TY - THES A1 - Kampfinger, Katja T1 - Nachweis einer Mismatch-Reparatur-Defizienz in L5178Y Tk+/--3.7.2C-Mauslymphomzellen T1 - Evidence of a mismatch repair deficiency in L5178Y Tk+/--3.7.2C mouse lymphoma cells N2 - Die Entwicklung und Zulassung von Arzneimitteln sowie die Bewertung von Xenobio-tika erfordern eine Reihe von Testsystemen zur Toxizitätsermittlung. Für die Überprüfung der Gentoxizität stehen eine Vielzahl etablierter Testsysteme zur Verfügung, die oft auf Krebszelllinien basieren. Krebszelllinien haben jedoch die Eigenschaft, neben den für die Testung notwendigen Veränderungen weitere Veränderungen zu tragen, die zu Reaktionen führen können, wie sie in den Primärzellen des Organismus nicht auftreten. Daher ist die Kenntnis des genetischen Hintergrunds der verwendeten Krebszelllinien wertvoll, um Testergebnisse bewerten und gentoxische Risikopotentiale abschätzen zu können. Die Mauslymphomzelllinie L5178Y nimmt unter den auf Krebszellen basierenden Testsystemen eine besondere Stellung ein, da sie die weltweit in der Gentoxizi-tätsprüfung am häufigsten eingesetzte Zelllinie ist. In der vorliegenden Arbeit wurde in dieser Zellllinie eine Veränderung nachgewiesen, die das Mismatch-Reparatur-System (MMR-System) betrifft. Bei der MMR handelt es sich um einen Mechanismus, der daran beteiligt ist, die Integrität des Genoms zu gewährleisten. In MMR-profizienten Zellen werden Fehler in der DNA, die bei der Replikation, der homologen Rekombination oder durch äußere gentoxische Einwirkungen entstehen, entweder erkannt und repariert, oder die geschädigten Zellen werden durch die Induktion von Apoptosen eliminiert. Im Gegensatz dazu überleben MMR-defiziente Zellen trotz gravierender DNA-Schäden und akkumulieren diese. In der vorliegenden Arbeit wurde die Akkumulierung von Genomschäden bei L5178Y-Zellen als Reaktion auf Behandlung mit alkylierenden Agenzien beobachtet, während andere Vergleichszelllinien Apoptosen induzierten. Dieses Verhalten der L5178Y-Zellen, das in der Literatur bei MMR-defizienten Zellen für alkylierende Agenzien beschrieben ist, führte zu der Vermutung, dass die L5178Y-Zellen einen MMR-defizienten Phänotyp aufweisen. Dieser MMR-defiziente Phänotyp wurde durch gezielte Behandlung von L5178Y-Zellen und Zellen mit bekanntem MMR-Status mit dem alkylierenden Agenz MNNG und dem anschließenden Vergleich der Reaktionen geprüft und bestätigt. Der Ver-gleich erfolgte durch den Nachweis gentoxischer Effekte im Mikrokern-Test und im Comet Assay. Auf Proteinebene konnte für den gezeigten MMR-defizienten Phänotyp bei den drei wichtigsten, in die MMR involvierten Proteine, MLH1, MSH2 und MSH6 keine Ursa-che gefunden werden: Alle untersuchten Proteine zeigten eine Expression, die mit denen der MMR-profizienten Kontrollzelllinien vergleichbar war. Auf DNA-Ebene wurde durch die Analyse aller bekannter, in die MMR involvierter Gene durch die Sequenzierung der kodierenden Bereiche als wichtigste Verände-rung eine Insertions-Mutation (964(insC)) in pms2 gefunden. Diese führt nach 260 Aminosäuren zu einer Leserasterverschiebung und nach 313 Aminosäuren zu einem Abbruch der Aminosäuresequenz aufgrund eines Stop-Codons. Zwar ist somit die Information für den N-terminalen Bereich von PMS2, der die DNA-Bindedomäne und die ATP-ase aktiven Stellen beinhaltet, vorhanden, die für den C-Terminus hingegen, der für die Dimerisierung mit dem MMR-Protein MLH1 und damit für die Funktion essentiell ist, fehlt. Insgesamt wurde in dieser Arbeit gezeigt, dass die L5178Y-Zelllinie MMR-defizient ist. Mit der Insertions-Mutation (964(insC)) in pms2 wurde eine molekulare Ursache gefunden, die diese Defizienz erklären kann. Daraus folgt für den Einsatz der L5178Y-Zelllinie in Gentoxizitätstests, dass die Berücksichtigung ihrer MMR-Defizienz die Möglichkeit der Bewertung von Testergebnissen erheblich erweitern kann. N2 - The development and approval of pharmaceuticals as well as the evaluation of xenobiotics require several test systems for the detection of genotoxicity. There is a number of established genotoxicity test systems, which are often based on cancer cell lines. In addition to mutations that are essential for genotoxicity testing, cancer cell lines may also carry mutations that might cause reactions not occurring in the primary cells of the organism. Therefore the knowledge of the genetic background of the cell line used is important for the evaluation of test results and the subsequent genotoxicity risk assessment. Among test systems that are based on cancer cells the mouse lymphoma cell line L5178Y adopts a very prominent position due to its worldwide application for genotoxicity testing. The dissertation on hand provides evidence that there are mutations in the L5178Y cell line that are related to the mismatch-repair system (MMR system). MMR participates in safeguarding the genomic integrity. In MMR-proficient cells, DNA defects that arise during replication, homologous recombination or as a result of genotoxic effects are either recognized and repaired or the genetically altered cells are eliminated by induction of apoptosis. MMR-deficient cells, however, survive despite serious DNA defects and accumulate them. The accumulation of DNA damage as result of treatment with alkylating agents had been observed in L5178Y cells while other cell lines had reacted with an induction of apoptosis. The induction of apoptosis after treatment with alkylating agents is described in the literature as a typical behaviour for MMR-deficient cells. From this the hypothesis was established, that L5178Y-cells might exhibit a MMR-deficient phenotype. This MMR-deficient phenotype was proven by selective treatment of L5178Y cells and cells with known MMR status with the alkylating agent MNNG followed by the subsequent comparison of the different reactions. The comparison was carried out by the detection of genotoxic effects using the micronucleus test and the comet assay. On the protein level there was not an indication that the observed MMR-deficiency was related to the the three most important MMR-proteins MSH2, MLH1 and MSH6: All proteins demonstrated expression levels that were comparable to the levels of the MMR-proficient control cells. On the DNA level, however, several mutations were detected by sequence analysis of the coding regions of all genes known to be involved in MMR. The most important among these mutations was an insertion mutation (964(insC)) in pms2, that caused a frameshift after 260 amino acids. By this frameshift, a stop-codon was introduced, leading to an interruption of the sequence after 313 amino acids. While the information of the N-terminal region of pms2 containing the DNA-binding domain as well as the ATPase active sites is still present, the information of the C-terminus is lost. This region is responsible for the dimerisation with the MMR-protein MLH1. Therefore, the MMR-function that is due to this complex, is missing. In conclusion, a MMR-deficiency of L5178Y cells was demonstrated. This MMR-deficiency is explained by an insertion-mutation in pms2 (964(insC)). Consideration of this MMR-deficiency enhances the meaningfulness of the evaluation of test results with L5178Y mouse lymphoma cells in risk assessment. KW - Maus KW - Zelle KW - L5178Y-Zellen KW - MMR-Reparatur KW - pms2 KW - Genotoxizität KW - Alkylantien KW - L5178Y cells KW - mismatch repair KW - pms2 KW - genotoxicity KW - alkylating agent Y1 - 2007 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-26023 ER - TY - THES A1 - Wilde, Sabrina T1 - Einsatz von mechanistischen Biomarkern zur Charakterisierung und Bewertung von \(in\) \(vitro\) Genotoxinen T1 - Use of mechanistic biomarkers for the characterization and evaluation of \(in\) \(vitro\) genotoxins N2 - Die verfügbaren in vitro Genotoxizitätstests weisen hinsichtlich ihrer Spezifität und ihres Informationsgehalts zum vorliegenden Wirkmechanismus (Mode of Action, MoA) Einschränkungen auf. Um diese Mängel zu überwinden, wurden in dieser Arbeit zwei Ziele verfolgt, die zu der Entwicklung und Etablierung neuer in vitro Methoden zur Prüfung auf Genotoxizität in der Arzneimittelentwicklung beitragen. 1. Etablierung und Bewertung einer neuen in vitro Genotoxizitätsmethode (MultiFlow Methode) Die MultiFlow Methode basiert auf DNA-schadensassoziierten Proteinantworten von γH2AX (DNA-Doppelstrangbrüche), phosphorylierten H3 (S10) (mitotische Zellen), nukleären Protein p53 (Genotoxizität) und cleaved PARP1 (Apoptose) in TK6-Zellen. Insgesamt wurden 31 Modellsubstanzen mit dem MultiFlow Assay und ergänzend mit dem etablierten Mikrokerntest (MicroFlow MNT), auf ihre Fähigkeit verschiedene MoA-Gruppen (Aneugene/Klastogene/Nicht-Genotoxine) zu differenzieren, untersucht. Die Performance der „neuen“ gegenüber der „alten“ Methode führte zu einer verbesserten Sensitivität von 95% gegenüber 90%, Spezifität von 90% gegenüber 72% und einer MoA-Klassifizierungsrate von 85% gegenüber 45% (Aneugen vs. Klastogen). 2. Identifizierung mechanistischer Biomarker zur Klassifizierung genotoxischer Substanzen Die Analyse 67 ausgewählter DNA-schadensassoziierter Gene in der QuantiGene Plex Methode zeigte, dass mehrere Gene gleichzeitig zur MoA-Klassifizierung beitragen können. Die Kombination der höchstrangierten Marker BIK, KIF20A, TP53I3, DDB2 und OGG1 ermöglichte die beste Identifizierungsrate der Modellsubstanzen. Das synergetische Modell kategorisierte 16 von 16 Substanzen korrekt in Aneugene, Klastogene und Nicht-Genotoxine. Unter Verwendung der Leave-One-Out-Kreuzvalidierung wurde das Modell evaluiert und erreichte eine Sensitivität, Spezifität und Prädiktivität von 86%, 83% und 85%. Ergebnisse der traditionellen qPCR Methode zeigten, dass Genotoxizität mit TP53I3, Klastogenität mit ATR und RAD17 und oxidativer Stress mit NFE2L2 detektiert werden kann. Durch die Untersuchungen von posttranslationalen Modifikationen unter Verwendung der High-Content-Imaging-Technologie wurden mechanistische Assoziationen für BubR1 (S670) und pH3 (S28) mit Aneugenität, 53BP1 (S1778) und FANCD2 (S1404) mit Klastogenität, p53 (K373) mit Genotoxizität und Nrf2 (S40) mit oxidativem Stress identifiziert. Diese Arbeit zeigt, dass (Geno)toxine unterschiedliche Gen- und Proteinveränderungen in TK6-Zellen induzieren, die zur Erfassung mechanistischer Aktivitäten und Einteilung (geno)toxischer MoA-Gruppen (Aneugen/Klastogen/ Reaktive Sauerstoffspezies) eingesetzt werden können und daher eine bessere Risikobewertung von Wirkstoffkandidaten ermöglichen. N2 - Available in vitro genotoxicity tests have limitations regarding their specificity and mode of action (MoA) information. To overcome these shortages, two objectives were pursued in this work to develop and establish new in vitro tools for genotoxicity testing. 1. Establishment and evaluation of a novel in vitro genotoxicity method (MultiFlow method) The MultiFlow method is based on DNA damage-related protein responses of γH2AX (DNA double-strand breaks), phosphorylated H3 (S10) (mitotic cells), nuclear protein p53 (genotoxicity) and cleaved PARP1 (apoptosis) in TK6 cells. In total, 31 model substances were studied flow cytometrically in the MultiFlow assay - and also with the well-established micronucleus test (MicroFlow MNT) - for their ability to classify across MoA groups: aneugens, clastogens and non-genotoxicants. The performance of the new method resulted in an improved sensitivity of 95% to 90%, specificity of 90% to 72% and a MoA classification rate of 85% to 45% (aneugen vs. clastogen). 2. Identification of mechanistic biomarkers for the characterization of genotoxicants The analysis of 67 selected DNA-damage associated genes using the QuantiGene Plex method showed that a combinaten of genes can contribute to MoA classification. The combination of the highest-ranked markers (BIK, KIF20A, TP53I3, DDB2 and OGG1) highlighted the best identification rate of model substances. The synergistic statistic tool correctly categorized 16 of 16 substances into aneugens, clastogens and non-genotoxicants. By using leave-one out cross validation, the model was evaluated and achieved a sensitivity, specificity and predictivity of 86%, 83%, 85% respectively. Follow-up with qPCR was conducted and revealed associations with TP53I3 for genotoxicity, ATR and RAD17 for clastogenicity and NFE2L2 for oxidative stress. By investigating posttranslational modifications using high-content imaging, associations for BubR1 (S670) and pH3 (S28) with aneugenicity, 53BP1 (S1778) and FANCD2 (S1404) with clastogenicity, p53 (K373) with genotoxicity and Nrf2 (S40) with oxidative stress were found to be further useful for MoA identification. This work demonstrates that genotoxicants and non-genotoxicants induce different gene- and protein expression changes in the TK6 cells that can be used to classify the MoA groups (aneugen/clastogen/non-genotoxicant/reactive oxygen species), thus enabling better risk assessment of potential drug candidates. KW - Genotoxizität KW - Genotoxicitiy KW - Klastogene KW - Aneugene KW - Biomarker KW - Klassifizierung KW - clastogens KW - aneugens KW - biomarker KW - classification Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-182782 ER - TY - THES A1 - Wagner, Martin T1 - Zyto- und Gentoxizität von Zinkoxid-Nanopartikeln in humanen mesenchymalen Stammzellen nach repetitiver Exposition und im Langzeitversuch T1 - Time-Dependent Toxic and Genotoxic Effects of Zinc Oxide Nanoparticles after Long-Term and Repetitive Exposure to Human Mesenchymal Stem Cells N2 - Zinkoxid-Nanopartikel (ZnO-NP) finden in vielen Produkten des täglichen Verbrauchs Verwendung. Daten über die toxikologischen Eigenschaften von ZnO-NP werden kontrovers diskutiert. Die menschliche Haut ist in Bezug auf die ZnO-NP Exposition das wichtigste Kontakt-Organ. Intakte Haut stellt eine suffiziente Barriere gegenüber NP dar. Bei defekter Haut ist ein Kontakt zu den proliferierenden Stammzellen möglich, sodass diese als wichtiges toxikologische Ziel für NP darstellen. Das Ziel dieser Dissertation war die Bewertung der genotoxischen und zytotoxischen Effekte an humanen mesenchymalen Stammzellen (hMSC) durch niedrig dosierte ZnO-NP nach 24 stündiger Exposition, repetitiven Expositionen und im Langzeitversuch bis zu 6 Wochen. Zytotoxische Wirkungen von ZnO-NP wurden mit 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazoliumbromid-Test (MTT) gemessen. Darüber hinaus wurde die Genotoxizität durch den Comet-Assay bewertet. Zur Langzeitbeobachtung bis zu 6 Wochen wurde die Transmissionselektronenmikroskopie (TEM) verwendet. Zytotoxizität nach 24-stündiger ZnO-NP-Exposition war ab einer Konzentration von 50 µg/ml nachweisbar. Genotoxizität konnten bereits bei Konzentrationen von 1 und 10 µg/ml ZnO-NP beschrieben werden. Wiederholte Exposition verstärkte die Zyto-, aber nicht die Genotoxizität. Eine intrazelluläre NP-Akkumulation mit Penetration der Zellorganelle wurde bei einer Exposition bis zu 6 Wochen beobachtet. Die Ergebnisse deuten auf zytotoxische und genotoxisches Effekte von ZnO-NP hin. Bereits geringe Dosen von ZnO-NP können bei wiederholter Exposition toxische Wirkungen hervorrufen sowie eine langfristige Zellakkumulation. Diese Daten sollten bei der Verwendung von ZnO-NP an geschädigter Haut berücksichtigt werden. N2 - Zinc oxide nanoparticles (ZnO-NP) are widely used in many products of daily consumption. Data on the toxicological properties of the ZnO-NP used are discussed controversially. Human skin is the most important organ in terms of ZnO-NP exposure. Intact skin has been shown to provide an adequate barrier against NPs, while defective skin allows NP contact with proliferating cells. Among proliferating cells, stem cells are the main toxicological target for NPs. Therefore, the aim of this dissertation was to evaluate the genotoxic and cytotoxic effects of human mesenchymal stem cells (hMSC) by low-dose ZnO-NP after 24 hours of exposure, repetitive exposures and in long-term experiments up to 6 weeks. Cytotoxic effects of ZnO-NP were measured with 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide test (MTT). In addition, genotoxicity was assessed by the comet assay. Transmission electron microscopy (TEM) was used for long-term observation after 6 exposure periods. The results of the study show that ZnO-NP has a cytotoxic effect starting at high concentrations of 50 µg/mL and could demonstrate genotoxic effects in hMSC exposed to 1 and 10 µg/ml ZnO-NP. Repeated exposure enhanced cytotoxicity but not genotoxicity. Intracellular NP accumulation with penetration of the cell organelles was observed at exposure up to 6 weeks. The results indicate the cytotoxic and genotoxic potential of ZnO-NP. Even small doses of ZnO-NP can cause toxic effects with repeated exposure and long-term cell accumulation. These data should be considered when using ZnO-NP on damaged skin. KW - nanoparticle KW - zinc oxid KW - stem cells KW - nanotoxicology KW - human skin KW - Nanopartikel KW - humane mesenchymale Stammzellen KW - Genotoxizität KW - Zytotoxizität KW - Repetitive Exposition KW - Elektronenmikroskopie Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-275726 ER -