TY - JOUR A1 - Lorenzin, Francesca A1 - Benary, Uwe A1 - Baluapuri, Apoorva A1 - Walz, Susanne A1 - Jung, Lisa Anna A1 - von Eyss, Björn A1 - Kisker, Caroline A1 - Wolf, Jana A1 - Eilers, Martin A1 - Wolf, Elmar T1 - Different promoter affinities account for specificity in MYC-dependent gene regulation JF - eLife N2 - Enhanced expression of the MYC transcription factor is observed in the majority of tumors. Two seemingly conflicting models have been proposed for its function: one proposes that MYC enhances expression of all genes, while the other model suggests gene-specific regulation. Here, we have explored the hypothesis that specific gene expression profiles arise since promoters differ in affinity for MYC and high-affinity promoters are fully occupied by physiological levels of MYC. We determined cellular MYC levels and used RNA- and ChIP-sequencing to correlate promoter occupancy with gene expression at different concentrations of MYC. Mathematical modeling showed that binding affinities for interactions of MYC with DNA and with core promoter-bound factors, such as WDR5, are sufficient to explain promoter occupancies observed in vivo. Importantly, promoter affinity stratifies different biological processes that are regulated by MYC, explaining why tumor-specific MYC levels induce specific gene expression programs and alter defined biological properties of cells. KW - MYC KW - promoter affinity KW - human KW - mathematical modeling KW - mouse KW - ChIP-sequencing KW - MIZ1 KW - cancer biology KW - cell biology KW - WDR5 Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-162913 VL - 5 ER - TY - JOUR A1 - Batram, Christopher A1 - Jones, Nivola G. A1 - Janzen, Christian J. A1 - Markert, Sebastian M. A1 - Engstler, Markus T1 - Expression site attenuation mechanistically links antigenic variation and development in Trypanosoma brucei JF - eLife N2 - We have discovered a new mechanism of monoallelic gene expression that links antigenic variation, cell cycle, and development in the model parasite Trypanosoma brucei. African trypanosomes possess hundreds of variant surface glycoprotein (VSG) genes, but only one is expressed from a telomeric expression site (ES) at any given time. We found that the expression of a second VSG alone is sufficient to silence the active VSG gene and directionally attenuate the ES by disruptor of telomeric silencing-1B (DOT1B)-mediated histone methylation. Three conserved expression-site-associated genes (ESAGs) appear to serve as signal for ES attenuation. Their depletion causes G1-phase dormancy and reversible initiation of the slender-to-stumpy differentiation pathway. ES-attenuated slender bloodstream trypanosomes gain full developmental competence for transformation to the tsetse fly stage. This surprising connection between antigenic variation and developmental progression provides an unexpected point of attack against the deadly sleeping sickness. KW - antigenic variation KW - expression site attenuation KW - developmental reprogramming KW - cell biology KW - genes and chromosomes KW - Trypanosoma brucei KW - variant surface glycoprotein (VSG) KW - monoallelic expression Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-119727 SN - 2050-084X VL - 3 IS - e02324 ER - TY - JOUR A1 - Annunziata, Ida A1 - van de Vlekkert, Diantha A1 - Wolf, Elmar A1 - Finkelstein, David A1 - Neale, Geoffrey A1 - Machado, Eda A1 - Mosca, Rosario A1 - Campos, Yvan A1 - Tillman, Heather A1 - Roussel, Martine F. A1 - Weesner, Jason Andrew A1 - Fremuth, Leigh Ellen A1 - Qiu, Xiaohui A1 - Han, Min-Joon A1 - Grosveld, Gerard C. A1 - d'Azzo, Alessandra T1 - MYC competes with MiT/TFE in regulating lysosomal biogenesis and autophagy through an epigenetic rheostat JF - Nature Communications N2 - Coordinated regulation of the lysosomal and autophagic systems ensures basal catabolism and normal cell physiology, and failure of either system causes disease. Here we describe an epigenetic rheostat orchestrated by c-MYC and histone deacetylases that inhibits lysosomal and autophagic biogenesis by concomitantly repressing the expression of the transcription factors MiT/TFE and FOXH1, and that of lysosomal and autophagy genes. Inhibition of histone deacetylases abates c-MYC binding to the promoters of lysosomal and autophagy genes, granting promoter occupancy to the MiT/TFE members, TFEB and TFE3, and/or the autophagy regulator FOXH1. In pluripotent stem cells and cancer, suppression of lysosomal and autophagic function is directly downstream of c-MYC overexpression and may represent a hallmark of malignant transformation. We propose that, by determining the fate of these catabolic systems, this hierarchical switch regulates the adaptive response of cells to pathological and physiological cues that could be exploited therapeutically. KW - autophagy KW - cancer KW - cancer metabolism KW - cell biology KW - mechanisms of disease Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-221189 VL - 10 ER - TY - JOUR A1 - Hurd, Paul J. A1 - Grübel, Kornelia A1 - Wojciechowski, Marek A1 - Maleszka, Ryszard A1 - Rössler, Wolfgang T1 - Novel structure in the nuclei of honey bee brain neurons revealed by immunostaining JF - Scientific Reports N2 - In the course of a screen designed to produce antibodies (ABs) with affinity to proteins in the honey bee brain we found an interesting AB that detects a highly specific epitope predominantly in the nuclei of Kenyon cells (KCs). The observed staining pattern is unique, and its unfamiliarity indicates a novel previously unseen nuclear structure that does not colocalize with the cytoskeletal protein f-actin. A single rod-like assembly, 3.7-4.1 mu m long, is present in each nucleus of KCs in adult brains of worker bees and drones with the strongest immuno-labelling found in foraging bees. In brains of young queens, the labelling is more sporadic, and the rod-like structure appears to be shorter (similar to 2.1 mu m). No immunostaining is detectable in worker larvae. In pupal stage 5 during a peak of brain development only some occasional staining was identified. Although the cellular function of this unexpected structure has not been determined, the unusual distinctiveness of the revealed pattern suggests an unknown and potentially important protein assembly. One possibility is that this nuclear assembly is part of the KCs plasticity underlying the brain maturation in adult honey bees. Because no labelling with this AB is detectable in brains of the fly Drosophila melanogaster and the ant Camponotus floridanus, we tentatively named this antibody AmBNSab (Apis mellifera Brain Neurons Specific antibody). Here we report our results to make them accessible to a broader community and invite further research to unravel the biological role of this curious nuclear structure in the honey bee central brain. KW - mushroom body calyx KW - synaptic complexes KW - bodies KW - insect KW - plasticity KW - insights KW - genome KW - model KW - proteins KW - methylation KW - biological techniques KW - cell biology KW - developmental biology KW - molecular biology KW - neuroscience Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-260059 VL - 11 ER -