TY - JOUR A1 - Ahmed, Zeeshan A1 - Zeeshan, Saman A1 - Huber, Claudia A1 - Hensel, Michael A1 - Schomburg, Dietmar A1 - Münch, Richard A1 - Eylert, Eva A1 - Eisenreich, Wolfgang A1 - Dandekar, Thomas T1 - ‘Isotopo’ a database application for facile analysis and management of mass isotopomer data JF - Database N2 - The composition of stable-isotope labelled isotopologues/isotopomers in metabolic products can be measured by mass spectrometry and supports the analysis of pathways and fluxes. As a prerequisite, the original mass spectra have to be processed, managed and stored to rapidly calculate, analyse and compare isotopomer enrichments to study, for instance, bacterial metabolism in infection. For such applications, we provide here the database application ‘Isotopo’. This software package includes (i) a database to store and process isotopomer data, (ii) a parser to upload and translate different data formats for such data and (iii) an improved application to process and convert signal intensities from mass spectra of \(^{13}C\)-labelled metabolites such as tertbutyldimethylsilyl-derivatives of amino acids. Relative mass intensities and isotopomer distributions are calculated applying a partial least square method with iterative refinement for high precision data. The data output includes formats such as graphs for overall enrichments in amino acids. The package is user-friendly for easy and robust data management of multiple experiments. KW - stable-isotope Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-120102 VL - 2014 IS - bau077 ER - TY - JOUR A1 - Dandekar, Thomas T1 - Yeast U3 localization and correct sequence (snR17a) and promotor activity (snR17b) identified by homology search N2 - No abstract available KW - yeast U3 localization Y1 - 1991 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-29781 ER - TY - INPR A1 - Dandekar, Thomas T1 - Why are nature´s constants so fine-tuned? The case for an escalating complex universe N2 - Why is our universe so fine-tuned? In this preprint we discuss that this is not a strange accident but that fine-tuned universes can be considered to be exceedingly large if one counts the number of observable different states (i.e. one aspect of the more general preprint http://www.opus-bayern.de/uni-wuerzburg/volltexte/2009/3353/). Looking at parameter variation for the same set of physical laws simple and complex processes (including life) and worlds in a multiverse are compared in simple examples. Next the anthropocentric principle is extended as many conditions which are generally interpreted anthropocentric only ensure a large space of different system states. In particular, the observed over-tuning beyond the level for our existence is explainable by these system considerations. More formally, the state space for different systems becomes measurable and comparable looking at their output behaviour. We show that highly interacting processes are more complex then Chaitin complexity, the latter denotes processes not compressible by shorter descriptions (Kolomogorov complexity). The complexity considerations help to better study and compare different processes (programs, living cells, environments and worlds) including dynamic behaviour and can be used for model selection in theoretical physics. Moreover, the large size (in terms of different states) of a world allowing complex processes including life can in a model calculation be determined applying discrete histories from quantum spin-loop theory. Nevertheless there remains a lot to be done - hopefully the preprint stimulates further efforts in this area. N2 - Dieses Preprint vertieft einen Aspekt des preprints http://www.opus-bayern.de/uni-wuerzburg/volltexte/2009/3353/, nämlich die Balance zwischen den Konstanten für unsere Naturgesetze. Die Frage nach einer solchen Balance entsteht nur, wenn man sich ein Multiversum mit vielen Alternativen Universen mit anderen Gewichten für die Naturkonstanten vorstellt und dann feststellt, dass diese gerade in unserem Universum optimal für Leben und überhaupt für komplexe, selbst organisierende Strukturen eingestellt sind (sogenanntes fine-tuning). Dies wird häufig mit dem anthropozentrischen Prinzip erklärt. Dies erklärt aber beispielsweise nicht, warum denn dieses fine-tuning noch deutlich feiner und genauer eingestellt ist, als für die Existenz eines Beobachters nötig ist. Wir zeigen dagegen, dass unser Universum besonders komplex ist und einen sehr großen Zustandsraum hat und Bedingungen, die eine hohe Komplexität erlauben, auch einen Beobachter und komplexe Prozesse wie Leben ermöglichen. Allgemein nimmt ein besonders komplexer Zustandsraum den Löwenanteil aller Alternativen ein. Unsere Komplexitätsbetrachtung kann auf verschiedenste Prozesse (Welten, Umwelten, lebende Zellen, Computerprogramme) angewandt werden, hilft bei der Modellauswahl in der theoretischen Physik (Beispiele werden gezeigt) und kann auch direkt ausgerechnet werden, dies wird für eine Modellrechnung zur Quantenschleifentheorie durchgeführt. Dennoch bleibt hier noch viel weitere Arbeit zu leisten, das Preprint kann hier nur einen Anstoß liefern. KW - Natur KW - Naturgesetz KW - Beobachter KW - Kolmogorov-Komplexität KW - Berechnungskomplexität KW - Fundamentalkonstante KW - Nature constants KW - complexity KW - observer KW - fine-tuning KW - multiverse Y1 - 2008 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-34488 ER - TY - JOUR A1 - Cecil, Alexander A1 - Gentschev, Ivaylo A1 - Adelfinger, Marion A1 - Dandekar, Thomas A1 - Szalay, Aladar A. T1 - Vaccinia virus injected human tumors: oncolytic virus efficiency predicted by antigen profiling analysis fitted boolean models JF - Bioengineered N2 - Virotherapy on the basis of oncolytic vaccinia virus (VACV) strains is a promising approach for cancer therapy. Recently, we showed that the oncolytic vaccinia virus GLV-1h68 has a therapeutic potential in treating human prostate and hepatocellular carcinomas in xenografted mice. In this study, we describe the use of dynamic boolean modeling for tumor growth prediction of vaccinia virus-injected human tumors. Antigen profiling data of vaccinia virus GLV-1h68-injected human xenografted mice were obtained, analyzed and used to calculate differences in the tumor growth signaling network by tumor type and gender. Our model combines networks for apoptosis, MAPK, p53, WNT, Hedgehog, the T-killer cell mediated cell death, Interferon and Interleukin signaling networks. The in silico findings conform very well with in vivo findings of tumor growth. Similar to a previously published analysis of vaccinia virus-injected canine tumors, we were able to confirm the suitability of our boolean modeling for prediction of human tumor growth after virus infection in the current study as well. In summary, these findings indicate that our boolean models could be a useful tool for testing of the efficacy of VACV-mediated cancer therapy already before its use in human patients. KW - boolean modeling KW - oncolytic virus KW - human xenografted mouse models KW - cancer therapy Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-200507 VL - 10 IS - 1 ER - TY - JOUR A1 - Ampattu, Biju Joseph A1 - Hagmann, Laura A1 - Liang, Chunguang A1 - Dittrich, Marcus A1 - Schlüter, Andreas A1 - Blom, Jochen A1 - Krol, Elizaveta A1 - Goesmann, Alexander A1 - Becker, Anke A1 - Dandekar, Thomas A1 - Müller, Tobias A1 - Schoen, Christoph T1 - Transcriptomic buffering of cryptic genetic variation contributes to meningococcal virulence JF - BMC Genomics N2 - Background: Commensal bacteria like Neisseria meningitidis sometimes cause serious disease. However, genomic comparison of hyperinvasive and apathogenic lineages did not reveal unambiguous hints towards indispensable virulence factors. Here, in a systems biological approach we compared gene expression of the invasive strain MC58 and the carriage strain α522 under different ex vivo conditions mimicking commensal and virulence compartments to assess the strain-specific impact of gene regulation on meningococcal virulence. Results: Despite indistinguishable ex vivo phenotypes, both strains differed in the expression of over 500 genes under infection mimicking conditions. These differences comprised in particular metabolic and information processing genes as well as genes known to be involved in host-damage such as the nitrite reductase and numerous LOS biosynthesis genes. A model based analysis of the transcriptomic differences in human blood suggested ensuing metabolic flux differences in energy, glutamine and cysteine metabolic pathways along with differences in the activation of the stringent response in both strains. In support of the computational findings, experimental analyses revealed differences in cysteine and glutamine auxotrophy in both strains as well as a strain and condition dependent essentiality of the (p)ppGpp synthetase gene relA and of a short non-coding AT-rich repeat element in its promoter region. Conclusions: Our data suggest that meningococcal virulence is linked to transcriptional buffering of cryptic genetic variation in metabolic genes including global stress responses. They further highlight the role of regulatory elements for bacterial virulence and the limitations of model strain approaches when studying such genetically diverse species as N. meningitidis. KW - neisseria meningitidis KW - MITE KW - virulenceregulatory evolution KW - systems biology KW - metabolism KW - cryptic KW - genetic variation KW - stringent response KW - relA Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-157534 VL - 18 IS - 282 ER - TY - JOUR A1 - Förster, Frank A1 - Beisser, Daniela A1 - Grohme, Markus A. A1 - Liang, Chunguang A1 - Mali, Brahim A1 - Siegl, Alexander Matthias A1 - Engelmann, Julia C. A1 - Shkumatov, Alexander V. A1 - Schokraie, Elham A1 - Müller, Tobias A1 - Schnölzer, Martina A1 - Schill, Ralph O. A1 - Frohme, Marcus A1 - Dandekar, Thomas T1 - Transcriptome analysis in tardigrade species reveals specific molecular pathways for stress adaptations JF - Bioinformatics and biology insights N2 - Tardigrades have unique stress-adaptations that allow them to survive extremes of cold, heat, radiation and vacuum. To study this, encoded protein clusters and pathways from an ongoing transcriptome study on the tardigrade \(Milnesium\) \(tardigradum\) were analyzed using bioinformatics tools and compared to expressed sequence tags (ESTs) from \(Hypsibius\) \(dujardini\), revealing major pathways involved in resistance against extreme environmental conditions. ESTs are available on the Tardigrade Workbench along with software and databank updates. Our analysis reveals that RNA stability motifs for \(M.\) \(tardigradum\) are different from typical motifs known from higher animals. \(M.\) \(tardigradum\) and \(H.\) \(dujardini\) protein clusters and conserved domains imply metabolic storage pathways for glycogen, glycolipids and specific secondary metabolism as well as stress response pathways (including heat shock proteins, bmh2, and specific repair pathways). Redox-, DNA-, stress- and protein protection pathways complement specific repair capabilities to achieve the strong robustness of \(M.\) \(tardigradum\). These pathways are partly conserved in other animals and their manipulation could boost stress adaptation even in human cells. However, the unique combination of resistance and repair pathways make tardigrades and \(M.\) \(tardigradum\) in particular so highly stress resistant. KW - RNA KW - expressed sequence tag KW - cluster KW - protein familiy KW - adaption KW - tardigrada KW - transcriptome Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-123089 N1 - This is an open access article. Unrestricted non-commercial use is permitted provided the original work is properly cited. VL - 6 ER - TY - JOUR A1 - Dandekar, Thomas A1 - Sibbald, Peter R. T1 - Trans-splicing of pre-mRNA is predicted to occur in a wide range of organisms including vertebrates N2 - No abstract available Y1 - 1990 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-29798 ER - TY - JOUR A1 - Osmanoglu, Özge A1 - Khaled AlSeiari, Mariam A1 - AlKhoori, Hasa Abduljaleel A1 - Shams, Shabana A1 - Bencurova, Elena A1 - Dandekar, Thomas A1 - Naseem, Muhammad T1 - Topological Analysis of the Carbon-Concentrating CETCH Cycle and a Photorespiratory Bypass Reveals Boosted CO\(_2\)-Sequestration by Plants JF - Frontiers in Bioengineering and Biotechnology N2 - Synthetically designed alternative photorespiratory pathways increase the biomass of tobacco and rice plants. Likewise, some in planta–tested synthetic carbon-concentrating cycles (CCCs) hold promise to increase plant biomass while diminishing atmospheric carbon dioxide burden. Taking these individual contributions into account, we hypothesize that the integration of bypasses and CCCs will further increase plant productivity. To test this in silico, we reconstructed a metabolic model by integrating photorespiration and photosynthesis with the synthetically designed alternative pathway 3 (AP3) enzymes and transporters. We calculated fluxes of the native plant system and those of AP3 combined with the inhibition of the glycolate/glycerate transporter by using the YANAsquare package. The activity values corresponding to each enzyme in photosynthesis, photorespiration, and for synthetically designed alternative pathways were estimated. Next, we modeled the effect of the crotonyl-CoA/ethylmalonyl-CoA/hydroxybutyryl-CoA cycle (CETCH), which is a set of natural and synthetically designed enzymes that fix CO₂ manifold more than the native Calvin–Benson–Bassham (CBB) cycle. We compared estimated fluxes across various pathways in the native model and under an introduced CETCH cycle. Moreover, we combined CETCH and AP3-w/plgg1RNAi, and calculated the fluxes. We anticipate higher carbon dioxide–harvesting potential in plants with an AP3 bypass and CETCH–AP3 combination. We discuss the in vivo implementation of these strategies for the improvement of C3 plants and in natural high carbon harvesters. KW - CO2-sequestration KW - photorespiration KW - elementary modes KW - synthetic pathways KW - carboxylation KW - metabolic modeling KW - CETCH cycle Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-249260 SN - 2296-4185 VL - 9 ER - TY - JOUR A1 - Wangorsch, Gaby A1 - Butt, Elke A1 - Mark, Regina A1 - Hubertus, Katharina A1 - Geiger, Jörg A1 - Dandekar, Thomas A1 - Dittrich, Marcus T1 - Time-resolved in silico modeling of fine-tuned cAMP signaling in platelets: feedback loops, titrated phosphorylations and pharmacological modulation N2 - Background: Hemostasis is a critical and active function of the blood mediated by platelets. Therefore, the prevention of pathological platelet aggregation is of great importance as well as of pharmaceutical and medical interest. Endogenous platelet inhibition is predominantly based on cyclic nucleotides (cAMP, cGMP) elevation and subsequent cyclic nucleotide-dependent protein kinase (PKA, PKG) activation. In turn, platelet phosphodiesterases (PDEs) and protein phosphatases counterbalance their activity. This main inhibitory pathway in human platelets is crucial for countervailing unwanted platelet activation. Consequently, the regulators of cyclic nucleotide signaling are of particular interest to pharmacology and therapeutics of atherothrombosis. Modeling of pharmacodynamics allows understanding this intricate signaling and supports the precise description of these pivotal targets for pharmacological modulation. Results: We modeled dynamically concentration-dependent responses of pathway effectors (inhibitors, activators, drug combinations) to cyclic nucleotide signaling as well as to downstream signaling events and verified resulting model predictions by experimental data. Experiments with various cAMP affecting compounds including antiplatelet drugs and their combinations revealed a high fidelity, fine-tuned cAMP signaling in platelets without crosstalk to the cGMP pathway. The model and the data provide evidence for two independent feedback loops: PKA, which is activated by elevated cAMP levels in the platelet, subsequently inhibits adenylyl cyclase (AC) but as well activates PDE3. By multi-experiment fitting, we established a comprehensive dynamic model with one predictive, optimized and validated set of parameters. Different pharmacological conditions (inhibition, activation, drug combinations, permanent and transient perturbations) are successfully tested and simulated, including statistical validation and sensitivity analysis. Downstream cyclic nucleotide signaling events target different phosphorylation sites for cAMP- and cGMP-dependent protein kinases (PKA, PKG) in the vasodilator-stimulated phosphoprotein (VASP). VASP phosphorylation as well as cAMP levels resulting from different drug strengths and combined stimulants were quantitatively modeled. These predictions were again experimentally validated. High sensitivity of the signaling pathway at low concentrations is involved in a fine-tuned balance as well as stable activation of this inhibitory cyclic nucleotide pathway. Conclusions: On the basis of experimental data, literature mining and database screening we established a dynamic in silico model of cyclic nucleotide signaling and probed its signaling sensitivity. Thoroughly validated, it successfully predicts drug combination effects on platelet function, including synergism, antagonism and regulatory loops. KW - Vasodilatator-stimuliertes Phosphoprotein KW - VASP KW - cyclic nucleotide signaling KW - silico model Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-69145 ER - TY - JOUR A1 - Dandekar, Thomas A1 - Argos, P. T1 - Three-dimensional structure of the 67k N-terminal Fragment of E.coli DNA Topoisomerase I N2 - No abstract available Y1 - 1994 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-29836 ER - TY - JOUR A1 - Dandekar, Thomas A1 - Tollervey, D. T1 - Thirty-three nucleotides of 5' flanking sequence including the TATA box are necessary and sufficient for efficient U2 snRNA transcription in Schizosaccharomycespombe N2 - No abstract available Y1 - 1991 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-29959 ER - TY - JOUR A1 - Naseem, Muhammad A1 - Dandekar, Thomas T1 - The Role of Auxin-Cytokinin Antagonism in Plant-Pathogen Interactions JF - PLOS Pathogens N2 - No abstract available. KW - disease KW - pseudomas-syringae KW - arabidpsis thaliana KW - immunity KW - organogenesis KW - transcription KW - resistance KW - crosstalk Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-131901 VL - 8 IS - 11 ER - TY - JOUR A1 - Othman, Eman M. A1 - Naseem, Muhammed A1 - Awad, Eman A1 - Dandekar, Thomas A1 - Stopper, Helga T1 - The Plant Hormone Cytokinin Confers Protection against Oxidative Stress in Mammalian Cells JF - PLoS One N2 - Modulating key dynamics of plant growth and development, the effects of the plant hormone cytokinin on animal cells gained much attention recently. Most previous studies on cytokinin effects on mammalian cells have been conducted with elevated cytokinin concentration (in the μM range). However, to examine physiologically relevant dose effects of cytokinins on animal cells, we systematically analyzed the impact of kinetin in cultured cells at low and high concentrations (1nM-10μM) and examined cytotoxic and genotoxic conditions. We furthermore measured the intrinsic antioxidant activity of kinetin in a cell-free system using the Ferric Reducing Antioxidant Power assay and in cells using the dihydroethidium staining method. Monitoring viability, we looked at kinetin effects in mammalian cells such as HL60 cells, HaCaT human keratinocyte cells, NRK rat epithelial kidney cells and human peripheral lymphocytes. Kinetin manifests no antioxidant activity in the cell free system and high doses of kinetin (500 nM and higher) reduce cell viability and mediate DNA damage in vitro. In contrast, low doses (concentrations up to 100 nM) of kinetin confer protection in cells against oxidative stress. Moreover, our results show that pretreatment of the cells with kinetin significantly reduces 4-nitroquinoline 1-oxide mediated reactive oxygen species production. Also, pretreatment with kinetin retains cellular GSH levels when they are also treated with the GSH-depleting agent patulin. Our results explicitly show that low kinetin doses reduce apoptosis and protect cells from oxidative stress mediated cell death. Future studies on the interaction between cytokinins and human cellular pathway targets will be intriguing. KW - DNA damage KW - apoptosis KW - oxidative stress KW - fluorescence recovery after photobleaching KW - lymphocytes KW - antioxidants KW - cell staining KW - cytokinins Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-147983 VL - 11 IS - 12 ER - TY - JOUR A1 - Sbiera, Silviu A1 - Kunz, Meik A1 - Weigand, Isabel A1 - Deutschbein, Timo A1 - Dandekar, Thomas A1 - Fassnacht, Martin T1 - The new genetic landscape of Cushing’s disease: deubiquitinases in the spotlight JF - Cancers N2 - Cushing’s disease (CD) is a rare condition caused by adrenocorticotropic hormone (ACTH)-producing adenomas of the pituitary, which lead to hypercortisolism that is associated with high morbidity and mortality. Treatment options in case of persistent or recurrent disease are limited, but new insights into the pathogenesis of CD are raising hope for new therapeutic avenues. Here, we have performed a meta-analysis of the available sequencing data in CD to create a comprehensive picture of CD’s genetics. Our analyses clearly indicate that somatic mutations in the deubiquitinases are the key drivers in CD, namely USP8 (36.5%) and USP48 (13.3%). While in USP48 only Met415 is affected by mutations, in USP8 there are 26 different mutations described. However, these different mutations are clustering in the same hotspot region (affecting in 94.5% of cases Ser718 and Pro720). In contrast, pathogenic variants classically associated with tumorigenesis in genes like TP53 and BRAF are also present in CD but with low incidence (12.5% and 7%). Importantly, several of these mutations might have therapeutic potential as there are drugs already investigated in preclinical and clinical setting for other diseases. Furthermore, network and pathway analyses of all somatic mutations in CD suggest a rather unified picture hinting towards converging oncogenic pathways. KW - Cushing’s disease KW - pathogenesis KW - somatic mutations KW - deubiquitinases Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-193194 SN - 2072-6694 VL - 11 IS - 11 ER - TY - JOUR A1 - Merget, Benjamin A1 - Koetschan, Christian A1 - Hackl, Thomas A1 - Förster, Frank A1 - Dandekar, Thomas A1 - Müller, Tobias A1 - Schultz, Jörg A1 - Wolf, Matthias T1 - The ITS2 Database JF - Journal of Visual Expression N2 - The internal transcribed spacer 2 (ITS2) has been used as a phylogenetic marker for more than two decades. As ITS2 research mainly focused on the very variable ITS2 sequence, it confined this marker to low-level phylogenetics only. However, the combination of the ITS2 sequence and its highly conserved secondary structure improves the phylogenetic resolution1 and allows phylogenetic inference at multiple taxonomic ranks, including species delimitation. The ITS2 Database presents an exhaustive dataset of internal transcribed spacer 2 sequences from NCBI GenBank accurately reannotated. Following an annotation by profile Hidden Markov Models (HMMs), the secondary structure of each sequence is predicted. First, it is tested whether a minimum energy based fold (direct fold) results in a correct, four helix conformation. If this is not the case, the structure is predicted by homology modeling. In homology modeling, an already known secondary structure is transferred to another ITS2 sequence, whose secondary structure was not able to fold correctly in a direct fold. The ITS2 Database is not only a database for storage and retrieval of ITS2 sequence-structures. It also provides several tools to process your own ITS2 sequences, including annotation, structural prediction, motif detection and BLAST search on the combined sequence-structure information. Moreover, it integrates trimmed versions of 4SALE and ProfDistS for multiple sequence-structure alignment calculation and Neighbor Joining tree reconstruction. Together they form a coherent analysis pipeline from an initial set of sequences to a phylogeny based on sequence and secondary structure. In a nutshell, this workbench simplifies first phylogenetic analyses to only a few mouse-clicks, while additionally providing tools and data for comprehensive large-scale analyses. KW - homology modeling KW - molecular systematics KW - internal transcribed spacer 2 KW - alignment KW - genetics KW - secondary structure KW - ribosomal RNA KW - phylogenetic tree KW - phylogeny Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-124600 VL - 61 IS - e3806 ER - TY - JOUR A1 - Vainshtein, Yevhen A1 - Sanchez, Mayka A1 - Brazma, Alvis A1 - Hentze, Matthias W. A1 - Dandekar, Thomas A1 - Muckenthaler, Martina U. T1 - The IronChip evaluation package: a package of perl modules for robust analysis of custom microarrays N2 - Background: Gene expression studies greatly contribute to our understanding of complex relationships in gene regulatory networks. However, the complexity of array design, production and manipulations are limiting factors, affecting data quality. The use of customized DNA microarrays improves overall data quality in many situations, however, only if for these specifically designed microarrays analysis tools are available. Results: The IronChip Evaluation Package (ICEP) is a collection of Perl utilities and an easy to use data evaluation pipeline for the analysis of microarray data with a focus on data quality of custom-designed microarrays. The package has been developed for the statistical and bioinformatical analysis of the custom cDNA microarray IronChip but can be easily adapted for other cDNA or oligonucleotide-based designed microarray platforms. ICEP uses decision tree-based algorithms to assign quality flags and performs robust analysis based on chip design properties regarding multiple repetitions, ratio cut-off, background and negative controls. Conclusions: ICEP is a stand-alone Windows application to obtain optimal data quality from custom-designed microarrays and is freely available here (see “Additional Files” section) and at: http://www.alice-dsl.net/evgeniy. vainshtein/ICEP/ KW - Microarray KW - ICEP KW - IronChip Evaluation Package Y1 - 2010 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-67869 ER - TY - JOUR A1 - Dandekar, Thomas A1 - Argos, P. T1 - The GCN4 basic region leucine zipper binds DNA as a dimer of uninterrupted \(\alpha\)-helices: Crystal structure of the protein DNA-complex N2 - No abstract available Y1 - 1993 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-29866 ER - TY - JOUR A1 - Kunz, Meik A1 - Liang, Chunguang A1 - Nilla, Santosh A1 - Cecil, Alexander A1 - Dandekar, Thomas T1 - The drug-minded protein interaction database (DrumPID) for efficient target analysis and drug development JF - Database N2 - The drug-minded protein interaction database (DrumPID) has been designed to provide fast, tailored information on drugs and their protein networks including indications, protein targets and side-targets. Starting queries include compound, target and protein interactions and organism-specific protein families. Furthermore, drug name, chemical structures and their SMILES notation, affected proteins (potential drug targets), organisms as well as diseases can be queried including various combinations and refinement of searches. Drugs and protein interactions are analyzed in detail with reference to protein structures and catalytic domains, related compound structures as well as potential targets in other organisms. DrumPID considers drug functionality, compound similarity, target structure, interactome analysis and organismic range for a compound, useful for drug development, predicting drug side-effects and structure–activity relationships. KW - drug-minded protein KW - database Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-147369 VL - 2016 ER - TY - JOUR A1 - Kaltdorf, Martin A1 - Srivastava, Mugdha A1 - Gupta, Shishir K. A1 - Liang, Chunguang A1 - Binder, Jasmin A1 - Dietl, Anna-Maria A1 - Meir, Zohar A1 - Haas, Hubertus A1 - Osherov, Nir A1 - Krappmann, Sven A1 - Dandekar, Thomas T1 - Systematic Identification of Anti-Fungal Drug Targets by a Metabolic Network Approach JF - Frontiers in Molecular Bioscience N2 - New antimycotic drugs are challenging to find, as potential target proteins may have close human orthologs. We here focus on identifying metabolic targets that are critical for fungal growth and have minimal similarity to targets among human proteins. We compare and combine here: (I) direct metabolic network modeling using elementary mode analysis and flux estimates approximations using expression data, (II) targeting metabolic genes by transcriptome analysis of condition-specific highly expressed enzymes, and (III) analysis of enzyme structure, enzyme interconnectedness (“hubs”), and identification of pathogen-specific enzymes using orthology relations. We have identified 64 targets including metabolic enzymes involved in vitamin synthesis, lipid, and amino acid biosynthesis including 18 targets validated from the literature, two validated and five currently examined in own genetic experiments, and 38 further promising novel target proteins which are non-orthologous to human proteins, involved in metabolism and are highly ranked drug targets from these pipelines. KW - metabolism KW - targets KW - antimycotics KW - modeling KW - structure KW - interaction KW - fungicide Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-147396 VL - 3 ER - TY - JOUR A1 - Grebinyk, Anna A1 - Prylutska, Svitlana A1 - Chepurna, Oksana A1 - Grebinyk, Sergii A1 - Prylutskyy, Yuriy A1 - Ritter, Uwe A1 - Ohulchanskyy, Tymish Y. A1 - Matyshevska, Olga A1 - Dandekar, Thomas A1 - Frohme, Marcus T1 - Synergy of chemo- and photodynamic therapies with C\(_{60}\) Fullerene-Doxorubicin nanocomplex JF - Nanomaterials N2 - A nanosized drug complex was explored to improve the efficiency of cancer chemotherapy, complementing it with nanodelivery and photodynamic therapy. For this, nanomolar amounts of a non-covalent nanocomplex of Doxorubicin (Dox) with carbon nanoparticle C\(_{60}\) fullerene (C\(_{60}\)) were applied in 1:1 and 2:1 molar ratio, exploiting C\(_{60}\) both as a drug-carrier and as a photosensitizer. The fluorescence microscopy analysis of human leukemic CCRF-CEM cells, in vitro cancer model, treated with nanocomplexes showed Dox’s nuclear and C\(_{60}\)'s extranuclear localization. It gave an opportunity to realize a double hit strategy against cancer cells based on Dox's antiproliferative activity and C\(_{60}\)'s photoinduced pro-oxidant activity. When cells were treated with 2:1 C\(_{60}\)-Dox and irradiated at 405 nm the high cytotoxicity of photo-irradiated C\(_{60}\)-Dox enabled a nanomolar concentration of Dox and C\(_{60}\) to efficiently kill cancer cells in vitro. The high pro-oxidant and pro-apoptotic efficiency decreased IC\(_{50}\) 16, 9 and 7 × 10\(^3\)-fold, if compared with the action of Dox, non-irradiated nanocomplex, and C\(_{60}\)'s photodynamic effect, correspondingly. Hereafter, a strong synergy of therapy arising from the combination of C\(_{60}\)-mediated Dox delivery and C\(_{60}\) photoexcitation was revealed. Our data indicate that a combination of chemo- and photodynamic therapies with C\(_{60}\)-Dox nanoformulation provides a promising synergetic approach for cancer treatment. KW - photodynamic chemotherapy KW - synergistic effect KW - C\(_{60}\) fullerene KW - Doxorubicin KW - nanocomplex KW - leukemic cells KW - apoptosis Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-193140 SN - 2079-4991 VL - 9 IS - 11 ER - TY - JOUR A1 - Dandekar, Thomas A1 - Argos, Patrick T1 - Successive action of DnaK, DnaJ and GroEL along the pathway of chaperone-mediated protein folding N2 - No abstract available Y1 - 1992 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-29814 ER - TY - JOUR A1 - Naseem, Muhammad A1 - Srivastava, Mugdha A1 - Dandekar, Thomas T1 - Stem-cell-triggered immunity safeguards cytokinin enriched plant shoot apexes from pathogen infection JF - Frontiers in Plant Science N2 - Intricate mechanisms discriminate between friends and foes in plants. Plant organs deploy overlapping and distinct protection strategies. Despite vulnerability to a plethora of pathogens, the growing tips of plants grow bacteria free. The shoot apical meristem (SAM) is among three stem cells niches, a self-renewable reservoir for the future organogenesis of leaf, stem, and flowers. How plants safeguard this high value growth target from infections was not known until now. Recent reports find the stem cell secreted 12-amino acid peptide CLV3p (CLAVATA3 peptide) is perceived by FLS2 (FLAGELLIN SENSING 2) receptor and activates the transcription of immunity and defense marker genes. No infection in the SAM of wild type plants and bacterial infection in clv3 and fls2 mutants illustrate this natural protection against infections. Cytokinins (CKs) are enriched in the SAM and regulate meristem activities by their involvement in stem cell signaling networks. Auxin mediates plant susceptibility to pathogen infections while CKs boost plant immunity. Here, in addition to the stem-cell-triggered immunity we also highlight a potential link between CK signaling and CLV3p mediated immune response in the SAM. KW - auxin KW - stem cell niche KW - FLS2 receptor KW - CLAVATA3 KW - cytokinins Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-118247 SN - 1664-462X VL - 5 ER - TY - JOUR A1 - Liang, Chunguang A1 - Rios-Miguel, Ana B. A1 - Jarick, Marcel A1 - Neurgaonkar, Priya A1 - Girard, Myriam A1 - François, Patrice A1 - Schrenzel, Jacques A1 - Ibrahim, Eslam S. A1 - Ohlsen, Knut A1 - Dandekar, Thomas T1 - Staphylococcus aureus transcriptome data and metabolic modelling investigate the interplay of Ser/Thr kinase PknB, its phosphatase Stp, the glmR/yvcK regulon and the cdaA operon for metabolic adaptation JF - Microorganisms N2 - Serine/threonine kinase PknB and its corresponding phosphatase Stp are important regulators of many cell functions in the pathogen S. aureus. Genome-scale gene expression data of S. aureus strain NewHG (sigB\(^+\)) elucidated their effect on physiological functions. Moreover, metabolic modelling from these data inferred metabolic adaptations. We compared wild-type to deletion strains lacking pknB, stp or both. Ser/Thr phosphorylation of target proteins by PknB switched amino acid catabolism off and gluconeogenesis on to provide the cell with sufficient components. We revealed a significant impact of PknB and Stp on peptidoglycan, nucleotide and aromatic amino acid synthesis, as well as catabolism involving aspartate transaminase. Moreover, pyrimidine synthesis was dramatically impaired by stp deletion but only slightly by functional loss of PknB. In double knockouts, higher activity concerned genes involved in peptidoglycan, purine and aromatic amino acid synthesis from glucose but lower activity of pyrimidine synthesis from glucose compared to the wild type. A second transcriptome dataset from S. aureus NCTC 8325 (sigB\(^−\)) validated the predictions. For this metabolic adaptation, PknB was found to interact with CdaA and the yvcK/glmR regulon. The involved GlmR structure and the GlmS riboswitch were modelled. Furthermore, PknB phosphorylation lowered the expression of many virulence factors, and the study shed light on S. aureus infection processes. KW - metabolism KW - flux balance analysis KW - phosphorylation KW - regulation KW - riboswitch KW - PknB KW - Stp KW - yvcK/glmR operon Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-248459 SN - 2076-2607 VL - 9 IS - 10 ER - TY - INPR A1 - Dandekar, Thomas T1 - Some general system properties of a living observer and the environment he explores N2 - In a nice assay published in Nature in 1993 the physicist Richard God III started from a human observer and made a number of witty conclusions about our future prospects giving estimates for the existence of the Berlin Wall, the human race and all the rest of the universe. In the same spirit, we derive implications for "the meaning of life, the universe and all the rest" from few principles. Adams´ absurd answer "42" tells the lesson "garbage in / garbage out" - or suggests that the question is non calculable. We show that experience of "meaning" and to decide fundamental questions which can not be decided by formal systems imply central properties of life: Ever higher levels of internal representation of the world and an escalating tendency to become more complex. An observer, "collecting observations" and three measures for complexity are examined. A theory on living systems is derived focussing on their internal representation of information. Living systems are more complex than Kolmogorov complexity ("life is NOT simple") and overcome decision limits (Gödel theorem) for formal systems as illustrated for cell cycle. Only a world with very fine tuned environments allows life. Such a world is itself rather complex and hence excessive large in its space of different states – a living observer has thus a high probability to reside in a complex and fine tuned universe. N2 - Dieser Aufsatz ist ein Preprint und Discussion Paper und versucht - ähnlich wie ein hervorragendes Beispiel eines Physikers, Richard God III (1993 in Nature veröffentlicht) mit einfachen Grundannahmen sehr generelle Prinzipien für uns abzuleiten. In meinem Aufsatz sind das insbesondere Prinzipien für Beobachten, für die Existenz eines Beobachters und sogar für die Existenz unserer komplexen Welt, die Fortentwicklung von Leben, die Entstehung von Bedeutung und das menschliche Entscheiden von Grundlagenfragen. Aufs erste kann so ein weitgehendes Anliegen nicht wirklich vollständig und akkurat gelingen, der Aufsatz möchte deshalb auch nur eine amüsante Spekulation sein, exakte (und bescheidenere) Teilaussagen werden aber später dann auch nach peer Review veröffentlicht werden. KW - Komplex KW - Entscheidung KW - Natürliche Auslese KW - Evolution KW - Bedeutung KW - Komplexität KW - Gödel KW - Entscheidungen KW - complexity KW - decision KW - evolution KW - selection KW - meaning Y1 - 2007 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-33537 ER - TY - JOUR A1 - Dandekar, Thomas A1 - Ahmed, Zeeshan A1 - Saman, Zeeshan A1 - Huber, Claudia A1 - Hensel, Michael A1 - Schomburg, Dietmar A1 - Münch, Richard A1 - Eisenreich, Wolfgang T1 - Software LS-MIDA for efficient mass isotopomer distribution analysis in metabolic modelling JF - BMC Bioinformatics N2 - Background The knowledge of metabolic pathways and fluxes is important to understand the adaptation of organisms to their biotic and abiotic environment. The specific distribution of stable isotope labelled precursors into metabolic products can be taken as fingerprints of the metabolic events and dynamics through the metabolic networks. An open-source software is required that easily and rapidly calculates from mass spectra of labelled metabolites, derivatives and their fragments global isotope excess and isotopomer distribution. Results The open-source software “Least Square Mass Isotopomer Analyzer” (LS-MIDA) is presented that processes experimental mass spectrometry (MS) data on the basis of metabolite information such as the number of atoms in the compound, mass to charge ratio (m/e or m/z) values of the compounds and fragments under study, and the experimental relative MS intensities reflecting the enrichments of isotopomers in 13C- or 15 N-labelled compounds, in comparison to the natural abundances in the unlabelled molecules. The software uses Brauman’s least square method of linear regression. As a result, global isotope enrichments of the metabolite or fragment under study and the molar abundances of each isotopomer are obtained and displayed. Conclusions The new software provides an open-source platform that easily and rapidly converts experimental MS patterns of labelled metabolites into isotopomer enrichments that are the basis for subsequent observation-driven analysis of pathways and fluxes, as well as for model-driven metabolic flux calculations. KW - LS-MIDA Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-95882 UR - http://www.biomedcentral.com/1471-2105/14/218 ER - TY - JOUR A1 - Kaltdorf, Martin A1 - Breitenbach, Tim A1 - Karl, Stefan A1 - Fuchs, Maximilian A1 - Kessie, David Komla A1 - Psota, Eric A1 - Prelog, Martina A1 - Sarukhanyan, Edita A1 - Ebert, Regina A1 - Jakob, Franz A1 - Dandekar, Gudrun A1 - Naseem, Muhammad A1 - Liang, Chunguang A1 - Dandekar, Thomas T1 - Software JimenaE allows efficient dynamic simulations of Boolean networks, centrality and system state analysis JF - Scientific Reports N2 - The signal modelling framework JimenaE simulates dynamically Boolean networks. In contrast to SQUAD, there is systematic and not just heuristic calculation of all system states. These specific features are not present in CellNetAnalyzer and BoolNet. JimenaE is an expert extension of Jimena, with new optimized code, network conversion into different formats, rapid convergence both for system state calculation as well as for all three network centralities. It allows higher accuracy in determining network states and allows to dissect networks and identification of network control type and amount for each protein with high accuracy. Biological examples demonstrate this: (i) High plasticity of mesenchymal stromal cells for differentiation into chondrocytes, osteoblasts and adipocytes and differentiation-specific network control focusses on wnt-, TGF-beta and PPAR-gamma signaling. JimenaE allows to study individual proteins, removal or adding interactions (or autocrine loops) and accurately quantifies effects as well as number of system states. (ii) Dynamical modelling of cell–cell interactions of plant Arapidopsis thaliana against Pseudomonas syringae DC3000: We analyze for the first time the pathogen perspective and its interaction with the host. We next provide a detailed analysis on how plant hormonal regulation stimulates specific proteins and who and which protein has which type and amount of network control including a detailed heatmap of the A.thaliana response distinguishing between two states of the immune response. (iii) In an immune response network of dendritic cells confronted with Aspergillus fumigatus, JimenaE calculates now accurately the specific values for centralities and protein-specific network control including chemokine and pattern recognition receptors. KW - cellular signalling networks KW - computer modelling Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-313303 VL - 13 ER - TY - JOUR A1 - Osmanoglu, Özge A1 - Gupta, Shishir K. A1 - Almasi, Anna A1 - Yagci, Seray A1 - Srivastava, Mugdha A1 - Araujo, Gabriel H. M. A1 - Nagy, Zoltan A1 - Balkenhol, Johannes A1 - Dandekar, Thomas T1 - Signaling network analysis reveals fostamatinib as a potential drug to control platelet hyperactivation during SARS-CoV-2 infection JF - Frontiers in Immunology N2 - Introduction Pro-thrombotic events are one of the prevalent causes of intensive care unit (ICU) admissions among COVID-19 patients, although the signaling events in the stimulated platelets are still unclear. Methods We conducted a comparative analysis of platelet transcriptome data from healthy donors, ICU, and non-ICU COVID-19 patients to elucidate these mechanisms. To surpass previous analyses, we constructed models of involved networks and control cascades by integrating a global human signaling network with transcriptome data. We investigated the control of platelet hyperactivation and the specific proteins involved. Results Our study revealed that control of the platelet network in ICU patients is significantly higher than in non-ICU patients. Non-ICU patients require control over fewer proteins for managing platelet hyperactivity compared to ICU patients. Identification of indispensable proteins highlighted key subnetworks, that are targetable for system control in COVID-19-related platelet hyperactivity. We scrutinized FDA-approved drugs targeting indispensable proteins and identified fostamatinib as a potent candidate for preventing thrombosis in COVID-19 patients. Discussion Our findings shed light on how SARS-CoV-2 efficiently affects host platelets by targeting indispensable and critical proteins involved in the control of platelet activity. We evaluated several drugs for specific control of platelet hyperactivity in ICU patients suffering from platelet hyperactivation. The focus of our approach is repurposing existing drugs for optimal control over the signaling network responsible for platelet hyperactivity in COVID-19 patients. Our study offers specific pharmacological recommendations, with drug prioritization tailored to the distinct network states observed in each patient condition. Interactive networks and detailed results can be accessed at https://fostamatinib.bioinfo-wuerz.eu/. KW - signaling network KW - controllability KW - platelet KW - SARS-CoV-2 KW - fostamatinib KW - drug repurposing KW - COVID-19 Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-354158 VL - 14 ER - TY - JOUR A1 - Gupta, Shishir K. A1 - Kupper, Maria A1 - Ratzka, Carolin A1 - Feldhaar, Heike A1 - Vilcinskas, Andreas A1 - Gross, Roy A1 - Dandekar, Thomas A1 - Förster, Frank T1 - Scrutinizing the immune defence inventory of Camponotus floridanus applying total transcriptome sequencing JF - BMC Genomics N2 - Background Defence mechanisms of organisms are shaped by their lifestyle, environment and pathogen pressure. Carpenter ants are social insects which live in huge colonies comprising genetically closely related individuals in high densities within nests. This lifestyle potentially facilitates the rapid spread of pathogens between individuals. In concert with their innate immune system, social insects may apply external immune defences to manipulate the microbial community among individuals and within nests. Additionally, carpenter ants carry a mutualistic intracellular and obligate endosymbiotic bacterium, possibly maintained and regulated by the innate immune system. Thus, different selective forces could shape internal immune defences of Camponotus floridanus. Results The immune gene repertoire of C. floridanus was investigated by re-evaluating its genome sequence combined with a full transcriptome analysis of immune challenged and control animals using Illumina sequencing. The genome was re-annotated by mapping transcriptome reads and masking repeats. A total of 978 protein sequences were characterised further by annotating functional domains, leading to a change in their original annotation regarding function and domain composition in about 8 % of all proteins. Based on homology analysis with key components of major immune pathways of insects, the C. floridanus immune-related genes were compared to those of Drosophila melanogaster, Apis mellifera, and other hymenoptera. This analysis revealed that overall the immune system of carpenter ants comprises many components found in these insects. In addition, several C. floridanus specific genes of yet unknown functions but which are strongly induced after immune challenge were discovered. In contrast to solitary insects like Drosophila or the hymenopteran Nasonia vitripennis, the number of genes encoding pattern recognition receptors specific for bacterial peptidoglycan (PGN) and a variety of known antimicrobial peptide (AMP) genes is lower in C. floridanus. The comparative analysis of gene expression post immune-challenge in different developmental stages of C. floridanus suggests a stronger induction of immune gene expression in larvae in comparison to adults. Conclusions The comparison of the immune system of C. floridanus with that of other insects revealed the presence of a broad immune repertoire. However, the relatively low number of PGN recognition proteins and AMPs, the identification of Camponotus specific putative immune genes, and stage specific differences in immune gene regulation reflects Camponotus specific evolution including adaptations to its lifestyle. KW - immune system KW - transcriptome KW - carpenter ant KW - camponotus floridanus KW - re-annotation Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-125279 VL - 16 IS - 540 ER - TY - GEN A1 - Dandekar, Thomas A1 - Dandekar, G. T1 - Schlange als Attribut des Äskulap N2 - No abstract available Y1 - 1994 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-29822 ER - TY - JOUR A1 - Dandekar, Thomas A1 - Ribes, V. A1 - Tollervey, David T1 - Schizosaccharomyces pombe U4 small nuclear RNA closely resembles vertebrate U4 and is required for growth N2 - No abstract available Y1 - 1989 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-29771 ER - TY - JOUR A1 - Shityakov, Sergey A1 - Skorb, Ekaterina V. A1 - Förster, Carola Y. A1 - Dandekar, Thomas T1 - Scaffold Searching of FDA and EMA-Approved Drugs Identifies Lead Candidates for Drug Repurposing in Alzheimer’s Disease JF - Frontiers in Chemistry N2 - Clinical trials of novel therapeutics for Alzheimer’s Disease (AD) have consumed a significant amount of time and resources with largely negative results. Repurposing drugs already approved by the Food and Drug Administration (FDA), European Medicines Agency (EMA), or Worldwide for another indication is a more rapid and less expensive option. Therefore, we apply the scaffold searching approach based on known amyloid-beta (Aβ) inhibitor tramiprosate to screen the DrugCentral database (n = 4,642) of clinically tested drugs. As a result, menadione bisulfite and camphotamide substances with protrombogenic and neurostimulation/cardioprotection effects were identified as promising Aβ inhibitors with an improved binding affinity (ΔGbind) and blood-brain barrier permeation (logBB). Finally, the data was also confirmed by molecular dynamics simulations using implicit solvation, in particular as Molecular Mechanics Generalized Born Surface Area (MM-GBSA) model. Overall, the proposed in silico pipeline can be implemented through the early stage rational drug design to nominate some lead candidates for AD, which will be further validated in vitro and in vivo, and, finally, in a clinical trial. KW - scaffold search KW - approved drugs KW - drug repurposing KW - alzheimer's disease KW - chemical similarity KW - molecular modeling Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-248703 SN - 2296-2646 VL - 9 ER - TY - JOUR A1 - Dandekar, Thomas A1 - Fieselmann, Astrid A1 - Fischer, Eva A1 - Popp, Jasmin A1 - Hensel, Michael A1 - Noster, Janina T1 - Salmonella—how a metabolic generalist adopts an intracellular lifestyle during infection JF - Frontiers in Cellular and Infection Microbiology N2 - The human-pathogenic bacterium Salmonella enterica adjusts and adapts to different environments while attempting colonization. In the course of infection nutrient availabilities change drastically. New techniques, “-omics” data and subsequent integration by systems biology improve our understanding of these changes. We review changes in metabolism focusing on amino acid and carbohydrate metabolism. Furthermore, the adaptation process is associated with the activation of genes of the Salmonella pathogenicity islands (SPIs). Anti-infective strategies have to take these insights into account and include metabolic and other strategies. Salmonella infections will remain a challenge for infection biology. KW - regulation KW - virulence KW - "-omics" KW - metabolism KW - Salmonella-containing vacuole (SCV) Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-120686 SN - 2235-2988 VL - 4 IS - 191 ER - TY - JOUR A1 - Dandekar, Thomas A1 - Fieselmann, Astrid A1 - Popp, Jasmin A1 - Hensel, Michael T1 - Salmonella enterica: a surprisingly well-adapted intracellular lifestyle JF - Frontiers in Microbiology N2 - The infectious intracellular lifestyle of Salmonella enterica relies on the adaptation to nutritional conditions within the Salmonella-containing vacuole (SCV) in host cells. We summarize latest results on metabolic requirements for Salmonella during infection. This includes intracellular phenotypes of mutant strains based on metabolic modeling and experimental tests, isotopolog profiling using (13)C-compounds in intracellular Salmonella, and complementation of metabolic defects for attenuated mutant strains towards a comprehensive understanding of the metabolic requirements of the intracellular lifestyle of Salmonella. Helpful for this are also genomic comparisons. We outline further recent studies and which analyses of intracellular phenotypes and improved metabolic simulations were done and comment on technical required steps as well as progress involved in the iterative refinement of metabolic flux models, analyses of mutant phenotypes, and isotopolog analyses. Salmonella lifestyle is well-adapted to the SCV and its specific metabolic requirements. Salmonella metabolism adapts rapidly to SCV conditions, the metabolic generalist Salmonella is quite successful in host infection. KW - Salmonella enterica KW - metabolism KW - Salmonella-containing vacuole KW - regulation KW - virulence Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-123135 ER - TY - JOUR A1 - Dandekar, Thomas A1 - Fieselmann, Astrid A1 - Fischer, Eva A1 - Popp, Jasmin A1 - Hensel, Michael A1 - Noster, Janina T1 - Salmonella - how a metabolic generalist adopts an intracellular lifestyle during infection JF - Frontiers in Cellular and Infection Microbiology N2 - The human-pathogenic bacterium Salmonella enterica adjusts and adapts to different environments while attempting colonization. In the course of infection nutrient availabilities change drastically. New techniques, "-omics" data and subsequent integration by systems biology improve our understanding of these changes. We review changes in metabolism focusing on amino acid and carbohydrate metabolism. Furthermore, the adaptation process is associated with the activation of genes of the Salmonella pathogenicity islands (SPIs). Anti-infective strategies have to take these insights into account and include metabolic and other strategies. Salmonella infections will remain a challenge for infection biology. KW - enterica serovar Typhimurium KW - bacterial invasion KW - mouse model KW - defenses KW - regulation KW - "-omics" KW - virulence KW - Salmonella-containing vacuole (SCV) KW - metabolism KW - nitric oxide Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-149029 VL - 4 IS - 191 ER - TY - JOUR A1 - Gupta, Shishir K. A1 - Minocha, Rashmi A1 - Thapa, Prithivi Jung A1 - Srivastava, Mugdha A1 - Dandekar, Thomas T1 - Role of the pangolin in origin of SARS-CoV-2: an evolutionary perspective JF - International Journal of Molecular Sciences N2 - After the recent emergence of SARS-CoV-2 infection, unanswered questions remain related to its evolutionary history, path of transmission or divergence and role of recombination. There is emerging evidence on amino acid substitutions occurring in key residues of the receptor-binding domain of the spike glycoprotein in coronavirus isolates from bat and pangolins. In this article, we summarize our current knowledge on the origin of SARS-CoV-2. We also analyze the host ACE2-interacting residues of the receptor-binding domain of spike glycoprotein in SARS-CoV-2 isolates from bats, and compare it to pangolin SARS-CoV-2 isolates collected from Guangdong province (GD Pangolin-CoV) and Guangxi autonomous regions (GX Pangolin-CoV) of South China. Based on our comparative analysis, we support the view that the Guangdong Pangolins are the intermediate hosts that adapted the SARS-CoV-2 and represented a significant evolutionary link in the path of transmission of SARS-CoV-2 virus. We also discuss the role of intermediate hosts in the origin of Omicron. KW - COVID-19 KW - SARS-CoV-2 KW - origin KW - evolution KW - intermediate host KW - pangolin KW - mutation KW - recombination KW - adaptation KW - transmission KW - comparative sequence analysis Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-285995 SN - 1422-0067 VL - 23 IS - 16 ER - TY - JOUR A1 - Sarukhanyan, Edita A1 - Shityakov, Sergey A1 - Dandekar, Thomas T1 - Rational drug design of Axl tyrosine kinase type I inhibitors as promising candidates against cancer JF - Frontiers in Chemistry N2 - The high level of Axl tyrosine kinase expression in various cancer cell lines makes it an attractive target for the development of anti-cancer drugs. In this study, we carried out several sets of in silico screening for the ATP-competitive Axl kinase inhibitors based on different molecular docking protocols. The best drug-like candidates were identified, after parental structure modifications, by their highest affinity to the target protein. We found that our newly designed compound R5, a derivative of the R428 patented analog, is the most promising inhibitor of the Axl kinase according to the three molecular docking algorithms applied in the study. The molecular docking results are in agreement with the molecular dynamics simulations using the MM-PBSA/GBSA implicit solvation models, which confirm the high affinity of R5 toward the protein receptor. Additionally, the selectivity test against other kinases also reveals a high affinity of R5 toward ABL1 and Tyro3 kinases, emphasizing its promising potential for the treatment of malignant tumors. KW - Axl tyrosine kinase KW - anti-cancer drug-like molecules KW - rational drug design KW - molecular docking KW - molecular dynamics Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-199505 SN - 2296-2646 VL - 7 IS - 920 ER - TY - INPR A1 - Dandekar, Thomas T1 - Qubit transition into defined Bits: A fresh perspective for cosmology and unifying theories N2 - In this view point we do not change cosmology after the hot fireball starts (hence agrees well with observation), but the changed start suggested and resulting later implications lead to an even better fit with current observations (voids, supercluster and galaxy formation; matter and no antimatter) than the standard model with big bang and inflation: In an eternal ocean of qubits, a cluster of qubits crystallizes to defined bits. The universe does not jump into existence (“big bang”) but rather you have an eternal ocean of qubits in free super-position of all their quantum states (of any dimension, force field and particle type) as permanent basis. The undefined, boiling vacuum is the real “outside”, once you leave our everyday universe. A set of n Qubits in the ocean are “liquid”, in very undefined state, they have all their m possibilities for quantum states in free superposition. However, under certain conditions the qubits interact, become defined, and freeze out, crystals form and give rise to a defined, real world with all possible time series and world lines. GR holds only within the crystal. In our universe all n**m quantum possibilities are nicely separated and crystallized out to defined bit states: A toy example with 6 qubits each having 2 states illustrates, this is completely sufficient to encode space using 3 bits for x,y and z, 1 bit for particle type and 2 bits for its state. Just by crystallization, space, particles and their properties emerge from the ocean of qubits, and following the arrow of entropy, time emerges, following an arrow of time and expansion from one corner of the toy universe to everywhere else. This perspective provides time as emergent feature considering entropy: crystallization of each world line leads to defined world lines over their whole existence, while entropy ensures direction of time and higher representation of high entropy states considering the whole crystal and all slices of world lines. The crystal perspective is also economic compared to the Everett-type multiverse, each qubit has its m quantum states and n qubits interacting forming a crystal and hence turning into defined bit states has only n**m states and not more states. There is no Everett-type world splitting with every decision but rather individual world trajectories reside in individual world layers of the crystal. Finally, bit-separated crystals come and go in the qubit ocean, selecting for the ability to lay seeds for new crystals. This self-organizing reproduction selects over generations also for life-friendliness. Mathematical treatment introduces quantum action theory as a framework for a general lattice field theory extending quantum chromo dynamics where scalar fields for color interaction and gravity have to be derived from the permeating qubit-interaction field. Vacuum energy should get appropriately low by the binding properties of the qubit crystal. Connections to loop quantum gravity, string theory and emergent gravity are discussed. Standard physics (quantum computing; crystallization, solid state physics) allow validation tests of this perspective and will extend current results. KW - qubit KW - cosmology KW - phase transition KW - unified theories KW - crystallization KW - emergent gravity Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-266418 ER - TY - INPR A1 - Dandekar, Thomas T1 - Protein folding and crystallization applied to qubit interactions and fundamental physics yields a modified inflation model for cosmology N2 - Protein folding achieves a clear solution structure in a huge parameter space (the so-called protein folding problem). Proteins fold in water, and get by this a highly ordered structure. Finally, inside a protein crystal for structure resolution, you have everywhere the same symmetries as there is everywhere the same unit cell. We apply this to qubit interactions to do fundamental physics: in a modified cosmology, we replace the big bang by a condensation event in an eternal all-encompassing ocean of free qubits. Interactions of qubits in the qubit ocean are quite rare but provide a nucleus or seed for a new universe (domain) as the qubits become decoherent and freeze-out into defined bit ensembles. Second, we replace inflation by a crystallization event triggered by the nucleus of interacting qubits to which rapidly more and more qubits attach (like in everyday crystal growth). The crystal unit cell guarantees same symmetries everywhere inside the crystal. The textbook inflation scenario to explain the same laws of nature in our domain is replaced by the unit cell of the crystal formed. Interacting qubits solidify, quantum entropy decreases (but increases in the ocean around). In a modified inflation scenario, the interacting qubits form a rapidly growing domain where the n**m states become separated ensemble states, rising long-range forces stop ultimately further growth. Then standard cosmology with the hot fireball model takes over. Our theory agrees well with lack of inflation traces in cosmic background measurements. We explain by cosmological crystallization instead of inflation: early creation of large-scale structure of voids and filaments, supercluster formation, galaxy formation, and the dominance of matter: the unit cell of our crystal universe has a matter handedness avoiding anti-matter. We prove initiation of qubit interactions can only be 1,2,4 or 8-dimensional (agrees with E8 symmetry of our universe). Repulsive forces at ultrashort distances result from quantization, long-range forces limit crystal growth. Crystals come and go in the qubit ocean. This selects for the ability to lay seeds for new crystals, for self-organization and life-friendliness. The phase space of the crystal agrees with the standard model of the basic four forces for n quanta. It includes all possible ensemble combinations of their quantum states m, a total of n**m states. Neighbor states reach according to transition possibilities (S-matrix) with emergent time from entropic ensemble gradients. However, in our four dimensions there is only one bit overlap to neighbor states left (almost solid, only below Planck quantum there is liquidity left). The E8 symmetry of heterotic string theory has six curled-up, small dimensions which help to keep the qubit crystal together and will never expand. Mathematics focusses on the Hurwitz proof applied to qubit interaction, a toy model of qubit interaction and repulsive forces of qubits. Vacuum energy gets appropriate low inside the crystal. We give first energy estimates for free qubits vs bound qubits, misplacements in the qubit crystal and entropy increase during qubit decoherence / crystal formation. Scalar fields for color interaction/confinement and gravity are derived from the qubit-interaction field. KW - protein folding KW - crystallization KW - qubit interaction KW - decoherence KW - modified inflation Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-346156 ER - TY - JOUR A1 - Caliskan, Aylin A1 - Crouch, Samantha A. W. A1 - Giddins, Sara A1 - Dandekar, Thomas A1 - Dangwal, Seema T1 - Progeria and aging — Omics based comparative analysis JF - Biomedicines N2 - Since ancient times aging has also been regarded as a disease, and humankind has always strived to extend the natural lifespan. Analyzing the genes involved in aging and disease allows for finding important indicators and biological markers for pathologies and possible therapeutic targets. An example of the use of omics technologies is the research regarding aging and the rare and fatal premature aging syndrome progeria (Hutchinson-Gilford progeria syndrome, HGPS). In our study, we focused on the in silico analysis of differentially expressed genes (DEGs) in progeria and aging, using a publicly available RNA-Seq dataset (GEO dataset GSE113957) and a variety of bioinformatics tools. Despite the GSE113957 RNA-Seq dataset being well-known and frequently analyzed, the RNA-Seq data shared by Fleischer et al. is far from exhausted and reusing and repurposing the data still reveals new insights. By analyzing the literature citing the use of the dataset and subsequently conducting a comparative analysis comparing the RNA-Seq data analyses of different subsets of the dataset (healthy children, nonagenarians and progeria patients), we identified several genes involved in both natural aging and progeria (KRT8, KRT18, ACKR4, CCL2, UCP2, ADAMTS15, ACTN4P1, WNT16, IGFBP2). Further analyzing these genes and the pathways involved indicated their possible roles in aging, suggesting the need for further in vitro and in vivo research. In this paper, we (1) compare “normal aging” (nonagenarians vs. healthy children) and progeria (HGPS patients vs. healthy children), (2) enlist genes possibly involved in both the natural aging process and progeria, including the first mention of IGFBP2 in progeria, (3) predict miRNAs and interactomes for WNT16 (hsa-mir-181a-5p), UCP2 (hsa-mir-26a-5p and hsa-mir-124-3p), and IGFBP2 (hsa-mir-124-3p, hsa-mir-126-3p, and hsa-mir-27b-3p), (4) demonstrate the compatibility of well-established R packages for RNA-Seq analysis for researchers interested but not yet familiar with this kind of analysis, and (5) present comparative proteomics analyses to show an association between our RNA-Seq data analyses and corresponding changes in protein expression. KW - progeria KW - aging KW - omics KW - RNA sequencing KW - bioinformatics KW - sun exposure KW - HGPS KW - IGFBP2 KW - ACKR4 KW - WNT Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-289868 SN - 2227-9059 VL - 10 IS - 10 ER - TY - JOUR A1 - Naseem, Muhammad A1 - Kunz, Meik A1 - Dandekar, Thomas T1 - Probing the unknowns in cytokinin-mediated immune defense in Arabidopsis with systems biology approaches JF - Bioinformatics and Biology Insights N2 - Plant hormones involving salicylic acid (SA), jasmonic acid (JA), ethylene (Et), and auxin, gibberellins, and abscisic acid (ABA) are known to regulate host immune responses. However, plant hormone cytokinin has the potential to modulate defense signaling including SA and JA. It promotes plant pathogen and herbivore resistance; underlying mechanisms are still unknown. Using systems biology approaches, we unravel hub points of immune interaction mediated by cytokinin signaling in Arabidopsis. High-confidence Arabidopsis protein-protein interactions (PPI) are coupled to changes in cytokinin-mediated gene expression. Nodes of the cellular interactome that are enriched in immune functions also reconstitute sub-networks. Topological analyses and their specific immunological relevance lead to the identification of functional hubs in cellular interactome. We discuss our identified immune hubs in light of an emerging model of cytokinin-mediated immune defense against pathogen infection in plants. KW - plant hormones KW - systems biology KW - interaction networks KW - gene expression KW - cytokinin Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-120199 SN - 1177-9322 VL - 8 ER - TY - JOUR A1 - Salihoglu, Rana A1 - Srivastava, Mugdha A1 - Liang, Chunguang A1 - Schilling, Klaus A1 - Szalay, Aladar A1 - Bencurova, Elena A1 - Dandekar, Thomas T1 - PRO-Simat: Protein network simulation and design tool JF - Computational and Structural Biotechnology Journal N2 - PRO-Simat is a simulation tool for analysing protein interaction networks, their dynamic change and pathway engineering. It provides GO enrichment, KEGG pathway analyses, and network visualisation from an integrated database of more than 8 million protein-protein interactions across 32 model organisms and the human proteome. We integrated dynamical network simulation using the Jimena framework, which quickly and efficiently simulates Boolean genetic regulatory networks. It enables simulation outputs with in-depth analysis of the type, strength, duration and pathway of the protein interactions on the website. Furthermore, the user can efficiently edit and analyse the effect of network modifications and engineering experiments. In case studies, applications of PRO-Simat are demonstrated: (i) understanding mutually exclusive differentiation pathways in Bacillus subtilis, (ii) making Vaccinia virus oncolytic by switching on its viral replication mainly in cancer cells and triggering cancer cell apoptosis and (iii) optogenetic control of nucleotide processing protein networks to operate DNA storage. Multilevel communication between components is critical for efficient network switching, as demonstrated by a general census on prokaryotic and eukaryotic networks and comparing design with synthetic networks using PRO-Simat. The tool is available at https://prosimat.heinzelab.de/ as a web-based query server. KW - network simulation KW - protein analysis KW - signalling pathways KW - dynamic protein-protein interactions KW - optogenetics KW - oncolytic virus KW - DNA storage Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-350034 SN - 2001-0370 VL - 21 ER - TY - JOUR A1 - Dandekar, Thomas A1 - Argos, P. T1 - Potential of genetic algorithms in protein folding and protein engineering simulations N2 - No abstract available Y1 - 1992 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-29974 ER - TY - JOUR A1 - Liang, Chunguang A1 - Bencurova, Elena A1 - Psota, Eric A1 - Neurgaonkar, Priya A1 - Prelog, Martina A1 - Scheller, Carsten A1 - Dandekar, Thomas T1 - Population-predicted MHC class II epitope presentation of SARS-CoV-2 structural proteins correlates to the case fatality rates of COVID-19 in different countries JF - International Journal of Molecular Sciences N2 - We observed substantial differences in predicted Major Histocompatibility Complex II (MHCII) epitope presentation of SARS-CoV-2 proteins for different populations but only minor differences in predicted MHCI epitope presentation. A comparison of this predicted epitope MHC-coverage revealed for the early phase of infection spread (till day 15 after reaching 128 observed infection cases) highly significant negative correlations with the case fatality rate. Specifically, this was observed in different populations for MHC class II presentation of the viral spike protein (p-value: 0.0733 for linear regression), the envelope protein (p-value: 0.023), and the membrane protein (p-value: 0.00053), indicating that the high case fatality rates of COVID-19 observed in some countries seem to be related with poor MHC class II presentation and hence weak adaptive immune response against these viral envelope proteins. Our results highlight the general importance of the SARS-CoV-2 structural proteins in immunological control in early infection spread looking at a global census in various countries and taking case fatality rate into account. Other factors such as health system and control measures become more important after the early spread. Our study should encourage further studies on MHCII alleles as potential risk factors in COVID-19 including assessment of local populations and specific allele distributions. KW - COVID-19 KW - population coverage KW - MHC II KW - MHC I KW - B-cell KW - T-cell KW - epitope mapping KW - lethality rate KW - infection spread KW - SARS-CoV-2 Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-258936 SN - 1422-0067 VL - 22 IS - 5 ER - TY - JOUR A1 - Schulze, Katja A1 - Tillich, Ulrich M. A1 - Dandekar, Thomas A1 - Frohme, Marcus T1 - PlanktoVision – an automated analysis system for the identification of phytoplankton JF - BMC Bioinformatics N2 - Background Phytoplankton communities are often used as a marker for the determination of fresh water quality. The routine analysis, however, is very time consuming and expensive as it is carried out manually by trained personnel. The goal of this work is to develop a system for an automated analysis. Results A novel open source system for the automated recognition of phytoplankton by the use of microscopy and image analysis was developed. It integrates the segmentation of the organisms from the background, the calculation of a large range of features, and a neural network for the classification of imaged organisms into different groups of plankton taxa. The analysis of samples containing 10 different taxa showed an average recognition rate of 94.7% and an average error rate of 5.5%. The presented system has a flexible framework which easily allows expanding it to include additional taxa in the future. Conclusions The implemented automated microscopy and the new open source image analysis system - PlanktoVision - showed classification results that were comparable or better than existing systems and the exclusion of non-plankton particles could be greatly improved. The software package is published as free software and is available to anyone to help make the analysis of water quality more reproducible and cost effective. KW - Bioinformatik Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-96395 UR - http://www.biomedcentral.com/1471-2105/14/115 ER - TY - JOUR A1 - Wirth, Christine C. A1 - Glushakova, Svetlana A1 - Scheuermayer, Matthias A1 - Repnik, Urska A1 - Garg, Swatl A1 - Schaack, Dominik A1 - Kachman, Marika M. A1 - Weißbach, Tim A1 - Zimmerberg, Joshua A1 - Dandekar, Thomas A1 - Griffiths, Gareth A1 - Chitnis, Chetan E. A1 - Singh, Shallja A1 - Fischer, Rainer A1 - Pradel, Gabriele T1 - Perforin-like protein PPLP2 permeabilizes the red blood cell membrane during egress of Plasmodium falciparum gametocytes JF - Cellular Microbiology N2 - Egress of malaria parasites from the host cell requires the concerted rupture of its enveloping membranes. Hence, we investigated the role of the plasmodial perforin-like protein PPLP2 in the egress of Plasmodium falciparum from erythrocytes. PPLP2 is expressed in blood stage schizonts and mature gametocytes. The protein localizes in vesicular structures, which in activated gametocytes discharge PPLP2 in a calcium-dependent manner. PPLP2 comprises a MACPF domain and recombinant PPLP2 has haemolytic activities towards erythrocytes. PPLP2-deficient [PPLP2(−)] merozoites show normal egress dynamics during the erythrocytic replication cycle, but activated PPLP2(−) gametocytes were unable to leave erythrocytes and stayed trapped within these cells. While the parasitophorous vacuole membrane ruptured normally, the activated PPLP2(−) gametocytes were unable to permeabilize the erythrocyte membrane and to release the erythrocyte cytoplasm. In consequence, transmission of PPLP2(−) parasites to the Anopheles vector was reduced. Pore-forming equinatoxin II rescued both PPLP2(−) gametocyte exflagellation and parasite transmission. The pore sealant Tetronic 90R4, on the other hand, caused trapping of activated wild-type gametocytes within the enveloping erythrocytes, thus mimicking the PPLP2(−) loss-of-function phenotype. We propose that the haemolytic activity of PPLP2 is essential for gametocyte egress due to permeabilization of the erythrocyte membrane and depletion of the erythrocyte cytoplasm. Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-120895 VL - 16 IS - 5 ER - TY - INPR A1 - Dandekar, Thomas T1 - Our universe may have started by Qubit decoherence N2 - Our universe may have started by Qubit decoherence: In quantum computers, qubits have all their states undefined during calculation and become defined as output (“decoherence”). We study the transition from an uncontrolled, chaotic quantum vacuum (“before”) to a clearly interacting “real world”. In such a cosmology, the Big Bang singularity is replaced by a condensation event of interacting strings. This triggers a crystallization process. This avoids inflation, not fitting current observations: increasing long-range interactions limit growth and crystal symmetries ensure the same laws of nature and basic symmetries over the whole crystal. Tiny mis-arrangements provide nuclei of superclusters and galaxies and crystal structure allows arrangement of dark (halo regions) and normal matter (galaxy nuclei) for galaxy formation. Crystals come and go: an evolutionary cosmology is explored: entropic forces from the quantum soup “outside” of the crystal try to dissolve it. This corresponds to dark energy and leads to a “big rip” in 70 Gigayears. Selection for best growth and condensation events over generations of crystals favors multiple self-organizing processes within the crystal including life or even conscious observers in our universe. Philosophically this theory shows harmony with nature and replaces absurd perspectives of current cosmology. Independent of cosmology, we suggest that a “real world” (so our everyday macroscopic world) happens only inside a crystal. “Outside” there is wild quantum foam and superposition of all possibilities. In our crystallized world the vacuum no longer boils but is cooled down by the crystallization event, space-time exists and general relativity holds. Vacuum energy becomes 10**20 smaller, exactly as observed in our everyday world. We live in a “solid” state, within a crystal, the n quanta which build our world have all their different m states nicely separated. There are only nm states available for this local “multiverse”. The arrow of entropy for each edge of the crystal forms one fate, one world-line or clear development of our world, while layers of the crystal are different system states. Mathematical leads from loop quantum gravity (LQG) point to required interactions and potentials. Interaction potentials for strings or loop quanta of any dimension allow a solid, decoherent state of quanta challenging to calculate. However, if we introduce here the heuristic that any type of physical interaction of strings corresponds just to a type of calculation, there is already since 1898 the Hurwitz theorem showing that then only 1D, 2D, 4D and 8D (octonions) allow complex or hypercomplex number calculations. No other hypercomplex numbers and hence dimensions or symmetries are possible to allow calculations without yielding divisions by zero. However, the richest solution allowed by the Hurwitz theorem, octonions, is actually the observed symmetry of our universe, E8. Standard physics such as condensation, crystallization and magnetization but also solid-state physics and quantum computing allow us to show an initial mathematical treatment of our new theory by LQG to describe the cosmological state transformations by equations, and, most importantly, point out routes to parametrization of free parameters looking at testable phenomena, experiments and formulas that describe processes of crystallization, protein folding, magnetization, solid-state physics and quantum computing. This is presented here for LQG, for string theory it would be more elegant but was too demanding to be shown here. Note: While my previous Opus server preprint “A new cosmology of a crystallization process (decoherence) from the surrounding quantum soup provides heuristics to unify general relativity and quantum physics by solid state physics” (https://doi.org/10.25972/OPUS-23076) deals with the same topics and basic formulas, this new version is improved: clearer in title, better introduction, more stringent in its mathematics and improved discussion of the implications including quantum computing, hints for parametrization and connections to LQG and other current cosmological efforts. This 5th of June 2021 version is again an OPUS preprint, but this will next be edited for Archives https://arxiv.org. KW - cosmology KW - quantum computing KW - loop quantum gravity KW - qubit KW - decoherence KW - crystallization Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-239181 ER - TY - JOUR A1 - Caliskan, Aylin A1 - Caliskan, Deniz A1 - Rasbach, Lauritz A1 - Yu, Weimeng A1 - Dandekar, Thomas A1 - Breitenbach, Tim T1 - Optimized cell type signatures revealed from single-cell data by combining principal feature analysis, mutual information, and machine learning JF - Computational and Structural Biotechnology Journal N2 - Machine learning techniques are excellent to analyze expression data from single cells. These techniques impact all fields ranging from cell annotation and clustering to signature identification. The presented framework evaluates gene selection sets how far they optimally separate defined phenotypes or cell groups. This innovation overcomes the present limitation to objectively and correctly identify a small gene set of high information content regarding separating phenotypes for which corresponding code scripts are provided. The small but meaningful subset of the original genes (or feature space) facilitates human interpretability of the differences of the phenotypes including those found by machine learning results and may even turn correlations between genes and phenotypes into a causal explanation. For the feature selection task, the principal feature analysis is utilized which reduces redundant information while selecting genes that carry the information for separating the phenotypes. In this context, the presented framework shows explainability of unsupervised learning as it reveals cell-type specific signatures. Apart from a Seurat preprocessing tool and the PFA script, the pipeline uses mutual information to balance accuracy and size of the gene set if desired. A validation part to evaluate the gene selection for their information content regarding the separation of the phenotypes is provided as well, binary and multiclass classification of 3 or 4 groups are studied. Results from different single-cell data are presented. In each, only about ten out of more than 30000 genes are identified as carrying the relevant information. The code is provided in a GitHub repository at https://github.com/AC-PHD/Seurat_PFA_pipeline. KW - single cell analysis KW - machine learning KW - explainability of machine learning KW - principal KW - feature analysis KW - model reduction KW - feature selection Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-349989 SN - 2001-0370 VL - 21 ER - TY - JOUR A1 - Ewald, Jan A1 - Bartl, Martin A1 - Dandekar, Thomas A1 - Kaleta, Christoph T1 - Optimality principles reveal a complex interplay of intermediate toxicity and kinetic efficiency in the regulation of prokaryotic metabolism JF - PLOS Computational Biology N2 - A precise and rapid adjustment of fluxes through metabolic pathways is crucial for organisms to prevail in changing environmental conditions. Based on this reasoning, many guiding principles that govern the evolution of metabolic networks and their regulation have been uncovered. To this end, methods from dynamic optimization are ideally suited since they allow to uncover optimality principles behind the regulation of metabolic networks. We used dynamic optimization to investigate the influence of toxic intermediates in connection with the efficiency of enzymes on the regulation of a linear metabolic pathway. Our results predict that transcriptional regulation favors the control of highly efficient enzymes with less toxic upstream intermediates to reduce accumulation of toxic downstream intermediates. We show that the derived optimality principles hold by the analysis of the interplay between intermediate toxicity and pathway regulation in the metabolic pathways of over 5000 sequenced prokaryotes. Moreover, using the lipopolysaccharide biosynthesis in Escherichia coli as an example, we show how knowledge about the relation of regulation, kinetic efficiency and intermediate toxicity can be used to identify drug targets, which control endogenous toxic metabolites and prevent microbial growth. Beyond prokaryotes, we discuss the potential of our findings for the development of antifungal drugs. KW - Enzyme regulation KW - Toxicity KW - Metabolic pathways KW - Enzymes KW - Transcriptional control KW - Enzyme kinetics KW - Enzyme metabolism KW - Predictive toxicology Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-180870 VL - 13 IS - 2 ER - TY - JOUR A1 - Schultz, Rüdiger A1 - Metzner, Katharina A1 - Dandekar, Thomas A1 - Gramsch, Christian T1 - Opiates induce long-term increases in prodynorphin derived peptide levels in the guinea-pig myenteric plexus N2 - No abstract available Y1 - 1986 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-29809 ER - TY - JOUR A1 - Dandekar, Thomas T1 - Olbers' Paradox (peer-reviewed scientific correspondence) N2 - No abstract available Y1 - 1991 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-31672 ER -