TY - THES A1 - Münz, Thomas Sebastian T1 - Aspects of neuronal plasticity in the mushroom body calyx during adult maturation in the honeybee Apis mellifera T1 - Aspekte neuronaler Plastizität im Pilzkörper kalyx während der Adultreifung der Honigbiene Apis mellifera N2 - Division of labor represents a major advantage of social insect communities that accounts for their enormous ecological success. In colonies of the honeybee, Apis mellifera, division of labor comprises different tasks of fertile queens and drones (males) and, in general, sterile female workers. Division of labor also occurs among workers in form of an age-related polyethism. This helps them to deal with the great variety of tasks within the colony. After adult eclosion, workers spend around three weeks with various duties inside the hive such as tending the brood or cleaning and building cells. After this period workers switch to outdoor tasks and become foragers collecting nectar, pollen and water. With this behavioral transition, workers face tremendous changes in their sensory environment. In particular, visual sensory stimuli become important, but also the olfactory world changes. Foragers have to perform a completely new behavioral repertoire ranging from long distance navigation based on landmark orientation and polarized-skylight information to learning and memory tasks associated with finding profitable food sources. However, behavioral maturation is not a purely age-related internal program associated with a change, for example, in juvenile hormone titers. External factors such as primer pheromones like the brood pheromone or queen mandibular pheromone can modulate the timing of this transition. In this way colonies are able to flexibly adjust their work force distribution between indoor and outdoor tasks depending on the actual needs of the colony. Besides certain physiological changes, mainly affecting glandular tissue, the transition from indoor to outdoor tasks requires significant adaptations in sensory and higher-order integration centers of the brain. The mushroom bodies integrate olfactory, visual, gustatory and mechanosensory information. Furthermore, they play important roles in learning and memory processes. It is therefore not surprising that the mushroom bodies, in particular their main input region, the calyx, undergo volumetric neuronal plasticity. Similar to behavioral maturation, plastic changes of the mushroom bodies are associated with age, but are also to be affected by modulating factors such as task and experience. In my thesis, I analyzed in detail the neuronal processes underlying volumetric plasticity in the mushroom body. Immunohistochemical labeling of synaptic proteins combined with quantitative 3D confocal imaging revealed that the volume increase of the mushroom body calyx is largely caused by the growth of the Kenyon cell dendritic network. This outgrowth is accompanied by changes in the synaptic architecture of the mushroom body calyx, which is organized in a distinct pattern of synaptic complexes, so called microglomeruli. During the first week of natural adult maturation microglomeruli remain constant in total number. With subsequent behavioral transition from indoor duties to foraging, microglomeruli are pruned while the Kenyon cell dendritic network is still growing. As a result of these processes, the mushroom body calyx neuropil volume enlarges while the total number of microgloumeruli becomes reduced in foragers compared to indoor workers. In the visual subcompartments (calyx collar) this process is induced by visual sensory stimuli as the beginning of pruning correlates with the time window when workers start their first orientation flights. The high level of analysis of cellular and subcellular process underlying structural plasticity of the mushroom body calyx during natural maturation will serve as a framework for future investigations of behavioral plasticity in the honeybee. The transition to foraging is not purely age-dependent, but gets modulated, for example, by the presence of foragers. Ethyl oleate, a primer pheromone that is present only in foragers, was shown to delay the onset of foraging in nurse bees. Using artificial application of additional ethyl oleate in triple cohort colonies, I tested whether it directly affects adult neuronal plasticity in the visual input region of the mushroom body calyx. As the pheromonal treatment failed to induce a clear behavioral phenotype (delayed onset of foraging) it was not possible to show a direct link between the exposure to additional ethyl oleate and neuronal plasticity in mushroom body calyx. However, the general results on synaptic maturation confirmed my data of natural maturation processes in the mushroom body calyx. Given the result that dendritic plasticity is a major contributor to neuronal plasticity in the mushroom body calyx associated with division of labor, the question arose which proteins could be involved in mediating these effects. Calcium/calmodulin-dependent protein kinase II (CaMKII) especially in mammals, but also in insects (Drosophila, Cockroach), was shown to be involved in facilitating learning and memory processes like long-term synaptic potentiation. In addition to presynaptic effects, the protein was also revealed to directly interact with cytoskeleton elements in the postsynapse. It therefore is a likely candidate to mediate structural synaptic plasticity. As part of my thesis, the presence and distribution of CaMKII was analyzed, and the results showed that the protein is highly concentrated in a distinct subpopulation of the mushroom body intrinsic neurons, the noncompact Kenyon cells. The dendritic network of this population arborizes in two calyx subregions: one receiving mainly olfactory input – the lip – and the collar receiving visual input. This distribution pattern did not change with age or task. The high concentration of CaMKII in dendritic spines and its overlap with f-actin indicates that CaMKII could be a key player inducing structural neuronal plasticity associated with learning and memory formation and/or behavioral transitions related to division of labor. Interestingly CaMKII immunoreactivity was absent in the basal ring, another subregion of the mushroom body calyx formed almost exclusively by the inner compact Kenyon cells and known to receive combined visual and olfactory input. This indicates differences of this mushroom body subregion regarding the molecular mechanisms controlling plastic changes in corresponding Kenyon cells. How is timing of behavioral and neuronal plasticity regulated? The primer pheromone ethyl oleate was found in high concentrations on foragers and was shown to influence behavioral maturation by delaying the onset of foraging when artificially applied in elevated concentrations. But how is ethyl oleate transferred and how does it shift the work force distribution between indoor and outdoor tasks? Previous work showed that ethyl oleate concentrations are highest in the honeycrop of foragers and suggested that it is transferred and communicated inside the colony via trophallaxis. The results of this thesis however clearly show, that ethyl oleate was not present inside the honey crop or the regurgitate, but rather in the surrounding tissue of the honey crop. As additionally the second highest concentration of ethyl oleate was measured on the surface of the cuticle of forgers, trophallaxis was ruled out as a mode of transmission. Neurophysiological measurements at the level of the antennae (electroantennogram recordings) and the first olfactory neuropil (calcium imaging of activity in the antennal lobe) revealed that the primer pheromone ethyl oleate is received and processed as an olfactory stimulus. Appetitive olfactory conditioning using the proboscis extension response as a behavioral paradigm showed that ethyl oleate can be associated with a sugar reward. This indicates that workers are able to perceive, learn and memorize the presence of this pheromone. As ethyl oleate had to be presented by a heated stimulation device at close range, it can be concluded that this primer pheromone acts via close range/contact chemoreception through the olfactory system. This is also supported by previous behavioral observations. Taken together, the findings presented in this thesis revealed structural changes in the synaptic architecture of the mushroom body calyx associated with division of labor. For the primer pheromone ethyl oleate, which modulates the transition from nursing to foraging, the results clearly showed that it is received via the olfactory system and presumably acts via this pathway. However, manipulation experiments did not indicate a direct effect of ethyl oleate on synaptic plasticity. At the molecular level, CaMKII is a prime candidate to mediate structural synaptic plasticity in the mushroom body calyx. Future combined structural and functional experiments are needed to finally link the activity of primer pheromones like ethyl oleate to the molecular pathways mediating behavioral and synaptic plasticity associated with division of labor in Apis mellifera. The here identified underlying processes will serve as excellent models for a general understanding of fundamental mechanisms promoting behavioral plasticity. N2 - Arbeitsteilung stellt einen der wesentlichen Faktoren dar, der für den ökologischen Erfolg von sozialen Insektengemeinschaften verantwortlich ist. In Staaten der Honigbiene, Apis mellifera, umfasst die Arbeitsteilung verschiedene Aufgaben für die fertilen Königinnen und Drohnen (Männchen) beziehungsweise die gewöhnlicherweise sterilen Arbeiterinnen. Arbeitsteilung findet aber auch in Form eines altersabhängigen Polyethismus zwischen den Arbeiterinnen selber statt. Dies hilft ihnen die Vielzahl verschiedener Aufgaben im Stock zu bewältigen. Nach dem Schlupf verbringen die Arbeiterinnen etwa drei Wochen mit verschiedenen Aufgaben im Stock, wie beispielsweise Brutpflege oder Reinigen und Bauen neuer Wabenzellen. Nach dieser Zeit wechseln die Arbeiterinnen zu Aufgaben außerhalb des Stocks und werden Nektar-, Pollen- oder Wassersammlerinnen. Durch diesen Verhaltensübergang sind die Arbeiterinnen mit einem massiven Wandel ihrer sensorischen Umwelt konfrontiert. Im speziellen werden nun visuelle Reize wichtig, aber auch die olfaktorische Welt der Arbeiterinnen ändert sich. Sammlerinnen zeigen ein komplett neues Verhaltensrepertoire das von Langstreckennavigation, basierend Landmarken und dem Polarisationsmuster des Himmels, bishin zu Lern- und Gedächtnisaufgaben im Zusammenhang mit dem Auffinden profitabler Futterquellen reicht. Allerdings ist Verhaltensreifung kein rein altersbedingtes internes Programm beispielsweise basierend auf einer Veränderung des Juvenilhormon-Titers. Externe Faktoren wie beispielsweise die Primer Pheromone Brutpheromone oder Königinnenpheromon können den Zeitpunkt des Übergangs modulieren. Hierdurch sind Staaten in der Lage ihre Arbeiterkräfte flexibel zwischen Innen- und Außendienst Aufgaben zu verschieben. Neben bestimmten physiologischen Veränderungen, die vor allem Drüsengewebe betreffen, benötigt der Übergang vom Innendienst zum Außendienst deutliche Anpassungen sensorischer und höherer Integrationszentren im Gehirn. Die Pilzkörper integrieren olfaktorische, visuelle und mechanosensorische Informationen. Sie spielen weiterhin eine wichtige Rolle für Lern- und Gedächtnisvorgänge. Es ist daher nicht überraschend, dass die Pilzkörper, im Speziellen deren Haupteingangsregion, der Kalyx, eine neuronale Volumensplastizität durchlaufen. Ähnlich wie die Verhaltensreifung, sind plastische Veränderungen im Pilzkörper mit dem Alter verbunden, werden aber auch durch modulierende Faktoren wie Aufgabe und Erfahrungen beeinflusst. In meiner Dissertation habe ich detailliert die neuronalen Prozesse analysiert, die der Volumensplastizität des Pilzkörpers zugrunde liegen. Immunhistologische Färbungen synaptischer Proteine kombiniert mit quantitativer 3D Konfokalmikroskopie zeigten, dass die Volumenszunahme des Pilzkörpers hauptsächlich durch dendritisches Wachstum des Kenyon-Zellen-Netzwerks bedingt ist. Dieses Auswachsen wurde begleitet durch Veränderungen der synaptischen Architektur des Kalyx des Pilzkörpers, welcher in Form synaptischer Komplexe, sogenannter Mikroglomeruli organisiert ist. Während der ersten Woche der Adultreifung blieb die Gesamtzahl der Mikroglomeruli konstant. Im folgenden Verhaltensübergang von Innendienstaufgaben zum Sammeln, wurden die Mikroglomeruli zurückgetrimmt, während das dendritische Kenyon-Zell-Netzwerk weiterhin wuchs. Als Ergebnis dieser Prozesse vergrößerte sich das Volumen des Kalyx des Pilzkörpers während die Gesamtzahl der Mikroglomeruli bei Sammlerinnen im Vergleich zu Inndienst Arbeiterinnen reduziert war. In der visuellen Unterregion (Kragen des Kalyx) wurde dieser Prozess induziert durch sensorische Stimuli, da der Beginn des Zurücktrimmens mit dem Zeitfenster zusammenfiel, in dem die Arbeiterinnen ihre ersten Orientierungsflüge starteten. Der hohe Analysegrad der zellulären und subzellulären Prozesse, die der strukturellen Plastizität des Kalyx des Pilzkörpers während der natürlichen Reifung zugrunde liegen, wird zukünftigen Untersuchungen der Verhaltensplastizität bei Honigbienen als Referenz dienen. Der Übergang zur Sammlerin ist nicht rein altersabhängig, sondern wird beispielsweise durch die Gegenwart von anderen Sammlerinnen moduliert. Ethyloleat, ein Primer Pheromone das nur auf Sammlerinnen auftritt, verzögert das Einsetzen des Sammelns von Ammenbienen. Durch das Einbringen zusätzlichen Ethyloleats in Dreifach Kohorten, testete ich, ob es einen direkten Einfluss auf die neuronale Plastizität der visuellen Eingangsregion des Pilzkörper Kalyx hat. Da durch die Pheromon Behandlung kein eindeutiger Verhaltensphänotyp (verzögerter Sammelbeginn) induziert werden konnte, war es nicht möglich einen direkten Zusammenhang zwischen der verstärkten Ethyloleat-Exposition und der neuronalen Plastizität des Kalyx des Pilzkörpers herzustellen. Dennoch bestätigten die Beobachtungen der synaptischen Reifung meine generellen Daten zu den natürlichen Reifungsprozessen im Kalyx des Pilzkörper. Basierend auf dem Ergebnis, dass dendritische Plastizität einen wesentlichen Anteil an der arbeitsteilungsbezogenen neuronalen Plastizität des Kalyx des Pilzkörper hat, stellte sich die Frage, welche Proteine daran beteiligt sein könnten diese Effekte zu vermitteln. Von der Calcium/Calmodulin abhängigen Kinase II (CaMKII) ist bekannt, dass sie speziell bei Säugetieren - aber bei Insekten (Drosophila, Schabe) - daran beteiligt ist, Lern- und Gedächtnisvorgänge, wie die Langzeitpotenzierung, zu ermöglichen. Neben präsynaptischen Effekten, wurde gezeigt, dass dieses Protein direkt mit Elementen des postsynaptischen Cytoskeletts interagieren kann. Als Teil meiner Dissertation habe ich das Vorkommen und die Verteilung der CaMKII analysiert. Ich konnte es hochkonzentriert in einer definierten Subpopulation der intrinsischen Pilzkörper-Neurone, den „nicht kompakten“ Kenyon Zellen, nachweisen. Das dendritische Netzwerk dieser Population verzweigt sich in zwei Kalyx Subregionen: eine olfaktorisch innervierte – die Lippe – und den Kragen, welcher optischen Eingang erfährt. Dieses Verteilungsmuster ändert sich nicht mit dem Alter oder der Aufgabe der Biene. Die hohe Konzentration von CaMKII in den dendritsichen Dornenfortsätzen und die gleichzeitige räumliche Überlappung mit f-Aktin, weisen darauf hin, dass CaMKII eine Schüsselrolle bei der Induzierung struktureller neuronaler Plastizität im Zusammenhang mit Lernen und Gedächtnisbildung und/oder Arbeitsteilung bezogener Verhaltensübergänge, zukommen könnte. Interessanterweise wies der Basalring, eine weitere Subregion des Kalyx des Pilzkörpers die dafür bekannt ist kombinierten visuellen und olfaktorischen Eingang zu erhalten und fast ausschließlich durch die „inneren kompakten“ Kenyon Zellen gebildet wird, keine Immunreaktivität auf. Dies deutet auf Unterschiede in den molekularen Mechanismen die plastische Veränderungen in den entsprechenden Kenyon zellen kontrollieren. Wie wird die zeitliche Abstimmung der Verhaltensplastizität und neuronalen Plastizität reguliert? Für das in hohen Konzentration auf Sammlerinnen vorkommende Primer Pheromon Ethyloelat konnte durch dessen Anwendung in erhöhten Konzentrationen gezeigt werden, dass es die Verhaltensreifung durch Verzögerung des Sammelbeginns beeinflussen kann. Wie aber wird Ethyloleat transferiert und wie verschiebt es die Arbeitskräfteverteilung zwischen Innen- und Außendienst Aufgaben? Frühere Arbeiten zeigten die höchste Konzentration von Ethyloleat im Sozialmagen der Sammlerinnen und schlugen vor, dass es innerhalb der Kolonie über Trophollaxis transferiert und kommuniziert wird. Die Ergebnisse meiner Arbeit zeigten aber eindeutig, dass Ethyloleat nicht im Inhalt des Sozialmagen und auch nicht im Regurgitat, sondern nur im Gewebe des Sozialmagens vorhanden ist. Da zusätzlich die zweithöchste Konzentration von Ethyloleat auf der Oberfläche der Kutikula von Sammlerinnen gemessen wurde, wurde Trophollaxis als Übertragungsmodus ausgeschlossen. Neurophysiologische Messungen an der Antenne (Elektroantennografie), dem ersten olfaktorischen Neuropil (Calcium Imaging der Aktivität des Antennallobus), zeigten, dass Ethyloleat als olfaktorischer Reiz wahrgenommen und prozessiert wird. Appetitive olfaktorische Konditionierung mit Hilfe des Rüsselstreckreflexes wurde als Verhaltensparadigma verwendet um zu zeigen, dass Ethyloleat mit einer Zuckerbelohnung assoziiert werden kann. Dies deutet darauf hin, dass Arbeiterinnen in der Lage sind, die Anwesenheit dieses Pheromons zu perzipieren, zu erlernen und sich auch daran zu erinnern. Da Ethyloleat nur durch Erwärmung als Stimulus präsentiert werden konnte, lässt sich schlussfolgern, dass es über Nahbereichs/Kontakt-Chemorezeption durch das olfaktorische System wahrgenommen wird. Dies wird auch durch frühere Verhaltensbeobachtungen unterstützt. Zusammengenommen, zeigen die in dieser Dissertation präsentierten Ergebnisse strukturelle Veränderungen in der synaptischen Architektur des Kalyx des Pilzkörpers in Zusammenhang mit Arbeitsteilung. Für das Primer Pheromone Ethyloleat, welches den Übergang von Ammendiensten zum Sammeln moduliert, zeigten die Ergebnisse eindeutig, dass es über das olfaktorische System wahrgenommen wird und vermutlich auch über diesen Weg seine Wirkung vermittelt. Dennoch konnten Manipulationsexperimente keine direkte Verbindung zwischen Ethyloleat und der synaptischen Reifung herstellen. Auf molekularer Ebene stellt CaMKII einen Topkandidaten dar, der strukturelle synaptische Plastizität im Kalyx des Pilzkörpers vermitteln kann. Eine Kombination struktureller und funktioneller Experimente ist der nächste logische Schritt um schlussendlich die Verbindung zwischen der Aktivität von Primer Pheromonen (wie Ethyloleat) und molekularen Signalwegen, die Verhaltensplastizität und synaptische Plastizität im Zusammenhang mit der Arbeitsteilung von Apis mellifera vermitteln, herzustellen. Die hierbei identifizierten zugrundeliegenden Prozesse werden als exzellente Modelle für ein generelles Verständnis der fundamentalen Mechanismen welche Verhaltensplastizität vermitteln, dienen. KW - Biene KW - Neuronale Plastizität KW - Pheromon KW - Neuronal plasticity KW - Honeybee KW - Pheromon communication KW - CaMKII KW - Division of labor KW - Neuronale Plastizität KW - Honigbiene KW - Pheromon Kommunikation KW - Arbeitsteilung Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-111611 ER - TY - THES A1 - Weidenmüller, Anja T1 - From individual behavior to collective structure T1 - Von individuellem Verhalten zu kollektiven Strukturen N2 - The social organization of insect colonies has long fascinated naturalists. One of the main features of colony organization is division of labor, whereby each member of the colony specializes in a subset of all tasks required for successful group functioning. The most striking aspect of division of labor is its plasticity: workers switch between tasks in response to external challenges and internal perturbations. The mechanisms underlying flexible division of labor are far from being understood. In order to comprehend how the behavior of individuals gives rise to flexible collective behavior, several questions need to be addressed: We need to know how individuals acquire information about their colony's current demand situation; how they then adjust their behavior according; and which mechanisms integrate dozens or thousands of insect into a higher-order unit. With these questions in mind I have examined two examples of collective and flexible behavior in social bees. First, I addressed the question how a honey bee colony controls its pollen collection. Pollen foraging in honey bees is precisely organized and carefully regulated according to the colony's needs. How this is achieved is unclear. I investigated how foragers acquire information about their colony's pollen need and how they then adjust their behavior. A detailed documentation of pollen foragers in the hive under different pollen need conditions revealed that individual foragers modulate their in-hive working tempo according to the actual pollen need of the colony: Pollen foragers slowed down and stayed in the hive longer when pollen need was low and spent less time in the hive between foraging trips when pollen need of their colony was high. The number of cells inspected before foragers unloaded their pollen load did not change and thus presumably did not serve as cue to pollen need. In contrast, the trophallactic experience of pollen foragers changed with pollen need conditions: trophallactic contacts were shorter when pollen need was high and the number and probability of having short trophallactic contacts increased when pollen need increased. Thus, my results have provided support for the hypothesis that trophallactic experience is one of the various information pathways used by pollen foragers to assess their colony's pollen need. The second example of collective behavior I have examined in this thesis is the control of nest climate in bumble bee colonies, a system differing from pollen collection in honey bees in that information about task need (nest climate parameters) is directly available to all workers. I have shown that an increase in CO2 concentration and temperature level elicits a fanning response whereas an increase in relative humidity does not. The fanning response to temperature and CO2 was graded; the number of fanning bees increased with stimulus intensity. Thus, my study has evidenced flexible colony level control of temperature and CO2. Further, I have shown that the proportion of total work force a colony invests into nest ventilation does not change with colony size. However, the dynamic of the colony response changes: larger colonies show a faster response to perturbations of their colony environment than smaller colonies. Thus, my study has revealed a size-dependent change in the flexible colony behavior underlying homeostasis. I have shown that the colony response to perturbations in nest climate is constituted by workers who differ in responsiveness. Following a brief review of current ideas and models of self-organization and response thresholds in insect colonies, I have presented the first detailed investigation of interindividual variability in the responsiveness of all workers involved in a collective behavior. My study has revealed that bumble bee workers evidence consistent responses to certain stimulus levels and differ in their response thresholds. Some consistently respond to low stimulus intensities, others consistently respond to high stimulus intensities. Workers are stimulus specialists rather than task specialists. Further, I have demonstrated that workers of a colony differ in two other parameters of responsiveness: response probability and fanning activity. Response threshold, response probability and fanning activity are independent parameters of individual behavior. Besides demonstrating and quantifying interindividual variability, my study has provided empirical support for the idea of specialization through reinforcement. Response thresholds of fanning bees decreased over successive trials. I have discussed the importance of interindividual variability for specialization and the collective control of nest climate and present a general discussion of self-organization and selection. This study contributes to our understanding of individual behavior and collective structure in social insects. A fascinating picture of social organization is beginning to emerge. In place of centralized systems of communication and information transmission, insect societies frequently employ mechanisms based upon self-organization. Self-organization promises to be an important and unifying principle in physical, chemical and biological systems. N2 - Ein besonderes Merkmal sozialer Insekten ist die Arbeitsteilung. Die Mitglieder einer Kolonie führen jeweils unterschiedliche Arbeiten aus und wechseln, je nach Bedarfslage der Kolonie, flexibel zwischen den verschiedenen Tätigkeiten. Die Mechanismen dieser flexiblen Arbeitsteilung sind bislang weitgehend unverstanden. Wie erfahren einzelne Arbeiterinnen welche Tätigkeiten gerade notwendig sind? Nach welchen Regeln ändern sie ihr Verhalten, wenn sich die Anforderungen an die Kolonie ändern? Wie wird das Verhalten vieler Einzelindividuen so koordiniert, daß die Kolonie als Ganzes sinnvoll auf eine sich verändernde Umwelt reagieren kann? In der vorliegenden Arbeit bin ich diesen Fragen an zwei unterschiedlichen Systemen nachgegangen. Im ersten Kapitel dieser Arbeit untersuchte ich die Regulation des Pollensammelns bei Honigbienen. Pollen ist für Honigbienen eine wichtige Proteinquelle zur Aufzucht der Brut. Sowohl die Menge an Brut als auch die bereits im Stock vorhanden Menge an Pollen beeinflußt die Sammelaktivität. Bislang ist unklar, wie die Sammelbienen Information über den Pollenbedarf ihrer Kolonie erhalten und wie sie ihr Verhalten dementsprechend ändern. Meine Versuche zeigten, daß Pollensammlerinnen ihr Arbeitstempo der aktuellen Bedarfslage anpassen: Ist der Pollenbedarf der Kolonie hoch, verbringen sie wenig Zeit im Stock, ist ausreichend Pollen vorhanden, gehen sie ihrer Sammeltätigkeit langsamer nach. Während ihres Aufenthalts im Stock haben die Sammlerinnen eine Vielzahl trophallaktischer Kontakte mit anderen Bienen. Die Anzahl solcher Kontakte änderte sich mit dem Pollenbedarf der Kolonie: Bei hohem Pollenbedarf sind die trophallaktischen Kontakte kürzer und die Anzahl sehr kurzer Kontakte hoch. Diese Ergebnisse unterstützen die Hypothese, daß Änderungen in der trophallaktischen Erfahrung eine wichtige Informationsquelle über den aktuellen Pollenbedarf einer Kolonie darstellen. Das zweite Beispiel flexibler Arbeitsteilung, welches ich in dieser Arbeit untersucht habe, ist die Regulation des Nestklimas in Hummelkolonien. Dieses System unterscheidet sich von dem oben dargestellten grundlegend, da Information über Änderungen im Bedarf an Arbeitskraft jedem Koloniemitglied zugänglich ist. Jedes Koloniemitglied im Nest kann direkt erfahren wie sich das Nestklima ändert. Ich konnte zeigen, daß Hummelkolonien auf einen Temperaturanstieg und eine Zunahme der Kohlendioxidkonzentration im Nest mit Ventilationsverhalten reagieren. Einzelne Hummeln fächeln dabei mit ihren Flügeln und sorgen so für Evaporationskühlung bzw. eine verstärkte Belüftung des Nestes. Erhöhte Luftfeuchtigkeit löste diese Reaktion nicht aus. Die Anzahl fächelnder Hummeln war abhängig von den Temperatur/CO2 Werten, die Kolonie reagierte fein abgestimmt auf die aktuellen Bedingungen. Unabhängig von ihrer Größe investierten die untersuchten Kolonien einen bestimmten Anteil ihrer Arbeiterinnen in die Ventilation des Nestes. Große Kolonien unterschieden sich jedoch von kleinen Kolonien in ihrer Antwortgeschwindigkeit: Große Kolonien antworten schneller auf einen Temperatur / CO2 Anstieg als kleine. Die flexible und fein abgestimmte Kolonieantwort auf Veränderungen im Nestklima basiert auf dem Verhalten vieler Einzelindividuen. Im dritten Kapitel dieser Arbeit stellte ich aktuelle Ideen und Hypothesen zu Selbstorganisation und dem Einfluß interindividueller Variabilität auf Kolonieverhalten dar. Regulation des Nestklimas in Hummelkolonien ist ein ideales System um interindividuelle Variabilität und ihre Auswirkungen zu untersuchen. Ich konnte zum ersten Mal Unterschiede im Antwortverhalten aller an einem kollektiven Verhalten beteiligten Koloniemitglieder quantifizieren. Neben Unterschieden in Antwortschwellen, die in der Literatur zwar viel diskutiert, aber noch nie schlüssig nachgewiesen wurden, konnte ich zeigen, daß sich Arbeiterinnen einer Kolonie in zwei weiteren Parametern unterscheiden: Die Wahrscheinlichkeit auf einen Stimulus zu reagieren und die Dauer, mit der die Arbeiterinnen das Verhalten ausführen (Aktivität) ist zwischen Individuen unterschiedlich. Diese drei Parameter (Reaktionsschwelle, Antwortwahrscheinlichkeit und Aktivität) sind vermutlich unabhängige Parameter individuellen Verhaltens. Neben diesen interindividuellen Unterschieden konnte ich nachweisen, daß sich die Antwortschwellen verändern, je häufiger eine Hummel fächelt: Arbeiterinnen reagieren von Mal zu Mal auf niedrigere Stimulusintensitäten. Diese Ergebnisse sind für unser Verständnis von Arbeitsteilung und Spezialisierung bei sozialen Insekten von besonderer Bedeutung. In dieser Arbeit habe ich sowohl das Verhalten individueller Arbeiterinnen als auch die daraus resultierende kollektive Antwort der Kolonie untersucht. Es wird zunehmend deutlicher, daß dem faszinierenden Verhalten sozialer Insekten häufig nicht zentrale Informationsverarbeitung sondern Selbstorganisation zugrunde liegt. KW - Hummeln KW - Soziale Insekten KW - Thermoregulation KW - Arbeitsteilung KW - Bienenstaat KW - Pollen KW - Sammeln KW - Arbeitsteilung KW - Pollen KW - Nestklima KW - Thermoregultion KW - CO2 KW - Antwortschwellen KW - Selbstorgansation KW - social organization KW - division of labor KW - pollen foraging KW - nest climate KW - thermoregulation KW - CO2 KW - response threshold models KW - self-organization Y1 - 2001 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-2448 ER - TY - THES A1 - Spaethe, Johannes T1 - Sensory Ecology of Foraging in Bumblebees T1 - Sensorische Ökologie bei Sammelnden Hummeln N2 - Pollinating insects exhibit a complex behavior while foraging for nectar and pollen. Many studies have focused on ultimate mechanisms of this behavior, however, the sensory-perceptual processes that constrain such behavior have rarely been considered. In the present study I used bumblebees (Bombus terrestris), an important pollinating insect, to investigate possible sensory constraints on foraging behavior. Additionally, I survey inter-individual variation in the sensory capabilities and behavior of bumblebees caused by the pronounced size polymorphism among members of a single colony. In the first chapter I have focused on the sensory-perceptual processes that constrain the search for flowers. I measured search time for artificial flowers of various sizes and colors, a key variable defining the value of a prey type in optimal foraging theory. When flowers were large, search times correlate well with the color contrast of the targets with their green foliage-type background, as predicted by a model of color opponent coding using inputs from the bee's UV, blue, and green receptors. Targets which made poor color contrast with their backdrop, such as white, UV-reflecting ones, or red flowers, take longest to detect, even though brightness contrast with the background is pronounced. When searching for small targets, bumblebees change their strategy in several ways. They fly significantly slower and closer to the ground, so increasing the minimum detectable area subtended by an object on the ground. In addition they use a different neuronal channel for flower detection: instead of color contrast, they now employ only the green receptor signal for detection. I related these findings to temporal and spatial limitations of different neuronal channels involved in stimulus detection and recognition. Bumblebees do not only possess species-specific sensory capacities but they also exhibit inter-individual differences due to size. Therefore, in the next two chapters I have examined size-related effects on the visual and olfactory system of Bombus terrestris. Chapter two deals with the effect of scaling on eye architecture and spatial resolving power of workers. Foraging efficiency in bees is strongly affected by proficiency of detecting flowers. Both floral display size and bee spatial vision limit flower detection. In chapter one I have shown that search times for flowers strongly increases with decreasing floral display size. The second factor, bee spatial vision, is mainly limited by two properties of compound eyes: (a) the interommatidial angle Çå and (b) the ommatidial acceptance angle Çá. When a pollinator strives to increase the resolving power of its eyes, it is forced to increase both features simultaneously. Bumblebees show a large variation in body size. I found that larger workers with larger eyes possess more ommatidia and larger facet diameters. Large workers with twice the size of small workers (thorax width) have about 50 per cent more ommatidia, and a 1.5 fold enlarged facet diameter. In a behavioral test, large and small workers were trained to detect the presence of a colored stimulus in a Y-maze apparatus. The stimulus was associated with a sucrose reward and was presented in one arm, the other arm contained neither stimulus nor reward. The minimum visual angle a bee is able to detect was estimated by testing the bee at different stimuli sizes subtending angles between 30° and 3° on the bee’s eye. Minimum visual detection angles range from 3.4° to 7.0° among tested workers. Larger bumblebees are able to detect objects subtending smaller visual angles, i.e. they are able to detect smaller objects than their small conspecifics. Thus morphological and behavioral findings indicate an improved visual system in larger bees. Beside vision, olfaction is the most important sensory modality while foraging in bees. Bumblebees utilize species-specific odors for detecting and identifying nectar and pollen rich flowers. In chapter three I have investigated the olfactory system of Bombus terrestris and the effect of scaling on antennal olfactory sensilla and the first olfactory neuropil in the bumblebee brain, the antennal lobes. I found that the pronounced size polymorphism exhibited by bumblebees also effects their olfactory system. Sensilla number (I measured the most common olfactory sensilla type, s. placodea), sensilla density, volume of antennal lobe neuropil and volume of single identified glomeruli correlate significantly with worker’s size. The enlarged volume of the first olfactory neuropil in large individuals is caused by an increase in glomeruli volume and coarse neuropil volume. Additionally, beside an overall increase of brain volume with scaling I found that the olfactory neuropil increases disproportionately compared to a higher order neuropil, the central body. The data predict a higher odor sensitivity in larger bumblebee workers. In the last chapter I have addressed the question if scaling alters foraging behavior and rate in freely foraging bumblebees. I observed two freely foraging B. terrestris colonies and measured i) trip number, ii) trip time, iii) proportion of nectar trips, and iv) nectar foraging rate of different sized foragers. In all observation periods large foragers exhibit a significantly higher foraging rate than small foragers. None of the other three foraging parameters is affected by workers’ size. Thus, large foragers contribute disproportionately more to the current nectar influx of their colony. To summarize, this study shows that understanding the mechanisms of visual information processing and additionally comprising inter-individual differences of sensory capabilities is crucial to interpret foraging behavior of bees. N2 - Blüten bestäubende Insekten zeigen während ihrer Suche nach Nektar und Pollen ein komplexes Sammelverhalten. Bisher wurde eine Vielzahl von Studien durchgeführt um die ultimaten Mechanismen dieses Verhaltens aufzuklären; jedoch die diesem Verhalten zugrundeliegenden sensorischen Leistungen und Limitierungen wurden dabei nur selten berücksichtigt. In der vorliegenden Arbeit habe ich das Sammelverhalten von Hummeln (Bombus terrestris) und potentielle, das Verhalten limitierende sensorischen Zwänge untersucht. Zusätzlich konnte ich Unterschiede im sensorischen System individueller Hummeln aufdecken, die durch den ausgeprägten Größenpolymorphismus dieser Tiere verursacht werden. Im ersten Kapitel habe ich die visuellen Prozesse, die die Suche nach Blüten limitieren betrachtet. Hierfür habe ich die Suchzeiten von Hummeln für künstliche Blüten verschiedener Größe und Farbe in einer Flugarena bestimmt. Bei großen Blüten korrelieren die gemessenen Suchzeiten mit dem Farbkontrast zwischen der Blüte und dem blatt-grünen Hintergrund. Bei Blüten mit geringem Farbkontrast benötigen die Tiere am längsten um sie zu detektieren, obwohl die Blüten einen starken Helligkeitskontrast aufweisen. Diese Ergebnisse stimmen mit den Vorhersagen eines Farbseh-Modells überein, das die Information von den UV-, Blau- und Grünrezeptoren der Hummel verrechnet. Bei der Suche nach kleinen Blüten allerdings ändern die Hummeln ihre Strategie. Sie fliegen jetzt signifikant langsamer und näher am Untergrund um dadurch die Wahrscheinlichkeit zu erhöhen, die Blüten zu detektieren. Zusätzlich benutzen die Hummeln einen anderen neuronalen Kanal für die Blütenerkennung: anstatt des Farbkontrastes nutzen sie jetzt nur noch die Informationen des Grünrezeptors, d.h. den Kontrast zwischen Blüte und Hintergrund, der durch den Grünrezeptor wahrgenommen wird. Ich konnte zeigen, dass der Wechsel zwischen den beiden neuronalen Kanälen durch zeitliche und räumliche Eigenschaften dieser Kanäle verursacht wird. Die sensorischen Leistungen einer Hummel sind nicht nur durch ihre Artzugehörigkeit festgelegt, sondern weisen beträchtliche Unterschiede zwischen großen und kleinen Tieren auf. In den nächsten zwei Kapiteln habe ich deshalb Größeneffekte auf das visuelle und olfaktorische System von Bombus terrestris untersucht. Im zweiten Kapitel beschäftige ich mich mit den Auswirkungen des Größenpolymorphismus auf die Augenmorphologie und das räumliche Auflösungsvermögen von Hummelarbeiterinnen. Das räumliche Auflösungsvermögen des Hummelauges wird hauptsächlich von zwei Faktoren bestimmt: (a) dem Divergenzwinkel zwischen zwei Ommatidienachsen Çå, und (b) dem Öffnungswinkel eines Ommatidiums Çá. Beide Faktoren sind von der Zahl und dem Durchmesser der vorhandenen Ommatidien in einem Komplexauge beeinflußt. Ich konnte nachweisen, daß sich große und kleine Hummeln stark in der Zahl und dem Durchmesser ihrer Ommatidien unterscheiden. Große Hummeln mit der doppelten Thoraxbreite im Vergleich zu ihren kleinen Nestgenossinnen weisen 50 Prozent mehr Ommatidien und einen 1.5-fachen Linsendurchmesser auf. In einem Verhaltensversuch habe ich den kleinsten Sehwinkel, mit dem ein farbiges Objekt von einer Hummel noch erkannt werden kann bestimmt. Auch hier zeigte sich ein starker Größeneffekt. Um so größer die Hummel ist, um so kleiner ist der Sehwinkel unter dem sie ein Objekt gerade noch wahrnehmen kann. Sowohl morphologische Daten als auch Verhaltensdaten zeigen deutlich, dass größere Hummeln ein besseres visuelles System besitzen. Neben dem Sehen ist der Duft die wichtigste sensorische Modalität, die Hummeln während des Sammelns nutzen. Im nächsten Kapitel habe ich mich daher mit möglichen Größeneffekten auf das olfaktorische System beschäftigt. Ich konnte zeigen, daß die Zahl der wichtigsten olfaktorischen Sensillen auf der Antenne, Sensilla placodea, mit zunehmender Körpergröße ansteigt. Das erste olfaktorische Neuropil im Gehirn, die Antennalloben, skalieren ebenfalls mit der Körpergröße. Die Volumenzunahme des Neuropils ist auf eine Volumenzunahme der einzelnen Glomeruli und der Zahl der Interneurone zurückzuführen. Außerdem konnte ich nachweisen, daß das Volumen des olfaktorische Neuropils im Vergleich zu zentralen Hirnregionen überproportional zunimmt. Die Ergebnisse lassen eine höhere Sensitivität des olfaktorischen Systems bei großen Hummeln erwarten. Im letzten Kapitel habe ich mögliche Auswirkung der Körpergröße auf das Sammelverhalten von Hummeln unter natürlichen Bedingungen untersucht. Ein überlegenes visuelles und olfaktorisches System bei größeren Hummeln läßt eine bessere Blütenerkennung, und damit auch eine höhere Sammeleffizienz vermuten. Hierfür habe ich Nektarsammelraten von verschieden großen Tieren im Freiland bestimmt. Größere Tiere zeigen dabei eine höhere Sammelrate (Nektareintrag pro Zeit) im Vergleich zu ihren kleineren Nestgenossinnen. Größere Tiere tragen damit überproportional zum täglichen Nektarinflux einer Kolonie bei. Die Ergebnisse dieser Arbeit zeigen deutlich, dass das Sammelverhalten bei Blüten besuchenden Insekten nur dann richtig verstanden und interpretiert werden kann, wenn man die dem Sammeln zugrundeliegenden sensorischen Prozesse und mögliche individuelle Modifikationen kennt und mit einbezieht. KW - Hummeln KW - Nahrungserwerb KW - Wahrnehmung KW - Hummel KW - Bombus terrestris KW - Sammelverhalten KW - Farbsehen KW - Olfaktorik KW - Größenvariation KW - Arbeitsteilung KW - Bumblebees KW - Bombus terrestris KW - Foraging KW - Behavior KW - Color Vision KW - Olfaction KW - Scaling KW - Division of Labor Y1 - 2001 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-1179692 ER - TY - THES A1 - Kelber, Christina T1 - The olfactory system of leafcutting ants: neuroanatomy and the correlation to social organization T1 - Das olfaktorische System der Blattschneiderameisen: Neuroanatomie und Korrelation zur sozialen Organisation N2 - In leaf-cutting ants (genera Atta and Acromyrmex), the worker caste exhibits a pronounced size-polymorphism, and division of labor is largely dependent on worker size (alloethism). Behavioral studies have shown a rich diversity of olfactory-guided behaviors, and the olfactory system seems to be highly developed and very sensitive. To allow fine-tuned behavioral responses to different tasks, adaptations within the olfactory system of different sized workers are expected. In a recent study, two different phenotypes of the antennal lobe of Atta vollenweideri workers were found: MG- and RG-phenotype (with and without a macroglomerulus, MG). The existence of the macroglomerulus is correlated to the body size of workers, with small workers showing the RG-phenotype and large workers showing the MG-phenotype. In the MG, the information about the releaser component of the trail-pheromone is processed. In the first part of my PhD-project, I focus on quantifying behavioral differences between different sized workers in Atta vollenweideri. The study analyzes the trail following behavior; which can be generally performed by all workers. An artificial trail consisting of the releaser component of the trail-pheromone in decreasing concentration was used to test the trail-following performance of individual workers. The trail-following performance of the polymorphic workers is depended of the existence of the MG in the antennal lobe. Workers possessing the MG-phenotype were significantly better in following a decreasing trail then workers showing the RG-phenotype. In the second part I address the question if there are more structural differences, besides the MG, in the olfactory system of different sized workers. Therefore I analyze whether the glomerular numbers are related to worker size. The antennal lobes of small workers contain ~390 glomeruli (low-number; LN-phenotype), and in large workers I found a substantially higher number of ~440 glomeruli (high-number; HN-phenotype). All LN-phenotype workers and some of the small HN-phenotype workers do not possess an MG (LN-RG-phenotype and HN-RG-phenotype) at all, whereas the remaining majority of HN-phenotype workers do possess an MG (HN-MG-phenotype). Mass-stainings of antennal olfactory receptor neurons revealed that the sensory tracts divide the antennal lobe into six clusters of glomeruli (T1-T6). In the T4-cluster ~50 glomeruli are missing in the LN-phenotype workers. Selective staining of single sensilla and their associated receptor neurons showed that T4-glomeruli are innervated by receptor neurons from the main type of olfactory sensilla, the Sensilla trichodea curvata which are also projecting to glomeruli in all other clusters. The other type of olfactory sensilla, the Sensilla basiconica, exclusively innervates T6-glomeruli. Quantitative analyses revealed a correlation between the number of Sensilla basiconica and the volume of T6 glomeruli in different sized workers. The results of both behavioral and neuroanatomical studies in Atta vollenweideri suggest that developmental plasticity of antennal-lobe phenotypes promotes differences in olfactory-guided behavior which may underlie task specialization within ant colonies. The last part of my project focuses on the evolutionary origin of the macroglomerulus and the number of glomeruli in the antennal lobe. I compared the number, volumes and position of the glomeruli of the antennal lobe of 25 different species from all three major Attini groups (lower, higher and leaf-cutting Attini). The antennal lobes of all investigated Attini comprise a high number of glomeruli (257-630). The highest number was found in Apterostigma cf. mayri. This species is at a basal position within the Attini phylogeny, and a high number of glomeruli might have been advantageous in the evolution of the advanced olfactory systems of this Taxa. The macroglomerulus can be found in all investigated leaf-cutting Attini, but in none of the lower and higher Attini species. It is found only in large workers, and is located close to the entrance of the antennal nerve in all investigated species. The results indicate that the presence of a macroglomerulus in large workers of leaf-cutting Attini is a derived overexpression of a trait in the polymorphic leaf-cutting species. It presumably represents an olfactory adaptation to elaborate foraging and mass recruitment systems, and adds to the complexity of division of labor and social organization known for this group. N2 - Die Arbeiterinnenkaste der Blattschneideameisen zeigt einen ausgeprägten Größenpolymorphismus. Man findet hier einen Alloethismus; unterschiedlich große Arbeiterinnen führen verschiedene Arbeiten im Stock durch. Verschiedene Verhaltensversuche haben gezeigt, dass viele Verhaltensweisen der Arbeiterinnen olfaktorisch gesteuert werden und dass das olfaktorische System hoch entwickelt und sehr sensitiv ist. Es ist wahrscheinlich, dass sich im olfaktorischen System verschieden großer Arbeiterinnen Anpassungen finden lassen, die gut abgestimmte Verhaltensantworten auf die verschiedenen Aufgaben der Tiere ermöglichen. Und tatsächlich zeigt eine aktuelle Studie, dass zwei verschiedene Phänotypen des Antennallobus der Arbeiterin bei Atta vollenweideri existieren, der MG- und der RG-Phänotyp (mit oder ohne Makroglomerulus, MG). Die Existenz des Makroglomerulus kann mit der Körpergröße der Tiere korreliert werden: bei kleinen Arbeiterinnen findet man den RG-Phänotyp, bei großen den MG-Phänotyp. Im Makroglomerulus wird die olfaktorische Information über den verhaltensauslösenden Bestandteil des Spurpheromons verarbeitet. Im ersten Tel meiner Doktorarbeit versuche ich, Verhaltensunterschiede verschieden großer Atta vollenweideri Arbeiterinnen zu quantifizieren. Dazu konzentriere ich mich auf das Spurfolgeverhalten, dass bei Arbeiterinnen jeder Größe beobachtet werden kann. Um die Spurfolgeleistung einzelner Arbeiterinnen zu testen, wurde eine künstlich gelegte Spur mit abnehmender Konzentration des verhaltensauslösenden Bestandteils des Spurpheromons verwendet. Die Spurfolgeleistung der Arbeiterinnen hängt von der Existenz des Makroglomerulus im Antennallobus ab. Im zweiten Teil meiner Doktorarbeit untersuche ich die Neuroanatomie des olfaktorischen Systems bei verschieden großen Atta vollenweideri Arbeiterinnen auf eventuelle weitere anatomische Unterschiede neben dem Makroglomerulus – im Besonderen ob die Anzahl an Glomeruli bei verschieden großen Tieren unterschiedlich ist. Die Antennalloben kleiner Arbeiterinnen beinhalten cirka 390 Glomeruli (geringe Anzahl, LN-Phänotyp), die Antennalloben großer Arbeiterinnen dagegen cirka 440 Glomeruli (hohe Anzahl, HN-Phänotyp). Alle Arbeiterinnen mit dem LN-Phänotyp und einige mit dem HN-Phänotyp besitzen keinen Makroglomerulus (LN-RG-Phänotyp und HN-RG-Phänotyp). Die meisten Tiere mit HN-Phänotyp besitzen jedoch einen Makroglomerulus (HN-MG-Phänotyp). Massenfärbungen der olfaktorischen Rezeptorneuron-Axone zeigen, dass der Antennennerv sich in sechs Trakte teilt und so die Glomeruli in sechs verschiedene Glomerulicluster unterteilt werden können (T1-T6). Bei den Arbeiterinnen mit LN-Phänotyp fehlen cirka 50 Glomeruli im T4-Cluster. Einzelsensillenfärbungen zeigen, dass die Rezeptorneuronen der olfaktorischen Sensilla trichodea curvata alle sechs Cluster, also auch das T4-Cluster innervieren. Ein weiterer Sensillentyp, die Sensilla basiconica, innerviert ausschließlich Glomeruli im T6-Cluster. Quantitative Analysen ergeben eine Korrelation zwischen der Anzahl der Sensilla basiconica auf der Arbeiterinnenantenne und des durchschnittlichen Volumens der T6-Glomeruli bei verschieden großen Tieren. Die Ergebnisse der Verhaltensversuche und der neuroanatomischen Studien könnten darauf hinweisen, dass Unterschiede im Verhalten auf olfaktorische Reize möglicherweise durch die Entwicklungsplastizität der Antenallobus-Phänotypen ausgelöst werden. Dies könnte innerhalb der Kolonie die Grundlage der Spezialisierung von Arbeiterinnen auf bestimmte Arbeiten sein. Den letzten Teil meiner Doktorarbeit nimmt eine Untersuchung über den evolutionären Ursprung des Makroglomerulus und der Anzahl der Glomeruli im Antennallobus ein. Dazu verglich ich in den Antennalloben 25 verschiedener Arten aus den drei Attini-Gruppen (basale, höhere und blattschneidende Attini) die Anzahl, das Volumen und die Position der Glomeruli. Die Antennalloben aller untersuchten Arten bestehen aus sehr vielen Glomeruli (257-630). Der Makroglomerulus findet sich in allen untersuchten blattschneidenden Attini-Arten, aber nie in den untersuchten basalen und höheren Attini-Arten. Er findet sich nur bei größeren Arbeiterinnen und befindet sich immer in der Nähe des Antennennerveingangs. Dies bedeutet, dass es sich bei der Existenz des Makroglomerulus in den großen Blattschneidearbeiterinnen um eine abgeleitete Überexpression eines Merkmals innerhalb der polymorphen blattschneidenden Attini-Arten handelt. Der Makroglomerulus ist wahrscheinlich eine olfaktorische Anpassung an das hoch entwickelte Fouragier- und Rekrutiersystem dieser Arten. Er ist ein Baustein der komplexen Arbeitsteilung und der komplexen sozialen Organisation, die für die Arten dieser Gruppe bekannt sind. KW - Gehirn KW - Polymorphismus KW - Arbeitsteilung KW - Geruchswahrnehmung KW - Antennallobus KW - Glomeruli KW - olfaktorische Rezeptorneurone KW - Brain KW - polymorphism KW - antennal lobe KW - glomeruli KW - dvision of labor Y1 - 2009 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-47769 ER -