TY - JOUR A1 - Anelli, Viviana A1 - Ordas, Anita A1 - Kneitz, Susanne A1 - Sagredo, Leonel Munoz A1 - Gourain, Victor A1 - Schartl, Manfred A1 - Meijer, Annemarie H. A1 - Mione, Marina T1 - Ras-Induced miR-146a and 193a Target Jmjd6 to Regulate Melanoma Progression JF - Frontiers in Genetics N2 - Ras genes are among the most commonly mutated genes in human cancer; yet our understanding of their oncogenic activity at the molecular mechanistic level is incomplete. To identify downstream events that mediate ras-induced cellular transformation in vivo, we analyzed global microRNA expression in three different models of Ras-induction and tumor formation in zebrafish. Six microRNAs were found increased in Ras-induced melanoma, glioma and in an inducible model of ubiquitous Ras expression. The upregulation of the microRNAs depended on the activation of the ERK and AKT pathways and to a lesser extent, on mTOR signaling. Two Ras-induced microRNAs (miR-146a and 193a) target Jmjd6, inducing downregulation of its mRNA and protein levels at the onset of Ras expression during melanoma development. However, at later stages of melanoma progression, jmjd6 levels were found elevated. The dynamic of Jmjd6 levels during progression of melanoma in the zebrafish model suggests that upregulation of the microRNAs targeting Jmjd6 may be part of an anti-cancer response. Indeed, triple transgenic fish engineered to express a microRNA-resistant Jmjd6 from the onset of melanoma have increased tumor burden, higher infiltration of leukocytes and shorter melanoma-free survival. Increased JMJD6 expression is found in several human cancers, including melanoma, suggesting that the up-regulation of Jmjd6 is a critical event in tumor progression. The following link has been created to allow review of record GSE37015: http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?token=jjcrbiuicyyqgpc&acc=GSE37015. KW - zebrafish KW - cancer models KW - microRNA KW - Jmjd6 KW - ras KW - melanoma KW - miR-146a KW - miR-193a Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-196963 SN - 1664-8021 VL - 9 IS - 675 ER - TY - JOUR A1 - Haydn, Johannes M. A1 - Hufnagel, Anita A1 - Grimm, Johannes A1 - Maurus, Katja A1 - Schartl, Manfred A1 - Meierjohann, Svenja T1 - The MAPK pathway as an apoptosis enhancer in melanoma JF - Oncotarget N2 - Inhibition of RAF/MEK/ERK signaling is beneficial for many patients with BRAFV600E–mutated melanoma. However, primary and secondary resistances restrict long-lasting therapy success. Combination therapies are therefore urgently needed. Here, we evaluate the cellular effect of combining a MEK inhibitor with a genotoxic apoptosis inducer. Strikingly, we observed that an activated MAPK pathway promotes in several melanoma cell lines the pro-apoptotic response to genotoxic stress, and MEK inhibition reduces intrinsic apoptosis. This goes along with MEK inhibitor induced increased RAS and P-AKT levels. The protective effect of the MEK inhibitor depends on PI3K signaling, which prevents the induction of pro-apoptotic PUMA that mediates apoptosis after DNA damage. We could show that the MEK inhibitor dependent feedback loop is enabled by several factors, including EGF receptor and members of the SPRED family. The simultaneous knockdown of SPRED1 and SPRED2 mimicked the effects of MEK inhibitor such as PUMA repression and protection from apoptosis. Our data demonstrate that MEK inhibition of BRAFV600E-positive melanoma cells can protect from genotoxic stress, thereby achieving the opposite of the intended anti-tumorigenic effect of the combination of MEK inhibitor with inducers of intrinsic apoptosis. KW - PI3K KW - melanoma KW - RAS KW - chemotherapy resistance KW - crosstalk Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-120649 SN - 1949-2553 VL - 5 IS - 13 ER - TY - JOUR A1 - Helmprobst, Frederik A1 - Kneitz, Susanne A1 - Klotz, Barbara A1 - Naville, Magali A1 - Dechaud, Corentin A1 - Volff, Jean-Nicolas A1 - Schartl, Manfred T1 - Differential expression of transposable elements in the medaka melanoma model JF - PLoS One N2 - Malignant melanoma incidence is rising worldwide. Its treatment in an advanced state is difficult, and the prognosis of this severe disease is still very poor. One major source of these difficulties is the high rate of metastasis and increased genomic instability leading to a high mutation rate and the development of resistance against therapeutic approaches. Here we investigate as one source of genomic instability the contribution of activation of transposable elements (TEs) within the tumor. We used the well-established medaka melanoma model and RNA-sequencing to investigate the differential expression of TEs in wildtype and transgenic fish carrying melanoma. We constructed a medaka-specific TE sequence library and identified TE sequences that were specifically upregulated in tumors. Validation by qRT- PCR confirmed a specific upregulation of a LINE and an LTR element in malignant melanomas of transgenic fish. KW - melanoma KW - genomics KW - transposable elements KW - cancer genomics KW - malignant tumors KW - gene prediction KW - human genomics KW - retrotransposons Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-260615 VL - 16 IS - 10 ER - TY - JOUR A1 - Kneitz, Susanne A1 - Mishra, Rasmi R. A1 - Chalopin, Domitille A1 - Postlethwait, John A1 - Warren, Wesley C. A1 - Walther, Ronald B. A1 - Schartl, Manfred T1 - Germ cell and tumor associated piRNAs in the medaka and \(Xiphophorus\) melanoma models JF - BMC Genomics N2 - Background A growing number of studies report an abnormal expression of Piwi-interacting RNAs (piRNAs) and the piRNA processing enzyme Piwi in many cancers. Whether this finding is an epiphenomenon of the chaotic molecular biology of the fast dividing, neoplastically transformed cells or is functionally relevant to tumorigenesisis is difficult to discern at present. To better understand the role of piRNAs in cancer development small laboratory fish models can make a valuable contribution. However, little is known about piRNAs in somatic and neoplastic tissues of fish. Results To identify piRNA clusters that might be involved in melanoma pathogenesis, we use several transgenic lines of medaka, and platyfish/swordtail hybrids, which develop various types of melanoma. In these tumors Piwi, is expressed at different levels, depending on tumor type. To quantify piRNA levels, whole piRNA populations of testes and melanomas of different histotypes were sequenced. Because no reference piRNA cluster set for medaka or Xiphophorus was yet available we developed a software pipeline to detect piRNA clusters in our samples and clusters were selected that were enriched in one or more samples. We found several loci to be overexpressed or down-regulated in different melanoma subtypes as compared to hyperpigmented skin. Furthermore, cluster analysis revealed a clear distinction between testes, low-grade and high-grade malignant melanoma in medaka. Conclusions Our data imply that dysregulation of piRNA expression may be associated with development of melanoma. Our results also reinforce the importance of fish as a suitable model system to study the role of piRNAs in tumorigenesis. KW - small RNA-sequencing KW - melanoma KW - piRNA KW - fish model Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-146028 VL - 17 IS - 357 ER - TY - JOUR A1 - Wittbrodt, Joachim A1 - Lammers, Reiner A1 - Malitschek, Barbara A1 - Ullrich, Axel A1 - Schartl, Manfred T1 - Xmrk receptor tyrosine kinase is activated in Xiphophorus malignant melanoma N2 - Xmrk encodes a putative transmembrane glycoprotein of the tyrosine kinase family and is a melanoma-inducing gene in Xiphophorus. We attempted to investigate the biological function of the putative Xmrk receptor by characterizing its signalling properties. Since a potential Iigand for Xmrk has not yet been identified, it has been difficult to analyse the biochemical properlies and biological function of this cell surface protein. In an approach towards such analyses, the Xmrk extracellular domain was replaced by the closely related Iigand-binding domain sequences of the human epidennal growth factor receptor (HER) and the ligand-induced activity of the chimeric HER-Xmrk proteinwas examined. We show that the Xmrk protein is a functional receptor tyrosine kinase, is highly active in malignant melanoma and displays a constitutive autophosphorylation activity possibly due to an activating mutation in its extracellular or transmembrane domain. In the focus formation assay the HER-Xmrk chimera is a potent transfonning protein equivalent to other tyrosine kinase oncoproteins. KW - Physiologische Chemie KW - chimeric RTKs KW - melanoma KW - RTK KW - Xiphophorus Y1 - 1992 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-61699 ER -