TY - THES A1 - Bakari Soale, Majeed T1 - Regulation of the Variant Surface Glycoprotein (VSG) Expression and Characterisation of the Nucleolar DExD/H box Protein Hel66 in \(Trypanosoma\) \(brucei\) T1 - Regulation der Expression des variable Oberflächen- Glykoprotein (VSG) und Charakterisierung des nukleolären DExD/H box Protein Hel66 in \(Trypanosoma\) \(brucei\) N2 - The variant surface glycoprotein (VSG) of African trypanosomes plays an essential role in protecting the parasites from host immune factors. These trypanosomes undergo antigenic variation resulting in the expression of a single VSG isoform out of a repertoire of around 2000 genes. The molecular mechanism central to the expression and regulation of the VSG is however not fully understood. Gene expression in trypanosomes is unusual due to the absence of typical RNA polymerase II promoters and the polycistronic transcription of genes. The regulation of gene expression is therefore mainly post-transcriptional. Regulatory sequences, mostly present in the 3´ UTRs, often serve as key elements in the modulation of the levels of individual mRNAs. In T. brucei VSG genes, a 100 % conserved 16mer motif within the 3´ UTR has been shown to modulate the stability of VSG transcripts and hence their expression. As a stability-associated sequence element, the absence of nucleotide substitutions in the motif is however unusual. It was therefore hypothesised that the motif is involved in other essential roles/processes besides stability of the VSG transcripts. In this study, it was demonstrated that the 100 % conservation of the 16mer motif is not essential for cell viability or for the maintenance of functional VSG protein levels. It was further shown that the intact motif in the active VSG 3´ UTR is neither required to promote VSG silencing during switching nor is it needed during differentiation from bloodstream forms to procyclic forms. Crosstalk between the VSG and procyclin genes during differentiation to the insect vector stage is also unaffected in cells with a mutated 16mer motif. Ectopic overexpression of a second VSG however requires the intact motif to trigger silencing and exchange of the active VSG, suggesting a role for the motif in transcriptional VSG switching. The 16mer motif therefore plays a dual role in VSG in situ switching and stability of VSG transcripts. The additional role of the 16mer in the essential process of antigenic variation appears to be the driving force for the 100 % conservation of this RNA motif. A screen aimed at identifying candidate RNA-binding proteins interacting with the 16mer motif, led to the identification of a DExD/H box protein, Hel66. Although the protein did not appear to have a direct link to the 16mer regulation of VSG expression, the DExD/H family of proteins are important players in the process of ribosome biogenesis. This process is relatively understudied in trypanosomes and so this candidate was singled out for detailed characterisation, given that the 16mer story had reached a natural end point. Ribosome biogenesis is a major cellular process in eukaryotes involving ribosomal RNA, ribosomal proteins and several non-ribosomal trans-acting protein factors. The DExD/H box proteins are the most important trans-acting protein factors involved in the biosynthesis of ribosomes. Several DExD/H box proteins have been directly implicated in this process in yeast. In trypanosomes, very few of this family of proteins have been characterised and therefore little is known about the specific roles they play in RNA metabolism. Here, it was shown that Hel66 is involved in rRNA processing during ribosome biogenesis. Hel66 localises to the nucleolus and depleting the protein led to a severe growth defect. Loss of the protein also resulted in a reduced rate of global translation and accumulation of rRNA processing intermediates of both the small and large ribosomal subunits. Hel66 is therefore an essential nucleolar DExD/H protein involved in rRNA processing during ribosome biogenesis. As very few protein factors involved in the processing of rRNAs have been described in trypanosomes, this finding represents an important platform for future investigation of this topic. N2 - Das variable Oberflächen-Glykoprotein (“varaint surface glycoprotein“, VSG) der Afrikanischen Trypanosomen schützt den Parasiten vor Immunfaktoren des Wirtes. Trypanosomen beherrschen die antigene Variation und expremieren nur eine einzige VSG Isoform aus einem Repertoire von ungefähr 2000 Genen. Der molekulare Mechanismus der die Expression dieser VSG Gene reguliert ist nicht komplett bekannt. Die Genexpression ist in Trypanosomen sehr ungewöhnlich. Es gibt keine typischen Promotoren für RNA Polymerase II und Gene werden polycistronisch transkribiert. Daher ist die Regulation der Genexpression hauptsächlich posttranskriptional. Die Expression individueller mRNAs wird durch regulatorische Sequenzen reguliert, die sich häufig in den 3´ UTRs befinden. In den VSG Genen von T. brucei moduliert ein zu 100% konserviertes 16mer Motiv in der 3´ UTR die Stabilität der VSG Transkripte und damit deren Expression. Für eine Sequenz, die die Stabilität der mRNA reguliert, ist das Fehlen von Nukleotid Substitutionen sehr ungewöhnlich. Es wurde deshalb spekuliert, dass das 16mer Motiv neben der Stabilisierung des VSG Transkriptes noch an anderen essentiellen Prozessen beteiligt ist. In dieser Arbeit wurde gezeigt, dass die 100%ige Konservierung des 16mer Motives weder für das Überleben der Zellen, noch für den Erhalt der Expression des VSG Protein in funktioneller Menge notwendig ist. Außerdem wurde gezeigt dass das intakte Motiv in der 3´UTR des aktiven VSGs weder für das „VSG silencing“ während des VSG Austausches („switching“) noch für die Differenzierung von Blutbahnformen zu prozyklischen Formen benötigt wird. Auch die Interaktionen („crosstalk“), die während der Differenzierung zum Insekten Stadium zwischen den VSG und Prozyklin Genen stattfinden, sind in Zellen mit mutiertem 16mer Motiv noch funktionell. Die ektopische Überexpression eines zweiten VSGs benötigt allerdings das intakte Motiv, um das aktive VSG zu inaktivieren und auszutauschen: dies suggeriert eine Rolle des Motivs im transkriptionalen „VSG switching“. Das 16mer Motif spielt daher eine Doppelrolle bei der Regulation der Stabilität der VSG Transkripte und im VSG in situ „switching“. Letzteres, die Rolle im essentiellen Prozess der antigenen Variation, ist dabei offensichtlich die treibende Kraft hinter der 100%igen Konservierung des RNA Motives. Eine Suche nach möglichen RNA bindenden Proteinen, die mit dem 16mer interagieren, führte zur Identifikation des DExD/H box Proteins Hel66. Obwohl das Protein wohl nicht direkt an der Regulation der VSG Expression über das 16mer beteiligt ist, spielen Mitglieder der DexD/H Proteinfamilie eine wichtige Rolle in der Biogenese von Ribosomen. Dieser Prozess ist in Trypanosomen noch nicht komplett verstanden und daher wurde das Protein für eine nähere Analyse ausgewählt, auch weil die 16mer Story ohne weitere Kandidaten zu einem Ende gekommen war. Die Biogenese von Ribosomen ist ein wichtiger zellulärer Prozess in Eukaryoten und benötigt ribosomale RNA, ribosomale Proteine sowie einige nicht-ribosomale, trans-agierende Protein Faktoren. Proteine der DExD/H box Familie sind die wichtigsten trans- agierenden Proteinfaktoren, die an der Biogenese der Ribosomen beteiligt sind. In der Hefe sind mehrere DExD/H box Proteine bekannt, die eine direkte Rolle in diesem Prozess spielen. In Trypanosomen sind erst sehr wenige Proteine aus dieser Familie untersucht worden und es ist daher kaum bekannt, welche spezifische Rollen sie im RNA Metabolismus spielen. In dieser Arbeit wurde gezeigt, dass Hel66 an der rRNA Prozessierung während der Biogenese der Ribosomen beteiligt ist. Hel66 ist im Nukleolus lokalisiert und die Reduktion des Proteins durch RNAi führte zu einem schweren Wachstumsphänotyp. Reduktion von Hel66 führte auch zu einer globalen Reduktion der Translation sowie zur Akkumulation von Synthese- Zwischenstadien der rRNAs sowohl der kleinen und als auch der großen ribosomalen Untereinheit. Hel66 ist daher ein essentielles nukleoläres DExD/H Protein dass an der Prozessierung der rRNA während der Biogenese der Ribosomen beteiligt ist. Da bisher erst wenige Proteine bekannt sind, die in Trypanosomen an diesem Prozess beteiligt sind, sind diese Ergebnisse ein sehr wichtiger Ausgangspunkt für weitere Untersuchungen in der Zukunft. KW - Trypanosoma brucei KW - Genexpression KW - Variant Surface Glycoprotein KW - VSG KW - DExD/H box protein KW - Ribosome biogenesis KW - rRNA processing KW - Ribosome Y1 - 2024 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-258090 ER - TY - THES A1 - Maier [verh. Hartmann], Carina Ramona T1 - Regulation of the Mevalonate Pathway by the Deubiquitinase USP28 in Squamous Cancer T1 - Regulation des Mevalonat Stoffwechselwegs durch die Deubiquitinase USP28 in Plattenepithelkarzinomen N2 - The reprogramming of metabolic pathways is a hallmark of cancer: Tumour cells are dependent on the supply with metabolites and building blocks to fulfil their increased need as highly proliferating cells. Especially de novo synthesis pathways are upregulated when the cells of the growing tumours are not able to satisfy the required metabolic levels by uptake from the environment. De novo synthesis pathways are often under the control of master transcription factors which regulate the gene expression of enzymes involved in the synthesis process. The master regulators for de novo fatty acid synthesis and cholesterogenesis are sterol regulatory element-binding proteins (SREBPs). While SREBP1 preferably controls the expression of enzymes involved in fatty acid synthesis, SREBP2 regulates the transcription of the enzymes of the mevalonate pathway and downstream processes namely cholesterol, isoprenoids and building blocks for ubiquinone synthesis. SREBP activity is tightly regulated at different levels: The post-translational modification by ubiquitination decreases the stability of active SREBPs. The attachment of K48-linked ubiquitin chains marks the transcription factors for the proteasomal degradation. In tumour cells, high levels of active SREBPs are essential for the upregulation of the respective metabolic pathways. The increased stability and activity of SREBPs were investigated in this thesis. SREBPs are ubiquitinated by the E3 ligase Fbw7 which leads to the subsequential proteolysis of the transcription factors. The work conducted in this thesis identified the counteracting deubiquitination enzyme USP28 which removes the ubiquitin chains from SREBPs and prevents their proteasomal degradation. It further revealed that the stabilization of SREBP2 by USP28 plays an important role in the context of squamous cancers. Increased USP28 levels are associated with a poor survival in patients with squamous tumour subtypes. It was shown that reduced USP28 levels in cell lines and in vivo result in a decrease of SREBP2 activity and downregulation of the mevalonate pathway. This manipulation led to reduced proliferation and tumour growth. A direct comparison of adenocarcinomas and squamous cell carcinomas in lung cancer patients revealed an upregulation of USP28 as well as SREBP2 and its target genes. Targeting the USP28-SREBP2 regulatory axis in squamous cell lines by inhibitors also reduced cell viability and proliferation. In conclusion, this study reports evidence for the importance of the mevalonate pathway regulated by the USP28-SREBP2 axis in tumour initiation and progression of squamous cancer. The combinatorial inhibitor treatment of USP28 and HMGCR, the rate limiting enzyme of the mevalonate pathway, by statins opens the possibility for a targeted therapeutic treatment of squamous cancer patients. N2 - Die Reprogrammierung metabolischer Stoffwechselwege ist ein Kennzeichen von Krebs: Tumorzellen sind abhängig von der Versorgung mit Metaboliten und Bausteinen, um ihren wachsenden Bedarf als hoch proliferierende Zellen zu decken. Vor allem die de novo Stoffwechselsynthesewege sich hochreguliert, wenn die Zellen des wachsenden Tumors nicht mehr in der Lage sind, ihr erforderliches metabolisches Niveau mithilfe der Aufnahme aus der Umgebung zu erfüllen. De novo Synthesewege sind oft unter der Kontrolle von zentralen Transkriptionsfaktoren die die Genexpression von Enzymen, die im Syntheseprozess beteiligt sind, regulieren. Die vorherrschenden Regulatoren, für die de novo Fettsäuresynthese und der Cholesterogenese sind die Steroid-regulatorisches-Element-bindende Proteine (SREBPs). Während SREBP1 bevorzugt die Expression von Enzymen die an der Fettsäuresynthese beteiligt sind kontrolliert, reguliert SREBP2 die Transkription von Enzymen des Mevalonat Stoffwechselwegs, sowie Prozesse unterhalb, namentlich die Cholesterol-, Isoprenoid- und die die Synthese von Bausteinen für die Ubiquinonsynthese. Die Aktivität von SREBP ist streng reguliert auf verschiedenen Ebenen: Die post-translationale Modifikation mittels Ubiquitinierung reduziert die Stabilität von aktiven SREBPs. Das Anhängen von K48-verlinkten Ubiquitinketten markiert die Transkriptionsfaktoren für den proteasomalen Abbau. In Tumorzellen sind hohe Niveaus von aktiven SREBPs essentiell für die Induktion der entsprechenden metabolischen Stoffwechselwege. Die erhöhte Stabilität und Aktivität von SREBPs wurden im Rahmen dieser Arbeit untersucht. SREBPs werden von der E3-Ligase Fbw7 ubiquitiniert, was zur Proteolyse der Transkriptionsfaktoren führt. In dieser Arbeit wurde gezeigt, dass das entgegenwirkende Deubiquitinierungsenzym USP28 die Ubiquitinketten von SREBPs entfernt und deren proteasomalen Abbau verhindert. Diese Forschungsarbeit zeigt weiterhin, dass die Stabilisierung von SREBP2 durch USP28 eine wichtige Rolle im Kontext von Epithelkarzinomen spielt. Erhöhte USP28 Niveaus werden mit einem schlechten Überleben von Patienten in der Krebs-Untergruppe der Plattenepithelkarzinomen verbunden. Es konnte gezeigt werden, dass reduzierte USP28 Niveaus, in Zelllinien und in vivo, niedrigere SREBP2-Aktivität und eine Herunterregulierung des Mevalonat Stoffwechselwegs ergeben. Diese Manipulation führte zu reduzierter Proliferation und Tumorwachstum. Ein direkter Vergleich von Adenokarzinomen und Plattenepithelkarzinomen in Lungenkrebspatienten zeigte zudem eine Hochregulierung von USP28 ebenso wie SREBP2 und dessen Zielgenen. Der gezielte Einsatz von Inhibitoren gegen die USP28-SREBP2 regulatorische Achse in Plattenepithelzellen reduzierte die Lebensfähigkeit und Proliferation der Zellen. Abschließend berichtet diese Forschungsarbeit von der Bedeutung des durch die USP28-SREBP2 Achse regulierten Mevalonat Stoffwechselwegs bei der Tumorinitiation und dem Fortschreiten von Plattenepithelkarzinomen. Die kombinatorische Behandlung mit USP28- und Inhibitoren der HMGCR, dem Schlüsselenzym des Mevalonat Stoffwechselwegs, mithilfe von Statinen eröffnet die Möglichkeit für eine gezielte therapeutische Behandlung von Patienten mit Plattenepithelkarzinomen. KW - Ubiquitin KW - Metabolismus KW - Deubiquitination KW - Mevalonate Pathway KW - Cancer Metabolism KW - Lung squamous cancer cells Y1 - 2024 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-348740 ER -