TY - JOUR A1 - Wölfling, Mirko A1 - Becker, Mira C. A1 - Uhl, Britta A1 - Traub, Anja A1 - Fiedler, Konrad T1 - How differences in the settling behaviour of moths (Lepidoptera) may contribute to sampling bias when using automated light traps JF - European Journal of Entomology N2 - Quantitative community-wide moth surveys frequently employ flight-interception traps equipped with UV-light emitting sources as attractants. It has long been known that moth species differ in their responsiveness to light traps. We studied how the settling behaviour of moths at a light trap may further contribute to sampling bias. We observed the behaviour of 1426 moths at a light tower. Moths were classified as either, settling and remaining still after arrival, or continually moving on the gauze for extended periods of time. Moths that did not move after settling may not end up in the sampling container of the light trap and therefore are under-represented in automated trap samples relative to their true proportions in the community. Our analyses revealed highly significant behavioural differences between moths that differed in body size. Small moths were more likely to remain stationary after settling. As a corollary, representatives of three taxa, which in Europe are predominantly small species (Nolidae, Geometridae: Eupitheciini, Erebidae: Lithosiini), usually settled down immediately, whereas most other moths remained active on or flying around the trap for some time. Moth behaviour was also modulated by ambient temperature. At high temperatures, they were less likely to settle down immediately, but this behavioural difference was most strongly apparent among medium-sized moths. These results indicate the likely extent of the sampling bias when analysing and interpreting automated light-trap samples. Furthermore, to control for temperature modulated sampling bias temperature should always be recorded when sampling moths using flight-interception traps. KW - Lepidoptera KW - moths KW - biodiversity assessment KW - sampling method KW - light-trapping KW - sampling bias Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-191154 VL - 113 ER - TY - JOUR A1 - Boetzl, Fabian A. A1 - Ries, Elena A1 - Schneider, Gudrun A1 - Krauss, Jochen T1 - It’s a matter of design - how pitfall trap design affects trap samples and possible predictions JF - PeerJ N2 - Background: Pitfall traps are commonly used to assess ground dwelling arthropod communities. The effects of different pitfall trap designs on the trapping outcome are poorly investigated however they might affect conclusions drawn from pitfall trap data greatly. Methods: We tested four pitfall trap types which have been used in previous studies for their effectiveness: a simple type, a faster exchangeable type with an extended plastic rim plate and two types with guidance barriers (V- and X-shaped). About 20 traps were active for 10 weeks and emptied biweekly resulting in 100 trap samples. Results: Pitfall traps with guidance barriers were up to five times more effective than simple pitfall traps and trap samples resulted in more similar assemblage approximations. Pitfall traps with extended plastic rim plates did not only perform poorly but also resulted in distinct carabid assemblages with less individuals of small species and a larger variation. Discussion: Due to the obvious trait filtering and resulting altered assemblages, we suggest not to use pitfall traps with extended plastic rim plates. In comprehensive biodiversity inventories, a smaller number of pitfall traps with guidance barriers and a larger number of spatial replicates is of advantage, while due to comparability reasons, the use of simple pitfall traps will be recommended in most other cases. KW - biodiversity estimation KW - spiders KW - carabid beetles KW - ground dwelling predators KW - staphylinid beetles KW - sampling method KW - inventory KW - species richness Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-176870 VL - 6 IS - e5078 ER -