TY - JOUR A1 - Solger, Franziska A1 - Kunz, Tobias C. A1 - Fink, Julian A1 - Paprotka, Kerstin A1 - Pfister, Pauline A1 - Hagen, Franziska A1 - Schumacher, Fabian A1 - Kleuser, Burkhard A1 - Seibel, Jürgen A1 - Rudel, Thomas T1 - A Role of Sphingosine in the Intracellular Survival of Neisseria gonorrhoeae JF - Frontiers in Cellular and Infection Microbiology N2 - Obligate human pathogenic Neisseria gonorrhoeae are the second most frequent bacterial cause of sexually transmitted diseases. These bacteria invade different mucosal tissues and occasionally disseminate into the bloodstream. Invasion into epithelial cells requires the activation of host cell receptors by the formation of ceramide-rich platforms. Here, we investigated the role of sphingosine in the invasion and intracellular survival of gonococci. Sphingosine exhibited an anti-gonococcal activity in vitro. We used specific sphingosine analogs and click chemistry to visualize sphingosine in infected cells. Sphingosine localized to the membrane of intracellular gonococci. Inhibitor studies and the application of a sphingosine derivative indicated that increased sphingosine levels reduced the intracellular survival of gonococci. We demonstrate here, that sphingosine can target intracellular bacteria and may therefore exert a direct bactericidal effect inside cells. KW - sphingosine KW - sphingolipids KW - sphingosine kinases KW - invasion KW - survival KW - click chemistry Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-204111 SN - 2235-2988 VL - 10 ER - TY - JOUR A1 - Peters, Simon A1 - Kaiser, Lena A1 - Fink, Julian A1 - Schumacher, Fabian A1 - Perschin, Veronika A1 - Schlegel, Jan A1 - Sauer, Markus A1 - Stigloher, Christian A1 - Kleuser, Burkhard A1 - Seibel, Juergen A1 - Schubert-Unkmeir, Alexandra T1 - Click-correlative light and electron microscopy (click-AT-CLEM) for imaging and tracking azido-functionalized sphingolipids in bacteria JF - Scientific Reports N2 - Sphingolipids, including ceramides, are a diverse group of structurally related lipids composed of a sphingoid base backbone coupled to a fatty acid side chain and modified terminal hydroxyl group. Recently, it has been shown that sphingolipids show antimicrobial activity against a broad range of pathogenic microorganisms. The antimicrobial mechanism, however, remains so far elusive. Here, we introduce 'click-AT-CLEM', a labeling technique for correlated light and electron microscopy (CLEM) based on the super-resolution array tomography (srAT) approach and bio-orthogonal click chemistry for imaging of azido-tagged sphingolipids to directly visualize their interaction with the model Gram-negative bacterium Neisseria meningitidis at subcellular level. We observed ultrastructural damage of bacteria and disruption of the bacterial outer membrane induced by two azido-modified sphingolipids by scanning electron microscopy and transmission electron microscopy. Click-AT-CLEM imaging and mass spectrometry clearly revealed efficient incorporation of azido-tagged sphingolipids into the outer membrane of Gram-negative bacteria as underlying cause of their antimicrobial activity. KW - antimicrobials KW - biological techniques KW - imaging KW - microbiology KW - microbiology techniques KW - microscopy Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-259147 VL - 11 IS - 1 ER - TY - JOUR A1 - Derakhshani, Shaghayegh A1 - Kurz, Andreas A1 - Japtok, Lukasz A1 - Schumacher, Fabian A1 - Pilgram, Lisa A1 - Steinke, Maria A1 - Kleuser, Burkhard A1 - Sauer, Markus A1 - Schneider-Schaulies, Sibylle A1 - Avota, Elita T1 - Measles virus infection fosters dendritic cell motility in a 3D environment to enhance transmission to target cells in the respiratory epithelium JF - Frontiers in Immunology N2 - Transmission of measles virus (MV) from dendritic to airway epithelial cells is considered as crucial to viral spread late in infection. Therefore, pathways and effectors governing this process are promising targets for intervention. To identify these, we established a 3D respiratory tract model where MV transmission by infected dendritic cells (DCs) relied on the presence of nectin-4 on H358 lung epithelial cells. Access to recipient cells is an important prerequisite for transmission, and we therefore analyzed migration of MV-exposed DC cultures within the model. Surprisingly, enhanced motility toward the epithelial layer was observed for MV-infected DCs as compared to their uninfected siblings. This occurred independently of factors released from H358 cells indicating that MV infection triggered cytoskeletal remodeling associated with DC polarization enforced velocity. Accordingly, the latter was also observed for MV-infected DCs in collagen matrices and was particularly sensitive to ROCK inhibition indicating infected DCs preferentially employed the amoeboid migration mode. This was also implicated by loss of podosomes and reduced filopodial activity both of which were retained in MV-exposed uninfected DCs. Evidently, sphingosine kinase (SphK) and sphingosine-1-phosphate (S1P) as produced in response to virus-infection in DCs contributed to enhanced velocity because this was abrogated upon inhibition of sphingosine kinase activity. These findings indicate that MV infection promotes a push-and-squeeze fast amoeboid migration mode via the SphK/S1P system characterized by loss of filopodia and podosome dissolution. Consequently, this enables rapid trafficking of virus toward epithelial cells during viral exit. KW - dendritic cell KW - cell migration KW - measles virus KW - 3D tissue model KW - sphingosine-1-phosphate Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-201818 VL - 10 IS - 1294 ER - TY - JOUR A1 - Schneider-Schaulies, Sibylle A1 - Schumacher, Fabian A1 - Wigger, Dominik A1 - Schöl, Marie A1 - Waghmare, Trushnal A1 - Schlegel, Jan A1 - Seibel, Jürgen A1 - Kleuser, Burkhard T1 - Sphingolipids: effectors and Achilles heals in viral infections? JF - Cells N2 - As viruses are obligatory intracellular parasites, any step during their life cycle strictly depends on successful interaction with their particular host cells. In particular, their interaction with cellular membranes is of crucial importance for most steps in the viral replication cycle. Such interactions are initiated by uptake of viral particles and subsequent trafficking to intracellular compartments to access their replication compartments which provide a spatially confined environment concentrating viral and cellular components, and subsequently, employ cellular membranes for assembly and exit of viral progeny. The ability of viruses to actively modulate lipid composition such as sphingolipids (SLs) is essential for successful completion of the viral life cycle. In addition to their structural and biophysical properties of cellular membranes, some sphingolipid (SL) species are bioactive and as such, take part in cellular signaling processes involved in regulating viral replication. It is especially due to the progress made in tools to study accumulation and dynamics of SLs, which visualize their compartmentalization and identify interaction partners at a cellular level, as well as the availability of genetic knockout systems, that the role of particular SL species in the viral replication process can be analyzed and, most importantly, be explored as targets for therapeutic intervention. KW - glycosphingolipids KW - ceramides KW - sphingosine 1-phosphate KW - sphingomyelinase KW - HIV KW - SARS-CoV-2 KW - measles Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-245151 SN - 2073-4409 VL - 10 IS - 9 ER - TY - JOUR A1 - Eder, Sascha A1 - Hollmann, Claudia A1 - Mandasari, Putri A1 - Wittmann, Pia A1 - Schumacher, Fabian A1 - Kleuser, Burkhard A1 - Fink, Julian A1 - Seibel, Jürgen A1 - Schneider-Schaulies, Jürgen A1 - Stigloher, Christian A1 - Beyersdorf, Niklas A1 - Dembski, Sofia T1 - Synthesis and characterization of ceramide-containing liposomes as membrane models for different T cell subpopulations JF - Journal of Functional Biomaterials N2 - A fine balance of regulatory (T\(_{reg}\)) and conventional CD4\(^+\) T cells (T\(_{conv}\)) is required to prevent harmful immune responses, while at the same time ensuring the development of protective immunity against pathogens. As for many cellular processes, sphingolipid metabolism also crucially modulates the T\(_{reg}\)/T\(_{conv}\) balance. However, our understanding of how sphingolipid metabolism is involved in T cell biology is still evolving and a better characterization of the tools at hand is required to advance the field. Therefore, we established a reductionist liposomal membrane model system to imitate the plasma membrane of mouse T\(_{reg}\) and T\(_{conv}\) with regards to their ceramide content. We found that the capacity of membranes to incorporate externally added azide-functionalized ceramide positively correlated with the ceramide content of the liposomes. Moreover, we studied the impact of the different liposomal preparations on primary mouse splenocytes in vitro. The addition of liposomes to resting, but not activated, splenocytes maintained viability with liposomes containing high amounts of C\(_{16}\)-ceramide being most efficient. Our data thus suggest that differences in ceramide post-incorporation into T\(_{reg}\) and T\(_{conv}\) reflect differences in the ceramide content of cellular membranes. KW - liposome KW - ceramide KW - cell membrane model Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-286130 SN - 2079-4983 VL - 13 IS - 3 ER -