TY - JOUR A1 - Carradec, Quentin A1 - Pelletier, Eric A1 - Da Silva, Corinne A1 - Alberti, Adriana A1 - Seeleuthner, Yoann A1 - Blanc-Mathieu, Romain A1 - Lima-Mendez, Gipsi A1 - Rocha, Fabio A1 - Tirichine, Leila A1 - Labadie, Karine A1 - Kirilovsky, Amos A1 - Bertrand, Alexis A1 - Engelen, Stefan A1 - Madoui, Mohammed-Amin A1 - Méheust, Raphaël A1 - Poulain, Julie A1 - Romac, Sarah A1 - Richter, Daniel J. A1 - Yoshikawa, Genki A1 - Dimier, Céline A1 - Kandels-Lewis, Stefanie A1 - Picheral, Marc A1 - Searson, Sarah A1 - Jaillon, Olivier A1 - Aury, Jean-Marc A1 - Karsenti, Eric A1 - Sullivan, Matthew B. A1 - Sunagawa, Shinichi A1 - Bork, Peer A1 - Not, Fabrice A1 - Hingamp, Pascal A1 - Raes, Jeroen A1 - Guidi, Lionel A1 - Ogata, Hiroyuki A1 - de Vargas, Colomban A1 - Iudicone, Daniele A1 - Bowler, Chris A1 - Wincker, Patrick T1 - A global ocean atlas of eukaryotic gene JF - Nature Communications N2 - While our knowledge about the roles of microbes and viruses in the ocean has increased tremendously due to recent advances in genomics and metagenomics, research on marine microbial eukaryotes and zooplankton has benefited much less from these new technologies because of their larger genomes, their enormous diversity, and largely unexplored physiologies. Here, we use a metatranscriptomics approach to capture expressed genes in open ocean Tara Oceans stations across four organismal size fractions. The individual sequence reads cluster into 116 million unigenes representing the largest reference collection of eukaryotic transcripts from any single biome. The catalog is used to unveil functions expressed by eukaryotic marine plankton, and to assess their functional biogeography. Almost half of the sequences have no similarity with known proteins, and a great number belong to new gene families with a restricted distribution in the ocean. Overall, the resource provides the foundations for exploring the roles of marine eukaryotes in ocean ecology and biogeochemistry. KW - genomics KW - marine biology KW - microbial ecology KW - water microbiology Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-222250 VL - 9 ER - TY - JOUR A1 - Helmprobst, Frederik A1 - Kneitz, Susanne A1 - Klotz, Barbara A1 - Naville, Magali A1 - Dechaud, Corentin A1 - Volff, Jean-Nicolas A1 - Schartl, Manfred T1 - Differential expression of transposable elements in the medaka melanoma model JF - PLoS One N2 - Malignant melanoma incidence is rising worldwide. Its treatment in an advanced state is difficult, and the prognosis of this severe disease is still very poor. One major source of these difficulties is the high rate of metastasis and increased genomic instability leading to a high mutation rate and the development of resistance against therapeutic approaches. Here we investigate as one source of genomic instability the contribution of activation of transposable elements (TEs) within the tumor. We used the well-established medaka melanoma model and RNA-sequencing to investigate the differential expression of TEs in wildtype and transgenic fish carrying melanoma. We constructed a medaka-specific TE sequence library and identified TE sequences that were specifically upregulated in tumors. Validation by qRT- PCR confirmed a specific upregulation of a LINE and an LTR element in malignant melanomas of transgenic fish. KW - melanoma KW - genomics KW - transposable elements KW - cancer genomics KW - malignant tumors KW - gene prediction KW - human genomics KW - retrotransposons Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-260615 VL - 16 IS - 10 ER - TY - JOUR A1 - Höhne, Christin A1 - Prokopov, Dmitry A1 - Kuhl, Heiner A1 - Du, Kang A1 - Klopp, Christophe A1 - Wuertz, Sven A1 - Trifonov, Vladimir A1 - Stöck, Matthias T1 - The immune system of sturgeons and paddlefish (Acipenseriformes): a review with new data from a chromosome‐scale sturgeon genome JF - Reviews in Aquaculture N2 - Sturgeon immunity is relevant for basic evolutionary and applied research, including caviar‐ and meat‐producing aquaculture, protection of wild sturgeons and their re‐introduction through conservation aquaculture. Starting from a comprehensive overview of immune organs, we discuss pathways of innate and adaptive immune systems in a vertebrate phylogenetic and genomic context. The thymus as a key organ of adaptive immunity in sturgeons requires future molecular studies. Likewise, data on immune functions of sturgeon‐specific pericardial and meningeal tissues are largely missing. Integrating immunological and endocrine functions, the sturgeon head kidney resembles that of teleosts. Recently identified pattern recognition receptors in sturgeon require research on downstream regulation. We review first acipenseriform data on Toll‐like receptors (TLRs), type I transmembrane glycoproteins expressed in membranes and endosomes, initiating inflammation and host defence by molecular pattern‐induced activation. Retinoic acid‐inducible gene‐I‐like (RIG‐like) receptors of sturgeons present RNA and key sensors of virus infections in most cell types. Sturgeons and teleosts share major components of the adaptive immune system, including B cells, immunoglobulins, major histocompatibility complex and the adaptive cellular response by T cells. The ontogeny of the sturgeon innate and onset of adaptive immune genes in different organs remain understudied. In a genomics perspective, our new data on 100 key immune genes exemplify a multitude of evolutionary trajectories after the sturgeon‐specific genome duplication, where some single‐copy genes contrast with many duplications, allowing tissue specialization, sub‐functionalization or both. Our preliminary conclusion should be tested by future evolutionary bioinformatics, involving all >1000 immunity genes. This knowledge update about the acipenseriform immune system identifies several important research gaps and presents a basis for future applications. KW - evolution KW - genomics KW - immune genes KW - immune organs KW - immune system KW - sturgeon Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-239865 VL - 13 IS - 3 SP - 1709 EP - 1729 ER - TY - JOUR A1 - Mehmood, Rashid A1 - Alsaleh, Alanoud A1 - Want, Muzamil Y. A1 - Ahmad, Ijaz A1 - Siraj, Sami A1 - Ishtiaq, Muhammad A1 - Alshehri, Faizah A. A1 - Naseem, Muhammad A1 - Yasuhara, Noriko T1 - Integrative molecular analysis of DNA methylation dynamics unveils molecules with prognostic potential in breast cancer JF - BioMedInformatics N2 - DNA methylation acts as a major epigenetic modification in mammals, characterized by the transfer of a methyl group to a cytosine. DNA methylation plays a pivotal role in regulating normal development, and misregulation in cells leads to an abnormal phenotype as is seen in several cancers. Any mutations or expression anomalies of genes encoding regulators of DNA methylation may lead to abnormal expression of critical molecules. A comprehensive genomic study encompassing all the genes related to DNA methylation regulation in relation to breast cancer is lacking. We used genomic and transcriptomic datasets from the Cancer Genome Atlas (TGCA) Pan-Cancer Atlas, Genotype-Tissue Expression (GTEx) and microarray platforms and conducted in silico analysis of all the genes related to DNA methylation with respect to writing, reading and erasing this epigenetic mark. Analysis of mutations was conducted using cBioportal, while Xena and KMPlot were utilized for expression changes and patient survival, respectively. Our study identified multiple mutations in the genes encoding regulators of DNA methylation. The expression profiling of these showed significant differences between normal and disease tissues. Moreover, deregulated expression of some of the genes, namely DNMT3B, MBD1, MBD6, BAZ2B, ZBTB38, KLF4, TET2 and TDG, was correlated with patient prognosis. The current study, to our best knowledge, is the first to provide a comprehensive molecular and genetic profile of DNA methylation machinery genes in breast cancer and identifies DNA methylation machinery as an important determinant of the disease progression. The findings of this study will advance our understanding of the etiology of the disease and may serve to identify alternative targets for novel therapeutic strategies in cancer. KW - DNA methylation KW - epigenetic modification KW - breast cancer KW - genomics KW - in silico analysis Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-321171 SN - 2673-7426 VL - 3 IS - 2 SP - 434 EP - 445 ER -