im menschlichen Blut überleben zu können. Darüber hinaus zeigten Zellkulturexperimente mit humanen Epithelzellen, dass die Deletion relA die Invasionsrate in beiden Stämmen signifikant verringerte, obwohl die Adhäsionsrate durch die Deletion unbeeinflusst blieb. Um besser verstehen zu können, weshalb die Deletion von relA unter bestimmten Bedingungen letal ist, wurden mit In-silico- und experimentellen Analysen nach Unterschieden in den Aminosäurebiosynthesewegen beider Stämme gesucht. Es zeigte sich, dass Stamm MC58 in der Lage ist alle 20 Aminosäuren zu synthetisieren, während Stamm α522 eine Auxotrophie für Cystein und Glutamin aufweist. Ferner zeigten die In-vitro-Wachstumsversuche, dass RelA bei Aminosäuremangel essentiell für beide Stämme ist. Darüber hinaus zeigte eine MC58 Mutante mit einer ATRrelA –Kopie in der relA Promotorregion ein im Vergleich zum Wildtyp-Stamm verbessertes Wachstum in mit L-Cystein und/oder L-Glutamin angereichertem Minimalmedium. Gegensätzlich dazu zeigte der Stamm α522 keine Unterschiede im Wachstum zwischen dem Wildtyp und einer ATRrelA Deletions-Mutante. Dies deutet darauf hin, dass ATRrelA an dem komplexen regulatorischen Zusammenspiel der stringenten Antwort und dem L-Cystein- beziehungsweise dem L-Glutamin-Metabolismus beteiligt ist. Es lässt sich vermuten, dass RelA zu der Virulenz von Meningokokken in einer stamm- und umgebungsspezifischen Weise beiträgt. Abschließend hebt diese Arbeit die Rolle von kleinen regulatorischen Elementen für die bakterielle Virulenz hervor und postuliert, dass die Virulenz der Meningokokken auf ihrer Fähigkeit basiert, sich der durch den Wirt gegebenen Umgebung anzupassen. KW - Neisseria meningitidis KW - Stringente Kontrolle KW - Virulenzfaktor KW - Genregulation KW - Transposon KW - Stringent response KW - RelA KW - MITE KW - Stringente Antwort Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-144352 ER - TY - JOUR A1 - Schmidtke, Cornelius A1 - Findeiß, Sven A1 - Sharma, Cynthia M. A1 - Kuhfuss, Juliane A1 - Hoffmann, Steve A1 - Vogel, Jörg A1 - Stadler, Peter F. A1 - Bonas, Ulla T1 - Genome-wide transcriptome analysis of the plant pathogen Xanthomonas identifies sRNAs with putative virulence functions JF - Nucleic Acids Research N2 - The Gram-negative plant-pathogenic bacterium Xanthomonas campestris pv. vesicatoria (Xcv) is an important model to elucidate the mechanisms involved in the interaction with the host. To gain insight into the transcriptome of the Xcv strain 85-10, we took a differential RNA sequencing (dRNA-seq) approach. Using a novel method to automatically generate comprehensive transcription start site (TSS) maps we report 1421 putative TSSs in the Xcv genome. Genes in Xcv exhibit a poorly conserved -10 promoter element and no consensus Shine-Dalgarno sequence. Moreover, 14% of all mRNAs are leaderless and 13% of them have unusually long 5'-UTRs. Northern blot analyses confirmed 16 intergenic small RNAs and seven cis-encoded antisense RNAs in Xcv. Expression of eight intergenic transcripts was controlled by HrpG and HrpX, key regulators of the Xcv type III secretion system. More detailed characterization identified sX12 as a small RNA that controls virulence of Xcv by affecting the interaction of the pathogen and its host plants. The transcriptional landscape of Xcv is unexpectedly complex, featuring abundant antisense transcripts, alternative TSSs and clade-specific small RNAs. KW - SUBSP carotovora KW - regulatory RNA KW - gene-cluster KW - campestris PV vesicatoria KW - escherichia coli KW - determines pathgenicity KW - hypersensitive response KW - ralstonia solanacearum KW - extracellular enzymes KW - secretion systems KW - transcription initiation site KW - RNA sequence analyses KW - messanger RNA KW - plants KW - libraries KW - genome KW - genes KW - gene expression profiling KW - genetic transcription KW - northern blotting KW - untranslated regions KW - xanthomonas KW - xanthomonas campestris KW - bacteria KW - virulence KW - pathogenetic organism KW - RNA KW - small RNA KW - pathogenicity KW - type III secretion system pathways KW - maps KW - consesus KW - host (organism) KW - type III protein secretion system complex Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-131781 VL - 40 IS - 5 SP - 2020 EP - 2031 ER - TY - JOUR A1 - Pils, Stefan A1 - Kopp, Kathrin A1 - Peterson, Lisa A1 - Tascon, Julia Delgado A1 - Nyffenegger-Jann, Naja J. A1 - Hauck, Christof R. T1 - The Adaptor Molecule Nck Localizes the WAVE Complex to Promote Actin Polymerization during CEACAM3-Mediated Phagocytosis of Bacteria JF - PLoS One N2 - Background: CEACAM3 is a granulocyte receptor mediating the opsonin-independent recognition and phagocytosis of human-restricted CEACAM-binding bacteria. CEACAM3 function depends on an intracellular immunoreceptor tyrosine-based activation motif (ITAM)-like sequence that is tyrosine phosphorylated by Src family kinases upon receptor engagement. The phosphorylated ITAM-like sequence triggers GTP-loading of Rac by directly associating with the guanine nucleotide exchange factor (GEF) Vav. Rac stimulation in turn is critical for actin cytoskeleton rearrangements that generate lamellipodial protrusions and lead to bacterial uptake. Principal Findings: In our present study we provide biochemical and microscopic evidence that the adaptor proteins Nck1 and Nck2, but not CrkL, Grb2 or SLP-76, bind to tyrosine phosphorylated CEACAM3. The association is phosphorylation-dependent and requires the Nck SH2 domain. Overexpression of the isolated Nck1 SH2 domain, RNAi-mediated knock-down of Nck1, or genetic deletion of Nck1 and Nck2 interfere with CEACAM3-mediated bacterial internalization and with the formation of lamellipodial protrusions. Nck is constitutively associated with WAVE2 and directs the actin nucleation promoting WAVE complex to tyrosine phosphorylated CEACAM3. In turn, dominant-negative WAVE2 as well as shRNA-mediated knock-down of WAVE2 or the WAVE-complex component Nap1 reduce internalization of bacteria. Conclusions: Our results provide novel mechanistic insight into CEACAM3-initiated phagocytosis. We suggest that the CEACAM3 ITAM-like sequence is optimized to co-ordinate a minimal set of cellular factors needed to efficiently trigger actin-based lamellipodial protrusions and rapid pathogen engulfment. KW - activation KW - neisseria gonorrhoeae KW - human pathogens KW - T cell KW - signal transduction KW - escherichia coli KW - epithelial cells KW - tyrosine kinase KW - receptor KW - adhesion Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-131747 VL - 7 IS - 3 ER - TY - JOUR A1 - Ramachandran, Vinoy K. A1 - Shearer, Neil A1 - Jacob, Jobin J. A1 - Sharma, Cynthia M. A1 - Thompson, Arthur T1 - The architecture and ppGpp-dependent expression of the primary transcriptome of Salmonella Typhimurium during invasion gene expression JF - BMC Genomics N2 - Background: Invasion of intestinal epithelial cells by Salmonella enterica serovar Typhimurium (S. Typhimurium) requires expression of the extracellular virulence gene expression programme (STEX), activation of which is dependent on the signalling molecule guanosine tetraphosphate (ppGpp). Recently, next-generation transcriptomics (RNA-seq) has revealed the unexpected complexity of bacterial transcriptomes and in this report we use differential RNA sequencing (dRNA-seq) to define the high-resolution transcriptomic architecture of wildtype S. Typhimurium and a ppGpp null strain under growth conditions which model STEX. In doing so we show that ppGpp plays a much wider role in regulating the S. Typhimurium STEX primary transcriptome than previously recognised. Results: Here we report the precise mapping of transcriptional start sites (TSSs) for 78% of the S. Typhimurium open reading frames (ORFs). The TSS mapping enabled a genome-wide promoter analysis resulting in the prediction of 169 alternative sigma factor binding sites, and the prediction of the structure of 625 operons. We also report the discovery of 55 new candidate small RNAs (sRNAs) and 302 candidate antisense RNAs (asRNAs). We discovered 32 ppGpp-dependent alternative TSSs and determined the extent and level of ppGpp-dependent coding and non-coding transcription. We found that 34% and 20% of coding and non-coding RNA transcription respectively was ppGpp-dependent under these growth conditions, adding a further dimension to the role of this remarkable small regulatory molecule in enabling rapid adaptation to the infective environment. Conclusions: The transcriptional architecture of S. Typhimurium and finer definition of the key role ppGpp plays in regulating Salmonella coding and non-coding transcription should promote the understanding of gene regulation in this important food borne pathogen and act as a resource for future research. KW - legionella pneumophila KW - growth rate control KW - escherichia coli K-12 KW - pathogenicity island 2 KW - bacterial signal molecule KW - enterica serovar typhimurium KW - messenger RNA KW - protein synthesis KW - sationary phase KW - environmental regulation Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-130625 VL - 13 IS - 25 ER - TY - JOUR A1 - Wang, Huiqiang A1 - Chen, Nanhai G. A1 - Minev, Boris R. A1 - Szalay, Aladar A. T1 - Oncolytic vaccinia virus GLV-1h68 strain shows enhanced replication in human breast cancer stem-like cells in comparison to breast cancer cells JF - Journal of Translational Medicine N2 - Background: Recent data suggest that cancer stem cells (CSCs) play an important role in cancer, as these cells possess enhanced tumor-forming capabilities and are responsible for relapses after apparently curative therapies have been undertaken. Hence, novel cancer therapies will be needed to test for both tumor regression and CSC targeting. The use of oncolytic vaccinia virus (VACV) represents an attractive anti-tumor approach and is currently under evaluation in clinical trials. The purpose of this study was to demonstrate whether VACV does kill CSCs that are resistant to irradiation and chemotherapy. Methods: Cancer stem-like cells were identified and separated from the human breast cancer cell line GI-101A by virtue of increased aldehyde dehydrogenase 1 (ALDH1) activity as assessed by the ALDEFLUOR assay and cancer stem cell-like features such as chemo-resistance, irradiation-resistance and tumor-initiating were confirmed in cell culture and in animal models. VACV treatments were applied to both ALDEFLUOR-positive cells in cell culture and in xenograft tumors derived from these cells. Moreover, we identified and isolated CD44\(^+\)CD24\(^+\)ESA\(^+\) cells from GI-101A upon an epithelial-mesenchymal transition (EMT). These cells were similarly characterized both in cell culture and in animal models. Results: We demonstrated for the first time that the oncolytic VACV GLV-1h68 strain replicated more efficiently in cells with higher ALDH1 activity that possessed stem cell-like features than in cells with lower ALDH1 activity. GLV-1h68 selectively colonized and eventually eradicated xenograft tumors originating from cells with higher ALDH1 activity. Furthermore, GLV-1h68 also showed preferential replication in CD44\(^+\)CD24\(^+\)ESA\(^+\) cells derived from GI-101A upon an EMT induction as well as in xenograft tumors originating from these cells that were more tumorigenic than CD44\(^+\)CD24\(^-\)ESA\(^+\) cells. Conclusions: Taken together, our findings indicate that GLV-1h68 efficiently replicates and kills cancer stem-like cells. Thus, GLV-1h68 may become a promising agent for eradicating both primary and metastatic tumors, especially tumors harboring cancer stem-like cells that are resistant to chemo and/or radiotherapy and may be responsible for recurrence of tumors. KW - tumors KW - therapy KW - metastasis KW - identification KW - lines KW - gene expression KW - in-vitro propagation KW - acute myeloid leukemia KW - epithelial-mesenchymal transition KW - subpopulation Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-130019 VL - 10 IS - 167 ER - TY - JOUR A1 - Gentschev, Ivaylo A1 - Adelfinger, Marion A1 - Josupeit, Rafael A1 - Rudolph, Stephan A1 - Ehrig, Klaas A1 - Donat, Ulrike A1 - Weibel, Stephanie A1 - Chen, Nanhai G. A1 - Yu, Yong A. A1 - Zhang, Qian A1 - Heisig, Martin A1 - Thamm, Douglas A1 - Stritzker, Jochen A1 - MacNeill, Amy A1 - Szalay, Aladar A. T1 - Preclinical Evaluation of Oncolytic Vaccinia Virus for Therapy of Canine Soft Tissue Sarcoma JF - PLoS One N2 - Virotherapy using oncolytic vaccinia virus (VACV) strains is one promising new strategy for canine cancer therapy. In this study we describe the establishment of an in vivo model of canine soft tissue sarcoma (CSTS) using the new isolated cell line STSA-1 and the analysis of the virus-mediated oncolytic and immunological effects of two different Lister VACV LIVP1.1.1 and GLV-1h68 strains against CSTS. Cell culture data demonstrated that both tested VACV strains efficiently infected and destroyed cells of the canine soft tissue sarcoma line STSA-1. In addition, in our new canine sarcoma tumor xenograft mouse model, systemic administration of LIVP1.1.1 or GLV-1h68 viruses led to significant inhibition of tumor growth compared to control mice. Furthermore, LIVP1.1.1 mediated therapy resulted in almost complete tumor regression and resulted in long-term survival of sarcoma-bearing mice. The replication of the tested VACV strains in tumor tissues led to strong oncolytic effects accompanied by an intense intratumoral infiltration of host immune cells, mainly neutrophils. These findings suggest that the direct viral oncolysis of tumor cells and the virus-dependent activation of tumor-associated host immune cells could be crucial parts of anti-tumor mechanism in STSA-1 xenografts. In summary, the data showed that both tested vaccinia virus strains and especially LIVP1.1.1 have great potential for effective treatment of CSTS. KW - breast-tumors KW - animal-model KW - nude-mice KW - cell-line KW - in-vitro KW - glv-1h68 KW - cancer KW - virotherapy KW - dogs KW - neutrophils Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-129998 VL - 7 IS - 5 ER - TY - JOUR A1 - Sass, Andrea M. A1 - Van Acker, Heleen A1 - Förstner, Konrad U. A1 - Van Nieuwerburgh, Filip A1 - Deforce, Dieter A1 - Vogel, Jörg A1 - Coenye, Tom T1 - Genome-wide transcription start site profiling in biofilm-grown Burkholderia cenocepacia J2315 JF - BMC Genomics N2 - Background: Burkholderia cenocepacia is a soil-dwelling Gram-negative Betaproteobacterium with an important role as opportunistic pathogen in humans. Infections with B. cenocepacia are very difficult to treat due to their high intrinsic resistance to most antibiotics. Biofilm formation further adds to their antibiotic resistance. B. cenocepacia harbours a large, multi-replicon genome with a high GC-content, the reference genome of strain J2315 includes 7374 annotated genes. This study aims to annotate transcription start sites and identify novel transcripts on a whole genome scale. Methods: RNA extracted from B. cenocepacia J2315 biofilms was analysed by differential RNA-sequencing and the resulting dataset compared to data derived from conventional, global RNA-sequencing. Transcription start sites were annotated and further analysed according to their position relative to annotated genes. Results: Four thousand ten transcription start sites were mapped over the whole B. cenocepacia genome and the primary transcription start site of 2089 genes expressed in B. cenocepacia biofilms were defined. For 64 genes a start codon alternative to the annotated one was proposed. Substantial antisense transcription for 105 genes and two novel protein coding sequences were identified. The distribution of internal transcription start sites can be used to identify genomic islands in B. cenocepacia. A potassium pump strongly induced only under biofilm conditions was found and 15 non-coding small RNAs highly expressed in biofilms were discovered. Conclusions: Mapping transcription start sites across the B. cenocepacia genome added relevant information to the J2315 annotation. Genes and novel regulatory RNAs putatively involved in B. cenocepacia biofilm formation were identified. These findings will help in understanding regulation of B. cenocepacia biofilm formation. KW - persistence KW - genomic islands KW - pathogen KW - identification KW - bacteria KW - small RNAs KW - translation initiation KW - cepedia complex KW - global gene expression KW - SEQ KW - resistance KW - burkholderia cenocepacia KW - biofilms KW - dRNA-Seq KW - transcription start site KW - antisense RNA Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-139748 VL - 16 IS - 775 ER - TY - JOUR A1 - von Bohl, Andreas A1 - Kuehn, Andrea A1 - Simon, Nina A1 - Nkwouano Ngongang, Vanesa A1 - Spehr, Marc A1 - Baumeister, Stefan A1 - Przyborski, Jude M. A1 - Fischer, Rainer A1 - Pradel, Gabriele T1 - A WD40-repeat protein unique to malaria parasites associates with adhesion protein complexes and is crucial for blood stage progeny JF - Malaria Journal N2 - Background During development in human erythrocytes, Plasmodium falciparum parasites display a remarkable number of adhesive proteins on their plasma membrane. In the invasive merozoites, these include members of the PfMSP1 and PfAMA1/RON complexes, which facilitate contact between merozoites and red blood cells. In gametocytes, sexual precursor cells mediating parasite transmission to the mosquito vector, plasma membrane-associated proteins primarily belong to the PfCCp and 6-cys families with roles in fertilization. This study describes a newly identified WD40-repeat protein unique to Plasmodium species that associates with adhesion protein complexes of both merozoites and gametocytes. Methods The WD40-repeat protein-like protein PfWLP1 was identified via co-immunoprecipitation assays followed by mass spectrometry and characterized using biochemical and immunohistochemistry methods. Reverse genetics were employed for functional analysis. Results PfWLP1 is expressed both in schizonts and gametocytes. In mature schizonts, the protein localizes underneath the merozoite micronemes and interacts with PfAMA1, while in gametocytes PfWLP1 primarily accumulates underneath the plasma membrane and associates with PfCCp1 and Pfs230. Reverse genetics failed to disrupt the pfwlp1 gene, while haemagglutinin-tagging was feasible, suggesting a crucial function for PfWLP1 during blood stage replication. Conclusions This is the first report on a plasmodial WD40-repeat protein associating with cell adhesion proteins. Since WD40 domains are known to mediate protein–protein contact by serving as a rigid scaffold for protein interactions, the presented data suggest that PfWLP1 supports the stability of adhesion protein complexes of the plasmodial blood stages. KW - PfCCp protein KW - Pfs230 KW - PfAMA1 KW - WD40 KW - gametocyte KW - microneme KW - merozoite KW - plasmodium falciparum KW - malaria Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-139728 VL - 14 IS - 435 ER - TY - JOUR A1 - Fan, Ben A1 - Li, Lei A1 - Chao, Yanjie A1 - Förstner, Konrad A1 - Vogel, Jörg A1 - Borriss, Rainer A1 - Wu, Xiao-Qin T1 - dRNA-Seq Reveals Genomewide TSSs and Noncoding RNAs of Plant Beneficial Rhizobacterium Bacillus amyloliquefaciens FZB42 JF - PLoS One N2 - Bacillus amyloliquefaciens subsp. plantarum FZB42 is a representative of Gram-positive plant-growth-promoting rhizobacteria (PGPR) that inhabit plant root environments. In order to better understand the molecular mechanisms of bacteria-plant symbiosis, we have systematically analyzed the primary transcriptome of strain FZB42 grown under rhizospheremimicking conditions using differential RNA sequencing (dRNA-seq). Our analysis revealed 4,877 transcription start sites for protein-coding genes, identified genes differentially expressed under different growth conditions, and corrected many previously mis-annotated genes. We also identified a large number of riboswitches and cis-encoded antisense RNAs, as well as trans-encoded small noncoding RNAs that may play important roles in the gene regulation of Bacillus. Overall, our analyses provided a landscape of Bacillus primary transcriptome and improved the knowledge of rhizobacteria-host interactions. KW - gene expression KW - subtilis genome KW - enterica serovar thphimurium KW - small regulatory RNAs KW - binding protein HFQ KW - escherichia coli KW - messenger RNA KW - transcriptional landscape KW - mycobacterium tuberculosis KW - listeria monocytogenes Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-138369 VL - 10 IS - 11 ER - TY - JOUR A1 - Beiss, Veronique A1 - Spiegel, Holger A1 - Boes, Alexander A1 - Scheuermayer, Matthias A1 - Reimann, Andreas A1 - Schillberg, Stefan A1 - Fischer, Rainer T1 - Plant expression and characterization of the transmission-blocking vaccine candidate PfGAP50 JF - BMC Biotechnology N2 - Background: Despite the limited success after decades of intensive research and development efforts, vaccination still represents the most promising strategy to significantly reduce the disease burden in malaria endemic regions. Besides the ultimate goal of inducing sterile protection in vaccinated individuals, the prevention of transmission by so-called transmission blocking vaccines (TBVs) is being regarded as an important feature of an efficient malaria eradication strategy. Recently, Plasmodium falciparum GAP50 (PfGAP50), a 44.6 kDa transmembrane protein that forms an essential part of the invasion machinery (glideosome) multi-protein complex, has been proposed as novel potential transmission-blocking candidate. Plant-based expression systems combine the advantages of eukaryotic expression with a up-scaling potential and a good product safety profile suitable for vaccine production. In this study we investigated the feasibility to use the transient plant expression to produce PfGAP50 suitable for the induction of parasite specific inhibitory antibodies. Results: We performed the transient expression of recombinant PfGAP50 in Nicotiana benthamiana leaves using endoplasmatic reticulum (ER) and plastid targeting. After IMAC-purification the protein yield and integrity was investigated by SDS-PAGE and Western Blot. Rabbit immune IgG derived by the immunization with the plastidtargeted variant of PfGAP50 was analyzed by immune fluorescence assay (IFA) and zygote inhibition assay (ZIA). PfGAP50 could be produced in both subcellular compartments at different yields IMAC (Immobilized Metal Affinity Chromatography) purification from extract yielded up to 4.1 mu g/g recombinant protein per fresh leaf material for ER-retarded and 16.2 mu g/g recombinant protein per fresh leave material for plasmid targeted PfGAP50, respectively. IgG from rabbit sera generated by immunization with the recombinant protein specifically recognized different parasite stages in immunofluorescence assay. Furthermore up to 55 % inhibition in an in vitro zygote inhibition assay could be achieved using PfGAP50-specific rabbit immune IgG. Conclusions: The results of this study demonstrate that the plant-produced PfGAP50 is functional regarding the presentation of inhibitory epitopes and could be considered as component of a transmission-blocking malaria vaccine formulation. KW - PFS25 KW - plastid targeting KW - plant-made vaccines KW - agroinfiltration KW - gametes KW - sexual stage KW - plasmodium falciparum KW - membrane KW - antibodies KW - immunization KW - RTS,S/AS01 malaria vaccine KW - recombinant proteins KW - cost-effectiveness KW - purification Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-137327 VL - 15 IS - 108 ER - TY - JOUR A1 - Abda, Ebrahim M. A1 - Krysciak, Dagmar A1 - Krohn-Molt, Ines A1 - Mamat, Uwe A1 - Schmeisser, Christel A1 - Förstner, Konrad U. A1 - Schaible, Ulrich E. A1 - Kohi, Thomas A. A1 - Nieman, Stefan A1 - Streit, Wolfgang R. T1 - Phenotypic Heterogeneity Affects Stenotrophomonas maltophilia K279a Colony Morphotypes and \(\beta\)-Lactamase Expression JF - Frontiers in Microbiology N2 - Phenotypic heterogeneity at the cellular level in response to various stresses, e.g., antibiotic treatment has been reported for a number of bacteria. In a clonal population, cell-to-cell variation may result in phenotypic heterogeneity that is a mechanism to survive changing environments including antibiotic therapy. Stenotrophomonas rnaltophilia has been frequently isolated from cystic fibrosis patients, can cause numerous infections in other organs and tissues, and is difficult to treat due to antibiotic resistances. S. maltophilia K279a produces the Li and L2 beta-lactamases in response to beta-lactam treatment. Here we report that the patient isolate S. rnaltophilia K279a diverges into cellular subpopulations with distinct but reversible morphotypes of small and big colonies when challenged with ampicillin. This observation is consistent with the formation of elongated chains of bacteria during exponential growth phase and the occurrence of mainly rod-shaped cells in liquid media. RNA-seq analysis of small versus big colonies revealed differential regulation of at least seven genes among the colony morphotypes. Among those, bleu and bla(L2) were transcriptionally the most strongly upregulated genes. Promoter fusions of b/a(L1) and b/a(L2) genes indicated that expression of both genes is also subject to high levels of phenotypic heterogeneous expression on a single cell level. Additionally, the comE homolog was found to be differentially expressed in homogenously versus heterogeneously bla(L2) expressing cells as identified by RNA(seq) analysis. Overexpression of cornE in S. maltophilia K279a reduced the level of cells that were in a bla(L2)-ON mode to 1% or lower. Taken together, our data provide strong evidence that S. maltophilia K279a populations develop phenotypic heterogeneity in an ampicillin challenged model. This cellular variability is triggered by regulation networks including b/a(L1), b/a(L2), and comE. KW - xanthomonas maltophilia KW - gram-negative bacteria KW - RNA-seq KW - pseudomas aeruginosa KW - antibiotic resistance KW - colony morphotypes KW - beta-lactamases KW - K279a KW - Stenotrophomonas maltophilia KW - phenotypic heterogeneity KW - persister cells KW - streptococcus pneumoniae KW - nosocomial pathogen KW - membrane vesicles KW - sinorhizobium fredii NGR234 KW - red fluorescent protein KW - escherichia coli Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-136446 VL - 6 IS - 1373 ER - TY - JOUR A1 - Fröhlich, Kathrin S. A1 - Papenfort, Kai A1 - Berger, Allison A. A1 - Vogel, Jörg T1 - A conserved RpoS-dependent small RNA controls the synthesis of major porin OmpD JF - Nucleic Acids Research N2 - A remarkable feature of many small non-coding RNAs (sRNAs) of Escherichia coli and Salmonella is their accumulation in the stationary phase of bacterial growth. Several stress response regulators and sigma factors have been reported to direct the transcription of stationary phase-specific sRNAs, but a widely conserved sRNA gene that is controlled by the major stationary phase and stress sigma factor, Sigma(S) (RpoS), has remained elusive. We have studied in Salmonella the conserved SdsR sRNA, previously known as RyeB, one of the most abundant stationary phase-specific sRNAs in E. coli. Alignments of the sdsR promoter region and genetic analysis strongly suggest that this sRNA gene is selectively transcribed by Sigma(S). We show that SdsR down-regulates the synthesis of the major Salmonella porin OmpD by Hfq-dependent base pairing; SdsR thus represents the fourth sRNA to regulate this major outer membrane porin. Similar to the InvR, MicC and RybB sRNAs, SdsR recognizes the ompD mRNA in the coding sequence, suggesting that this mRNA may be primarily targeted downstream of the start codon. The SdsR-binding site in ompD was localized by 3'-RACE, an experimental approach that promises to be of use in predicting other sRNA-target interactions in bacteria. KW - shock sigma factor KW - general stress response KW - down regulation KW - stationary phase KW - salmonella enterica KW - messenger RNA KW - escherichia coli KW - enterica serovar typhimurium KW - outer-membrane proteins KW - small noncoding RNAs Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-134230 VL - 40 IS - 8 ER - TY - JOUR A1 - Makoah Nigel, Animake A1 - Arndt, Hans-Dieter A1 - Pradel, Gabriele T1 - The proteasome of malaria parasites: A multi-stage drug target for chemotherapeutic intervention? JF - International Journal for Parasitology: Drugs and Drug Resistance N2 - The ubiquitin/proteasome system serves as a regulated protein degradation pathway in eukaryotes, and is involved in many cellular processes featuring high protein turnover rates, such as cell cycle control, stress response and signal transduction. In malaria parasites, protein quality control is potentially important because of the high replication rate and the rapid transformations of the parasite during life cycle progression. The proteasome is the core of the degradation pathway, and is a major proteolytic complex responsible for the degradation and recycling of non-functional ubiquitinated proteins. Annotation of the genome for Plasmodium falciparum, the causative agent of malaria tropica, revealed proteins with similarity to human 26S proteasome subunits. In addition, a bacterial ClpQ/hslV threonine peptidase-like protein was identified. In recent years several independent studies indicated an essential function of the parasite proteasome for the liver, blood and transmission stages. In this review, we compile evidence for protein recycling in Plasmodium parasites and discuss the role of the 26S proteasome as a prospective multi-stage target for antimalarial drug discovery programs. KW - plasmodium falciparum KW - proteasome KW - ubiquitin KW - inhibitor Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-137777 VL - 2 ER - TY - JOUR A1 - Lioliou, Efthimia A1 - Sharma, Cynthia M. A1 - Caldelari, Isabelle A1 - Helfer, Anne-Catherine A1 - Fechter, Pierre A1 - Vandenesch, François A1 - Vogel, Jörg A1 - Romby, Pascale T1 - Global Regulatory Functions of the Staphylococcus aureus Endoribonuclease III in Gene Expression JF - PLoS Genetics N2 - RNA turnover plays an important role in both virulence and adaptation to stress in the Gram-positive human pathogen Staphylococcus aureus. However, the molecular players and mechanisms involved in these processes are poorly understood. Here, we explored the functions of S. aureus endoribonuclease III (RNase III), a member of the ubiquitous family of double-strand-specific endoribonucleases. To define genomic transcripts that are bound and processed by RNase III, we performed deep sequencing on cDNA libraries generated from RNAs that were co-immunoprecipitated with wild-type RNase III or two different cleavage-defective mutant variants in vivo. Several newly identified RNase III targets were validated by independent experimental methods. We identified various classes of structured RNAs as RNase III substrates and demonstrated that this enzyme is involved in the maturation of rRNAs and tRNAs, regulates the turnover of mRNAs and non-coding RNAs, and autoregulates its synthesis by cleaving within the coding region of its own mRNA. Moreover, we identified a positive effect of RNase III on protein synthesis based on novel mechanisms. RNase III–mediated cleavage in the 5′ untranslated region (5′UTR) enhanced the stability and translation of cspA mRNA, which encodes the major cold-shock protein. Furthermore, RNase III cleaved overlapping 5′UTRs of divergently transcribed genes to generate leaderless mRNAs, which constitutes a novel way to co-regulate neighboring genes. In agreement with recent findings, low abundance antisense RNAs covering 44% of the annotated genes were captured by co-immunoprecipitation with RNase III mutant proteins. Thus, in addition to gene regulation, RNase III is associated with RNA quality control of pervasive transcription. Overall, this study illustrates the complexity of post-transcriptional regulation mediated by RNase III. KW - staphylococcus aureus KW - ribonucleases KW - messenger RNA KW - RNA sequencing KW - antisense RNA KW - RNA structure KW - RNA synthesis KW - RNA denaturation Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-127219 VL - 8 IS - 6 ER - TY - JOUR A1 - Wilms, Ina A1 - Overlöper, Aaron A1 - Nowrousian, Minou A1 - Sharma, Cynthia M. A1 - Narberhaus, Franz T1 - Deep sequencing uncovers numerous small RNAs on all four replicons of the plant pathogen Agrobacterium tumefaciens JF - RNA Biology N2 - Agrobacterium species are capable of interkingdom gene transfer between bacteria and plants. The genome of Agrobacterium tumefaciens consists of a circular and a linear chromosome, the At-plasmid and the Ti-plasmid, which harbors bacterial virulence genes required for tumor formation in plants. Little is known about promoter sequences and the small RNA (sRNA) repertoire of this and other α-proteobacteria. We used a differential RNA sequencing (dRNA-seq) approach to map transcriptional start sites of 388 annotated genes and operons. In addition, a total number of 228 sRNAs was revealed from all four Agrobacterium replicons. Twenty-two of these were confirmed by independent RNA gel blot analysis and several sRNAs were differentially expressed in response to growth media, growth phase, temperature or pH. One sRNA from the Ti-plasmid was massively induced under virulence conditions. The presence of 76 cis-antisense sRNAs, two of them on the reverse strand of virulence genes, suggests considerable antisense transcription in Agrobacterium. The information gained from this study provides a valuable reservoir for an in-depth understanding of sRNA-mediated regulation of the complex physiology and infection process of Agrobacterium. KW - regulatory RNA KW - plant-microbe interaction KW - deep sequencing KW - RNA-seq KW - small RNA Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-127101 VL - 9 IS - 446-457 ER - TY - JOUR A1 - Röhrich, Christian Rene A1 - Ngwa, Che Julius A1 - Wiesner, Jochen A1 - Schmidtberg, Henrike A1 - Degenkolb, Thomas A1 - Kollewe, Christian A1 - Fischer, Rainer A1 - Pradel, Gabriele A1 - Vilcinskas, Andreas T1 - Harmonine, a defence compound from the harlequin ladybird, inhibits mycobacterial growth and demonstrates multi-stage antimalarial activity JF - Biology Letters N2 - The harlequin ladybird beetle Harmonia axyridis has been introduced in many countries as a biological control agent, but has become an invasive species threatening the biodiversity of native ladybirds. Its invasive success has been attributed to its vigorous resistance against diverse pathogens. This study demonstrates that harmonine ((17R,9Z)-1,17-diaminooctadec-9-ene), which is present in H. axyridis haemolymph, displays broad-spectrum antimicrobial activity that includes human pathogens. Antibacterial activity is most pronounced against fast-growing mycobacteria and Mycobacterium tuberculosis, and the growth of both chloroquine-sensitive and -resistant Plasmodium falciparum strains is inhibited. Harmonine displays gametocytocidal activity, and inhibits the exflagellation of microgametocytes and zygote formation. In an Anopheles stephensi mosquito feeding model, harmonine displays transmission-blocking activity. KW - insect immunity KW - antimicrobial activity KW - harmonine KW - harmonia axyridis Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-127079 VL - 8 ER - TY - JOUR A1 - Bandyra, Katarzyna J. A1 - Said, Nelly A1 - Pfeiffer, Verena A1 - Górna, Maria W. A1 - Vogel, Jörg A1 - Luisi, Ben F. T1 - The Seed Region of a Small RNA Drives the Controlled Destruction of the Target mRNA by the Endoribonuclease RNase E JF - Molecular Cell N2 - Numerous small non-coding RNAs (sRNAs) in bacteria modulate rates of translation initiation and degradation of target mRNAs, which they recognize through base-pairing facilitated by the RNA chaperone Hfq. Recent evidence indicates that the ternary complex of Hfq, sRNA and mRNA guides endoribonuclease RNase E to initiate turnover of both the RNAs. We show that a sRNA not only guides RNase E to a defined site in a target RNA, but also allosterically activates the enzyme by presenting a monophosphate group at the 5′-end of the cognate-pairing “seed.” Moreover, in the absence of the target the 5′-monophosphate makes the sRNA seed region vulnerable to an attack by RNase E against which Hfq confers no protection. These results suggest that the chemical signature and pairing status of the sRNA seed region may help to both ‘proofread’ recognition and activate mRNA cleavage, as part of a dynamic process involving cooperation of RNA, Hfq and RNase E. KW - medicine Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-126202 VL - 47 IS - 6 ER - TY - JOUR A1 - Schwarz, Tobias A1 - Remer, Katharina A. A1 - Nahrendorf, Wiebke A1 - Masic, Anita A1 - Siewe, Lisa A1 - Müller, Werner A1 - Roers, Axel A1 - Moll, Heidrun T1 - T Cell-Derived IL-10 Determines Leishmaniasis Disease Outcome and Is Suppressed by a Dendritic Cell Based Vaccine JF - PLoS Pathogens N2 - Abstract In the murine model of Leishmania major infection, resistance or susceptibility to the parasite has been associated with the development of a Th1 or Th2 type of immune response. Recently, however, the immunosuppressive effects of IL-10 have been ascribed a crucial role in the development of the different clinical correlates of Leishmania infection in humans. Since T cells and professional APC are important cellular sources of IL-10, we compared leishmaniasis disease progression in T cell-specific, macrophage/neutrophil-specific and complete IL-10-deficient C57BL/6 as well as T cell-specific and complete IL-10-deficient BALB/c mice. As early as two weeks after infection of these mice with L. major, T cell-specific and complete IL-10-deficient animals showed significantly increased lesion development accompanied by a markedly elevated secretion of IFN-γ or IFN-γ and IL-4 in the lymph nodes draining the lesions of the C57BL/6 or BALB/c mutants, respectively. In contrast, macrophage/neutrophil-specific IL-10-deficient C57BL/6 mice did not show any altered phenotype. During the further course of disease, the T cell-specific as well as the complete IL-10-deficient BALB/c mice were able to control the infection. Furthermore, a dendritic cell-based vaccination against leishmaniasis efficiently suppresses the early secretion of IL-10, thus contributing to the control of parasite spread. Taken together, IL-10 secretion by T cells has an influence on immune activation early after infection and is sufficient to render BALB/c mice susceptible to an uncontrolled Leishmania major infection. Author Summary The clinical symptoms caused by infections with Leishmania parasites range from self-healing cutaneous to uncontrolled visceral disease and depend not only on the parasite species but also on the type of the host's immune response. It is estimated that 350 million people worldwide are at risk, with a global incidence of 1–1.5 million cases of cutaneous and 500,000 cases of visceral leishmaniasis. Murine leishmaniasis is the best-characterized model to elucidate the mechanisms underlying resistance or susceptibility to Leishmania major parasites in vivo. Using T cell-specific and macrophage-specific mutant mice, we demonstrate that abrogating the secretion of the immunosuppressive cytokine IL-10 by T cells is sufficient to render otherwise susceptible mice resistant to an infection with the pathogen. The healing phenotype is accompanied by an elevated specific inflammatory immune response very early after infection. We further show that dendritic cell-based vaccination against leishmaniasis suppresses the early secretion of IL-10 following challenge infection. Thus, our study unravels a molecular mechanism critical for host immune defense, aiding in the development of an effective vaccine against leishmaniasis. KW - cytokines KW - mouse models KW - T cells KW - lymph nodes KW - leishmania major KW - secretion KW - parasitic diseases KW - immune response Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-130385 VL - 9 IS - 6 ER -