TY - THES A1 - Riemensperger, Thomas T1 - Untersuchung prädiktiver Eigenschaften des dopaminergen Systems von Drosophila melanogaster mittels genetisch kodierter Calcium Sensoren T1 - Analysis of predictive features in the dopaminergic System of Drosophila melanogaster using genetically encoded Calcium Sensors N2 - Die Technik des optischen Imaging unter Verwendung DNA-codierter Sensoren ermöglicht es, Messungen neuraler Aktivitäten in genetisch definierten Populationen von Neuronen durchzuführen. In der Vielzahl der verschiedenen entwickelten Sensoren konnten die Calciumsensoren bisher das beste Verhältnis zwischen Signal und Rauschen und die beste zeitliche Auflösung aufzeigen. Hierbei handelt es sich in erster Linie um zwei Typen von Sensoren, zum einen ratiometrische Sensoren, deren Signal auf einem Fluoreszenz Resonanz Energie Transfer (FRET) basiert, und zum anderen um zirkulär permutierte Sensoren, die auf einem modifizierten GFP-Molekül basieren, wobei das Signal auf einer veränderten Protonierung des Chromophors beruht. Beide Arten dieser Sensoren wurden schon erfolgreich zum Messen neuraler Aktivitäten in Nervensystemen verschiedener Tierarten verwendet. Ein Teil dieser Arbeit bestand darin, zu untersuchen, welche Sensoren sich für die Messung an einem lebenden Organismus am besten eignen. Hierfür wurden die Eigenschaften von vier verschiedenen FRET basierten Sensoren und zwei der zyklisch permutierten Sensoren nach Expression im zentralen Nervensystem von Drosophila charakterisiert. Die Sensoren wurden in Neuronen zweiter und dritter Ordnung des olfaktorischen Signalwegs exprimiert und ihre Antworten auf physiologische Duftstimulation oder artifiziell induzierte Depolarisation des Gehirns untersucht. Während die calciumabhängigen Signale der zyklisch permutierten Sensoren in der Regel größer waren als die der FRET basierten Sensoren, zeichneten sich letztere durch ein besseres Signal zu Rausch-Verhältnis aus, wenn Bewegungen der fluoreszierenden Strukturen nicht zu vermeiden waren. Dies war auch der ausschlaggebende Grund für die Verwendung eines FRET basierten Sensors im anschließenden Teil der Arbeit. Im zweiten Teil der Arbeit wurde der Effekt untersucht, den die Paarung eines neutralen Stimulus mit einem bestrafenden Stimulus auf dopaminerge Neurone hat. Eine solche Paarung kann zu einer klassischen Konditionierung führen, einer einfachen Form des Lernens, in welcher das Tier einem ursprünglich neutralen Stimulus einen Wert zuordnet, und dadurch sein Verhalten dem Stimulus gegenüber ändert. Die olfaktorische klassische Konditionierung in Drosophila wird seit vielen Jahren intensiv untersucht, um die molekularen und neuronalen Grundlagen von Lernen und Gedächtnis zu charakterisieren. Dabei hat sich gezeigt, dass besonders die Pilzkörper von essentieller Bedeutung für die Ausbildung eines olfaktorischen Gedächtnisses sind. Während das olfactorische System bei Insekten bereits detailiert analysiert wurde, ist über die Neurone, die den bestrafenden Stimulus vermitteln, nur sehr wenig bekannt. Unter Anwendung des funktionellen optischen Calcium Imaging konnte im Rahmen der Arbeit gezeigt werden, dass die Projektionen von dopaminergen Neuronen im Bereich der Loben der Pilzkörper schwach auf die Präsentation eines Duftes, jedoch sehr stark auf eine Stimulation durch einen Elektroschock antworten. Nach mehrmaliger Paarung eines Duftes mit einem Elektroschock während eines Trainings, verlängert sich die Aktivität dieser dopaminergen Neurone auf den bestraften Duft hin im Test ohne Elektroschock drastisch, während die Antwort auf den Kontrollduft keine signifikanten Veränderungen aufweist. Während bei Säugetieren belohnende Reize bei appetitiven Lernvorgängen über dopaminerge Neurone vermittelt werden, spielen bei Drosophila diese Neurone offensichtlich eine Rolle bei der aversiven Konditionierung. Jedoch blieb, auch wenn sich die Rolle des Dopamins im Laufe der Evolution geändert zu haben scheint, die Fähigkeit dieses Neuronentyps, nicht nur auf einen eintreffenden verstärkenden Stimulus zu reagieren, sondern diesen auch vorhersagen zu können, zwischen Säugern und Drosophila erhalten. N2 - The technique of optical in vivo imaging using genetically encoded fluorescent sensors in transgenic animals has paved the way for real-time monitoring of spatio-temporal activity in the brain. Among the different fluorescent probes, the calcium sensors produce signals with the highest signal to noise ratio and the best temporal resolution. Basically these sensors can be split into two groups, those based on a FRET-effect between two modified green fluorescent proteins (GFPs) and those which make use of on a circular permutation of GFP. Both types have successfully been used for measuring neuronal activity in various species. One part of the present work was to test which of these different sensor types are best suited for an in vivo situation. For this, two members of the class of circularly permutated sensors and four members of the class of FRET based sensors were tested and compaired in Drosophila. Each sensor was expressed in second and third order neurons of the olfactory pathway and the calcium activity evoked by artificial depolarisation or physiological odour stimuli was recorded. Whereas the Calcium dependent change in signal intensity is substantially higher for the circularly permutated sensors, the FRET based sensors tested in this work showed a better signal to noise ratio when movement of the brain structures under investigation could not be prevented. For this reason a FRET based sensor was chosen to measure the activity of dopaminergic neuronsin a classical conditioning paradigm. In the second part of this work the effect of pairing a neutral stimulus with a negative reinforcer (in this case an electric shock) on the activity of dopaminergic neurons was investigated. The pairing of these two stimuli can lead to classical conditioning, a simple form of learning in which the animal assigns a value (positive or negative) to the formerly neutral stimulus. Olfactory classical conditioning in Drosophila melanogaster is a prime model for the analysis of the molecular and neuronal substrate of this type of learning and memory. In particular the mushroom bodies have been shown to be essential for olfactory memory formation. While the olfactory system of insects has been extensively characterized little is known about the neurons that mediate the reinforcing stimulus. Using the technique of optical calcium imaging it was possible to show that dopaminergic projections in the region of the mushroom body lobes responded weakly to odour presentations, but strongly to the stimulation by an electric shock. After pairing for several times one of two odours presented to the fly with an electric shock (training), the activity of the dopaminergic neurons to the punished odour is significantly prolonged in a test after the training. No change is observed after the training for the control odour that was not paired with the electric shock. Whereas in mammals rewarding stimuli are mediated by dopaminergic neurons, in Drosophila this catecholamine apparently plays a role in mediating aversive reinforcement. Even though the role of dopamine seems to have changed during evolution the capability of dopaminergic neurons to predict a reinforcing stimulus appears to be conserved between Drosophila and mammals. KW - Taufliege KW - Dopaminerge Nervenzelle KW - Calcium KW - Calcium imaging KW - Sensoren KW - Dopamin KW - Drosophila melanogaster KW - prädiktive Eigenschaften KW - Calcium imaging KW - Sensors KW - Dopamine KW - Drosophila melanogaster KW - predictive features Y1 - 2006 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-19041 ER - TY - JOUR A1 - Reuter, Isabel A1 - Jäckels, Jana A1 - Kneitz, Susanne A1 - Kuper, Jochen A1 - Lesch, Klaus-Peter A1 - Lillesaar, Christina T1 - Fgf3 is crucial for the generation of monoaminergic cerebrospinal fluid contacting cells in zebrafish JF - Biology Open N2 - In most vertebrates, including zebrafish, the hypothalamic serotonergic cerebrospinal fluid-contacting (CSF-c) cells constitute a prominent population. In contrast to the hindbrain serotonergic neurons, little is known about the development and function of these cells. Here, we identify fibroblast growth factor (Fgf)3 as the main Fgf ligand controlling the ontogeny of serotonergic CSF-c cells. We show that fgf3 positively regulates the number of serotonergic CSF-c cells, as well as a subset of dopaminergic and neuroendocrine cells in the posterior hypothalamus via control of proliferation and cell survival. Further, expression of the ETS-domain transcription factor etv5b is downregulated after fgf3 impairment. Previous findings identified etv5b as critical for the proliferation of serotonergic progenitors in the hypothalamus, and therefore we now suggest that Fgf3 acts via etv5b during early development to ultimately control the number of mature serotonergic CSF-c cells. Moreover, our analysis of the developing hypothalamic transcriptome shows that the expression of fgf3 is upregulated upon fgf3 loss-of-function, suggesting activation of a self-compensatory mechanism. Together, these results highlight Fgf3 in a novel context as part of a signalling pathway of critical importance for hypothalamic development. KW - Fgf-signalling KW - Serotonin KW - Dopamine KW - Hypothalamus KW - Central nervous system Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-200749 VL - 8 ER - TY - THES A1 - Nuwal, Nidhi T1 - Optogenetic investigation of nervous system functions using walking behavior and genome wide transcript analysis of Synapsin and Sap47 mutants of Drosophila N2 - PART I Animals need to constantly evaluate their external environment in order to survive. In some cases the internal state of the animal changes to cope with it’s surrounding. In our study we wanted to investigate the role of amines in modulating internal states of Drosophila. We have designed a behavioral paradigm where the flies are fixed in space but can walk on a small styrofoam ball suspended by a gentle stream of air. The walking activity of flies was used as behavioral readout. PART I Animals need to constantly evaluate their external environment in order to survive. In some cases the internal state of the animal changes to cope with it’s surrounding. In our study we wanted to investigate the role of amines in modulating internal states of Drosophila. We have designed a behavioral paradigm where the flies are fixed in space but can walk on a small styrofoam ball suspended by a gentle stream of air. The walking activity of flies was used as behavioral readout. An operant training paradigm was established by coupling one of the walking directions to incidence of heat punishment. We observed that animals quickly realized the contingency of punishment with walking direction and avoided walking in the punished direction in the presence of punishment, but did not continue walking in the unpunished direction in the absence of the punishment. This would indicate that the flies do not form a memory for the punished direction or rapidly erase it under new conditions. On having established the paradigm with heat punishment we have attempted to activate selected subsets of neuronal populations of Drosophila while they were walking on the ball. The selective activation of neurons was achieved by expressing the light-activated ion channel channelrhodopsin-2 (ChR2) using the Gal4-UAS system and coupling the unidirectional walking of the animals on the ball with the incidence of blue light required to activate the channels and depolarize the neurons. The feasibility of this approach was tested by light-activating sugar sensitive gustatory receptor neurons expressing ChR2, we found that when the light was actuated the flies preferred to turn in one direction the optically “rewarded” direction. Next we similarly activated different subsets of aminergic neurons. We observed that in our setup animals avoided to turn in the direction which was coupled to activation of dopaminergic neurons indicating that release of dopamine is disliked by the animals. This is in accordance with associative learning experiments where dopamine is believed to underlie the formation of an association between a neutral conditioned stimulus with the aversive unconditioned stimulus. However, when we activated tyraminergic/octopaminergic neurons we did not observe any directional preference. The activation of dopaminergic and tyraminergic/octopaminergic neurons led to arousal of the animals indicating that we were indeed successful in activating those neurons. Also, the activation of serotonergic neurons did not have any effect on directional preference of the animals. With this newly established paradigm it will be interesting to find out if in insects like in mammals a reward mediating system exists and to test subsets of aminergic or peptidergic neurons that could possibly be involved in a reward signaling system which has not been detected in our study. Also, it would be interesting to localize neuropile regions that would be involved in mediating choice behavior in our paradigm. PART II In collaboration with S. Kneitz (IZKF Wuerzburg) and T. Nuwal we performed genome-wide expression analysis of two pre-synaptic mutants - Synapsin (Syn97) and Synapse associated protein of 47 kDa (Sap47156). The rationale behind these experiments was to identify genes that were up- or down-regulated due to these mutations. The microarray experiments provided us with several candidate genes some of which we have verified by qPCR. From our qPCR analysis we can conclude that out of the verified genes only Cirl transcripts seem to be reproducibly down regulated in Synapsin mutants. The Cirl gene codes for a calcium independent receptor for latrotoxin. Further qPCR experiments need to be performed to verify other candidate genes. The molecular interactions between CIRL and SYN or their genes should now be investigated in detail. N2 - Teil I Lebewesen müssen beständig ihre äußere Umgebung auswerten, um überleben zu können. Manchmal ändern sich innere Zustände der Tiere, damit sie sich der Außenwelt anpassen. In unseren Untersuchungen wollten wir die Rolle von Aminen untersuchen, die für die Modulation von inneren Zuständen bei Drosophila notwendig sind. Wir haben ein Verhaltensparadigma entwickelt, bei dem die Fliege räumlich fixiert ist, aber auf einem Styroporball laufen kann, der auf einem Luftpolster schwebt. Die Laufaktivität der Fliege wird durch die Ballbewegungen anzeigt. Mit diesem Versuchsaufbau wurde ein operantes Lernparadigma etabliert, bei dem eine Laufrichtung mit Bestrafung durch Hitze gekoppelt wird. Wir konnten feststellen, dass die Tiere schnell den Zusammenhang zwischen dem Auftreten der Bestrafung und der Laufrichtung realisieren und die bestrafte Seite vermeiden. Wurde die eine Laufrichtung nicht mehr bestraft, so vermieden die Fliegen sie nicht mehr. Dies zeigt dass die Fliegen kein Gedächtnis für die bestrafte Richtung ausbilden oder es bei veränderten Bedingungen rasch löschen . Nachdem sich der Versuchsaufbau mit Hitzebestrafung bewährt hatte, wurde versucht, bestimmte Sub-population von Neuronen von Drosophila zu aktivieren, während die Fliege auf dem Ball läuft. Die selektive Aktivierung von Neuronen wurde durch die Expression des lichtaktivierten Jonenkanals Channelrhodopsin-2 (ChR-2) mit Hilfe des Gal4-UAS-System und Beleuchtung der Fliege mit Blaulicht erreicht, das die Kanäle aktiviert. Nun erfolgte eine Kopplung einer Laufrichtung auf dem Ball mit dem Auftreten von blauem Licht. Die Durchführbarkeit derartiger Experimente wurde durch die Aktivierung von zuckersensitiven gustatorischen Rezeptorneuronen getestet. Die Ergebnisse zeigten, dass die Tiere bevorzugt die Richtung wählen, welche die Zuckerrezeptorneurone aktiviert. Anschließend aktivierten wir verschiedene Untergruppen von Neuronen des aminergen Systems. In diesem Versuchsaufbau beobachteten wir, dass die Tiere die Laufrichtung vermieden, die gekoppelt war mit der Aktivierung dopaminerger Neurone. Diese Ergebnisse stehen in Übereinstimmung mit Versuchen zum assoziativen Lernen, bei dem Dopamin wahrscheinlich notwendig ist für die Assoziation zwischen dem neutralen Konditionierungsstimulus und dem aversiven unkonditionierten Stimulus. Wenn wir jedoch die tyraminergen/oktopaminergen Neurone aktivierten, konnte keine gerichtete Präferenz nachgewiesen werden. Die Aktivierung dopaminerger und tyraminger/oktopaminerger Neurone führte jedoch zur Aktivitätssteigerung der Tiere, wodurch die erfolgreiche der Aktivierung der Neurone belegt wurde. Die Aktivierung serotonerger Neurone führte ebenfalls zu keinem Effekt in der Präferenz der Tiere. In zukünftigen Experimenten mit dem neu entwickelten Paradigma wäre es interessant, herauszufinden, ob in Insekten auch ein belohnungsabhängiges System existiert, vergleichbar dem von Säugern. So wäre die Identifizierung von Subpopulationen aminerger oder peptiderger Neurone des Belohnungssystems bei Insekten wichtig, da dies nicht in unseren Experimenten entdeckt wurde. Eine weitere interessante Fragestellung wäre, welche Gehirnstruktur die Richtungswahl auf dem Ball vermittelt. Teil II In Zussamenarbeit mit S. Kneitz (IZKF, Würzburg) und T. Nuwal wurde in der vorliegenden Arbeit die genomweite Genexpression einer Synapsin-Mutante (Syn97) und einer Mutante für das Synapsen-assoziierte-Protein von 47kDa (Sap47156) untersucht. Bei beiden Proteinen handelt es sich um präsynaptische Proteine von Drosophila. Ziel dieses Experiments war es, Gene zu identifizieren die aufgrund dieser Mutationen hoch bzw. herunterreguliert vorliegen. Durch das Microarray-Experiment wurden mehrere Kandidatengene entdeckt, wovon einige dieser Gene per qPCR-Versuchen verifiziert wurden. Aufgrund der qPCR-Analysen lässt sich schlussfolgern, dass nur das Cirl-Transkript in den Synapsin-Mutanten reproduzierbar herunterreguliert vorliegt. Das Cirl gene kodiert für einen Calcium independent receptor for Latrotoxin Weitere qPCR-Experimente sind notwendig, um die anderen Kandidatengene zu bestätigen. Die molekularen Interaktionen zwichen CIRL und Synapsin oder ihren Genen müssen nun im Detail untersucht werden. KW - Taufliege KW - Nervensystem KW - Amine KW - Synapsine KW - Optogenetik KW - Oktopamin KW - Dopamin KW - Channelrhodopsin KW - Synapsin KW - Sap47 KW - Cirl KW - Optogenetic KW - Channelrhodopsin KW - Dopamine KW - Octopamine KW - Synapsin KW - Sap47 KW - Cirl Y1 - 2010 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-51694 ER - TY - THES A1 - Aso, Yoshinori T1 - Dissecting the neuronal circuit for olfactory learning in Drosophila T1 - Die neuronale Schaltung für olfaktorisches Lernen in Drosophila N2 - This thesis consists of three major chapters, each of which has been separately published or under the process for publication. The first chapter is about anatomical characterization of the mushroom body of adult Drosophila melanogaster. The mushroom body is the center for olfactory learning and many other functions in the insect brains. The functions of the mushroom body have been studied by utilizing the GAL4/UAS gene expression system. The present study characterized the expression patterns of the commonly used GAL4 drivers for the mushroom body intrinsic neurons, Kenyon cells. Thereby, we revealed the numerical composition of the different types of Kenyon cells and found one subtype of the Kenyon cells that have not been described. The second and third chapters together demonstrate that the multiple types of dopaminergic neurons mediate the aversive reinforcement signals to the mushroom body. They induce the parallel memory traces that constitute the different temporal domains of the aversive odor memory. In prior to these chapters, “General introduction and discussion” section reviews and discuss about the current understanding of neuronal circuit for olfactory learning in Drosophila. N2 - Diese Dissertation umfasst drei Kapitel. Das erste Kapitel handelt von der anatomischen Charakterisierung des Pilzkörpers in adulten Drosophila melanogaster. Der Pilzkörper ist das Zentrum für olfaktorisches Lernen und viele andere Funktionen im Insektengehirn. Diese wurden mit Hilfe des GAL4/UAS Genexpressionssystems untersucht. Die vorliegende Arbeit charakterisiert die Expressionsmuster der gewöhnlich verwendeten GAL4 Treiberlinien für die Pilzkörperintrinsischen Neurone, den Kenyonzellen. Dabei zeigten ich die zahlenmäßige Zusammensetzung der unterschiedlichen Kenyonzelltypen und fanden einen Kenyonzellsubtyp, welcher bisher noch nicht beschrieben wurde. Das zweite und dritte Kapitel zeigen, dass verschiedene Typen dopaminerger Neurone aversive Verstärkungssignale (Unkonditionierte Stimuli) zum Pilzkörper übermitteln. Sie induzieren parallele Gedächtnisspuren, welche den unterschiedlichen zeitlichen Komponenten von aversivem Duftgedächtnis zugrunde liegen. Vor diesen Kapiteln enthält der Abschnitt „General introduction and discussion” einen Überblick und eine Diskussion über das derzeitige Verständnis des neuronalen Netzwerks, welches olfaktorischem Lernen in Drosophila zugrunde liegt. KW - Taufliege KW - Geruchswahrnehmung KW - Lernverhalten KW - Pilzkörper KW - olfaktorisches Lernen KW - Drosophila KW - olfactory learning KW - Drosophila KW - mushroom body KW - Dopamine Y1 - 2010 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-55483 ER -