TY - JOUR A1 - Sanz-Moreno, Adrian A1 - Fuhrmann, David A1 - Wolf, Elmar A1 - von Eyss, Björn A1 - Eilers, Martin A1 - Elsässer, Hans-Peter T1 - Miz1 Deficiency in the Mammary Gland Causes a Lactation Defect by Attenuated Stat5 Expression and Phosphorylation JF - PLOS ONE N2 - Miz1 is a zinc finger transcription factor with an N-terminal POZ domain. Complexes with Myc, Bcl-6 or Gfi-1 repress expression of genes like Cdkn2b (p15(Ink4)) or Cd-kn1a (p21(Cip1)). The role of Miz1 in normal mammary gland development has not been addressed so far. Conditional knockout of the Miz1 POZ domain in luminal cells during pregnancy caused a lactation defect with a transient reduction of glandular tissue, reduced proliferation and attenuated differentiation. This was recapitulated in vitro using mouse mammary gland derived HC11 cells. Further analysis revealed decreased Stat5 activity in Miz1 Delta POZ mammary glands and an attenuated expression of Stat5 targets. Gene expression of the Prolactin receptor (PrlR) and ErbB4, both critical for Stat5 phosphorylation (pStat5) or pStat5 nuclear translocation, was decreased in Miz1 Delta POZ females. Microarray, ChIP-Seq and gene set enrichment analysis revealed a down-regulation of Miz1 target genes being involved in vesicular transport processes. Our data suggest that deranged intracellular transport and localization of PrlR and ErbB4 disrupt the Stat5 signalling pathway in mutant glands and cause the observed lactation phenotype. KW - C-MYC KW - transcription factor MIZ-1 KW - breast-cancer cells KW - gene expression KW - epithelial cells KW - prolactin KW - transgenic mice KW - growth KW - differentiation KW - proliferation Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-117286 VL - 9 IS - 2 ER - TY - JOUR A1 - Koderer, Corinna A1 - Schmitz, Werner A1 - Wünsch, Anna Chiara A1 - Balint, Julia A1 - El-Mesery, Mohamed A1 - Volland, Julian Manuel A1 - Hartmann, Stefan A1 - Linz, Christian A1 - Kübler, Alexander Christian A1 - Seher, Axel T1 - Low energy status under methionine restriction is essentially independent of proliferation or cell contact inhibition JF - Cells N2 - Nonlimited proliferation is one of the most striking features of neoplastic cells. The basis of cell division is the sufficient presence of mass (amino acids) and energy (ATP and NADH). A sophisticated intracellular network permanently measures the mass and energy levels. Thus, in vivo restrictions in the form of amino acid, protein, or caloric restrictions strongly affect absolute lifespan and age-associated diseases such as cancer. The induction of permanent low energy metabolism (LEM) is essential in this process. The murine cell line L929 responds to methionine restriction (MetR) for a short time period with LEM at the metabolic level defined by a characteristic fingerprint consisting of the molecules acetoacetate, creatine, spermidine, GSSG, UDP-glucose, pantothenate, and ATP. Here, we used mass spectrometry (LC/MS) to investigate the influence of proliferation and contact inhibition on the energy status of cells. Interestingly, the energy status was essentially independent of proliferation or contact inhibition. LC/MS analyses showed that in full medium, the cells maintain active and energetic metabolism for optional proliferation. In contrast, MetR induced LEM independently of proliferation or contact inhibition. These results are important for cell behaviour under MetR and for the optional application of restrictions in cancer therapy. KW - methionine restriction KW - caloric restriction KW - mass spectrometry KW - LC/MS KW - liquid chromatography/mass spectrometry KW - metabolomics KW - L929 KW - amino acid KW - proliferation KW - contact inhibition Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-262329 SN - 2073-4409 VL - 11 IS - 3 ER - TY - JOUR A1 - Dapergola, Eleni A1 - Menegazzi, Pamela A1 - Raabe, Thomas A1 - Hovhanyan, Anna T1 - Light Stimuli and Circadian Clock Affect Neural Development in Drosophila melanogaster JF - Frontiers in Cell and Developmental Biology N2 - Endogenous clocks enable organisms to adapt cellular processes, physiology, and behavior to daily variation in environmental conditions. Metabolic processes in cyanobacteria to humans are under the influence of the circadian clock, and dysregulation of the circadian clock causes metabolic disorders. In mouse and Drosophila, the circadian clock influences translation of factors involved in ribosome biogenesis and synchronizes protein synthesis. Notably, nutrition signals are mediated by the insulin receptor/target of rapamycin (InR/TOR) pathways to regulate cellular metabolism and growth. However, the role of the circadian clock in Drosophila brain development and the potential impact of clock impairment on neural circuit formation and function is less understood. Here we demonstrate that changes in light stimuli or disruption of the molecular circadian clock cause a defect in neural stem cell growth and proliferation. Moreover, we show that disturbed cell growth and proliferation are accompanied by reduced nucleolar size indicative of impaired ribosomal biogenesis. Further, we define that light and clock independently affect the InR/TOR growth regulatory pathway due to the effect on regulators of protein biosynthesis. Altogether, these data suggest that alterations in InR/TOR signaling induced by changes in light conditions or disruption of the molecular clock have an impact on growth and proliferation properties of neural stem cells in the developing Drosophila brain. KW - neuroblast growth KW - proliferation KW - circadian clock KW - light stimuli Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-231049 SN - 2296-634X VL - 9 ER - TY - THES A1 - Hovhanyan, Anna T1 - Functional analyses of Mushroom body miniature (Mbm) in growth and proliferation of neural progenitor cells in the central brain of Drosophila melanogaster T1 - Funktionelle Analyse des Mushroom body minature (Mbm) in das Wachstum und die Proliferation von neuronalen Vorläuferzellen im zentralen Gehirn von Drosophila melanogaster N2 - Zellwachstum und Zellteilung stellen zwei miteinander verknüpfte Prozesse dar, die dennoch grundsätzlich voneinander zu unterscheiden sind. Die Wiederaufnahme der Proliferation von neuralen Vorläuferzellen (Neuroblasten) im Zentralhirn von Drosophila nach der spät-embryonalen Ruhephase erfordert zunächst Zellwachstum. Der Erhalt der regulären Zellgröße ist eine wichtige Voraussetzung für die kontinuierliche Proliferation der Neuroblasten über die gesamte larvale Entwicklungsphase. Neben extrinsischen Ernährungssignalen ist für das Zellwachstum eine kontinuierliche Versorgung mit funktionellen Ribosomen notwendig, damit die Proteinsynthese aufrechterhalten werden kann. Mutationen im mushroom body miniature (mbm) Gen wurden über einen genetischen Screen nach strukturellen Gehirnmutanten identifiziert. Der Schwerpunkt dieser Arbeit lag in der funktionellen Charakterisierung des Mbm Proteins als neues nukleoläres Protein und damit seiner möglichen Beteiligung in der Ribosomenbiogenese. Der Vergleich der relativen Expressionslevel von Mbm und anderen nuklearen Proteinen in verschiedenen Zelltypen zeigte eine verstärkte Expression von Mbm in der fibrillären Komponente des Nukleolus von Neuroblasten. Diese Beobachtung legte die Vermutung nahe, dass in Neuroblasten neben generell benötigten Faktoren der Ribosomenbiogenese auch Zelltyp-spezifische Faktoren existieren. Mutationen in mbm verursachen Proliferationsdefekte von Neuroblasten, wirken sich jedoch nicht auf deren Zellpolarität, die Orientierung der mitotischen Spindel oder die Asymmetrie der Zellteilung aus. Stattdessen wurde eine Reduktion der Zellgröße beobachtet, was im Einklang mit einer Beeinträchtigung der Ribosomenbiogenese steht. Insbesondere führt der Verlust der Mbm Funktion zu einer Retention der kleinen ribosomalen Untereinheit im Nukleolus, was eine verminderte Proteinsynthese zur Folge hat. Interessanterweise wurden Störungen der Ribosomenbiogenese nur in den Neuroblasten beobachtet. Zudem ist Mbm offensichtlich nicht erforderlich, um Wachstum oder die Proliferation von Zellen der Flügelimginalscheibe und S2-Zellen zu steuern, was wiederum dafür spricht, dass Mbm eine Neuroblasten-spezifische Funktion erfüllt. Darüber hinaus wurden die transkriptionelle Regulation des mbm-Gens und die funktionelle Bedeutung von posttranslationalen Modifikationen analysiert. Mbm Transkription wird von dMyc reguliert. Ein gemeinsames Merkmal von dMyc Zielgenen ist das Vorhandensein einer konservierten „E-Box“-Sequenz in deren Promotorregionen. In der Umgebung der mbm-Transkriptionsstartstelle befinden sich zwei „E-Box“-Motive. Mit Hilfe von Genreporteranalysen konnte nachgewiesen werden, dass nur eine von ihnen die dMyc-abhängige Transkription vermittelt. Die dMyc-abhängige Expression von Mbm konnte auch in Neuroblasten verifiziert werden. Auf posttranslationaler Ebene wird Mbm durch die Proteinkinase CK2 phosphoryliert. In der C-terminalen Hälfte des Mbm Proteins wurden in zwei Clustern mit einer Abfolge von sauren Aminosäuren sechs Serin- und Threoninreste als CK2- Phosphorylierungsstellen identifiziert. Eine Mutationsanalyse dieser Stellen bestätigte deren Bedeutung für die Mbm Funktion in vivo. Weiterhin ergaben sich Evidenzen, dass die Mbm-Lokalisierung durch die CK2-vermittelte Phosphorylierung gesteuert wird. Obwohl die genaue molekulare Funktion von Mbm in der Ribosomenbiogenese noch im Unklaren ist, unterstreichen die Ergebnisse dieser Studie die besondere Rolle von Mbm in der Ribosomenbiogenese von Neuroblasten um Zellwachstum und Proliferation zu regulieren. N2 - Cell growth and cell division are two interconnected yet distinct processes. Initiation of proliferation of central brain progenitor cells (neuroblasts) after the late embryonic quiescence stage requires cell growth, and maintenance of proper cell size is an important prerequisite for continuous larval neuroblast proliferation. Beside extrinsic nutrition signals, cell growth requires constant supply with functional ribosomes to maintain protein synthesis. Mutations in the mushroom body miniature (mbm) gene were previously identified in a screen for structural brain mutants. This study focused on the function of the Mbm protein as a new nucleolar protein, which is the site of ribosome biogenesis. The comparison of the relative expression levels of Mbm and other nucleolar proteins in different cell types showed a pronounced expression of Mbm in neuroblasts, particularly in the fibrillar component of the nucleolus, suggesting that in addition to nucleolar components generally required for ribosome biogenesis, more neuroblast specific nucleolar factors exist. Mutations in mbm cause neuroblast proliferation defects but do not interfere with cell polarity, spindle orientation or asymmetry of cell division of neuroblasts. Instead a reduction in cell size was observed, which correlates with an impairment of ribosome biogenesis. In particular, loss of Mbm leads to the retention of the small ribosomal subunit in the nucleolus resulting in decreased protein synthesis. Interestingly, the defect in ribosome biogenesis was only observed in neuroblasts. Moreover, Mbm is apparently not required for cell size and proliferation control in wing imaginal disc and S2 cells supporting the idea of a neuroblast-specific function of Mbm. Furthermore, the transcriptional regulation of the mbm gene and the functional relevance of posttranslational modifications were analyzed. Mbm is a transcriptional target of dMyc. A common feature of dMyc target genes is the presence of a conserved E-box sequence in their promoter regions. Two E-box motifs are found in the vicinity of the transcriptional start site of mbm. Gene reporter assays verified that only one of them mediates dMyc-dependent transcription. Complementary studies in flies showed that removal of dMyc function in neuroblasts resulted in reduced Mbm expression levels. At the posttranslational level, Mbm becomes phosphorylated by protein kinase CK2. Six serine and threonine residues located in two acidic amino acid rich clusters in the C-terminal half of the Mbm protein were identified as CK2 phosphorylation sites. Mutational analysis of these sites verified their importance for Mbm function in vivo and indicated that Mbm localization is controlled by CK2-mediated phosphorylation. Although the molecular function of Mbm in ribosome biogenesis remains to be determined, the results of this study emphasize the specific role of Mbm in neuroblast ribosome biogenesis to control cell growth and proliferation. KW - Taufliege KW - Mbm KW - Neuroblast KW - cell growth KW - proliferation KW - ribosome biogenesis KW - CK2 KW - Myc KW - Vorläuferzellen KW - Drosophila melanogaster Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-91303 ER - TY - JOUR A1 - Bensaad, Karim A1 - Favaro, Elena A1 - Lewis, Caroline A. A1 - Peck, Barrie A1 - Lord, Simon A1 - Collins, Jennifer M. A1 - Pinnick, Katherine E. A1 - Wigfield, Simon A1 - Buffa, Francesca M. A1 - Li, Ji-Liang A1 - Zhang, Qifeng A1 - Wakelam, Michael J. O. A1 - Karpe, Fredrik A1 - Schulze, Almut A1 - Harris, Adrian L. T1 - Fatty Acid Uptake and Lipid Storage Induced by HIF-1 alpha Contribute to Cell Growth and Survival after Hypoxia-Reoxygenation JF - Cell Reports N2 - An in vivo model of antiangiogenic therapy allowed us to identify genes upregulated by bevacizumab treatment, including Fatty Acid Binding Protein 3 (FABP3) and FABP7, both of which are involved in fatty acid uptake. In vitro, both were induced by hypoxia in a hypoxia-inducible factor-1 alpha (HIF-1 alpha)-dependent manner. There was a significant lipid droplet (LD) accumulation in hypoxia that was time and O-2 concentration dependent. Knockdown of endogenous expression of FABP3, FABP7, or Adipophilin (an essential LD structural component) significantly impaired LD formation under hypoxia. We showed that LD accumulation is due to FABP3/7-dependent fatty acid uptake while de novo fatty acid synthesis is repressed in hypoxia. We also showed that ATP production occurs via beta-oxidation or glycogen degradation in a cell-type-dependent manner in hypoxia-reoxygenation. Finally, inhibition of lipid storage reduced protection against reactive oxygen species toxicity, decreased the survival of cells subjected to hypoxia-reoxygenation in vitro, and strongly impaired tumorigenesis in vivo. KW - inducible factor-I KW - binding protein KW - triglyceride accumulation KW - cancer cell KW - complex-III KW - beta-oxidation KW - metabolism KW - lipogenesis KW - proliferation KW - resistance Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-115162 SN - 2211-1247 VL - 9 IS - 1 ER -