TY - JOUR A1 - Djuzenova, Cholpon S. A1 - Fiedler, Vanessa A1 - Memmel, Simon A1 - Katzer, Astrid A1 - Sisario, Dmitri A1 - Brosch, Philippa K. A1 - Göhrung, Alexander A1 - Frister, Svenja A1 - Zimmermann, Heiko A1 - Flentje, Michael A1 - Sukhorukov, Vladimir L. T1 - Differential effects of the Akt inhibitor MK-2206 on migration and radiation sensitivity of glioblastoma cells JF - BMC Cancer N2 - Background Most tumor cells show aberrantly activated Akt which leads to increased cell survival and resistance to cancer radiotherapy. Therefore, targeting Akt can be a promising strategy for radiosensitization. Here, we explore the impact of the Akt inhibitor MK-2206 alone and in combination with the dual PI3K and mTOR inhibitor PI-103 on the radiation sensitivity of glioblastoma cells. In addition, we examine migration of drug-treated cells. Methods Using single-cell tracking and wound healing migration tests, colony-forming assay, Western blotting, flow cytometry and electrorotation we examined the effects of MK-2206 and PI-103 and/or irradiation on the migration, radiation sensitivity, expression of several marker proteins, DNA damage, cell cycle progression and the plasma membrane properties in two glioblastoma (DK-MG and SNB19) cell lines, previously shown to differ markedly in their migratory behavior and response to PI3K/mTOR inhibition. Results We found that MK-2206 strongly reduces the migration of DK-MG but only moderately reduces the migration of SNB19 cells. Surprisingly, MK-2206 did not cause radiosensitization, but even increased colony-forming ability after irradiation. Moreover, MK-2206 did not enhance the radiosensitizing effect of PI-103. The results appear to contradict the strong depletion of p-Akt in MK-2206-treated cells. Possible reasons for the radioresistance of MK-2206-treated cells could be unaltered or in case of SNB19 cells even increased levels of p-mTOR and p-S6, as compared to the reduced expression of these proteins in PI-103-treated samples. We also found that MK-2206 did not enhance IR-induced DNA damage, neither did it cause cell cycle distortion, nor apoptosis nor excessive autophagy. Conclusions Our study provides proof that MK-2206 can effectively inhibit the expression of Akt in two glioblastoma cell lines. However, due to an aberrant activation of mTOR in response to Akt inhibition in PTEN mutated cells, the therapeutic window needs to be carefully defined, or a combination of Akt and mTOR inhibitors should be considered. KW - DNA damage KW - glioblastoma multiforme KW - histone H2AX KW - irradiation KW - migration KW - mTOR KW - PTEN KW - p53 KW - radiation sensitivity KW - wound healing Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-200290 VL - 19 ER - TY - JOUR A1 - Brosch, Philippa K. A1 - Korsa, Tessa A1 - Taban, Danush A1 - Eiring, Patrick A1 - Hildebrand, Sascha A1 - Neubauer, Julia A1 - Zimmermann, Heiko A1 - Sauer, Markus A1 - Shirakashi, Ryo A1 - Djuzenova, Cholpon S. A1 - Sisario, Dmitri A1 - Sukhorukov, Vladimir L. T1 - Glucose and inositol transporters, SLC5A1 and SLC5A3, in glioblastoma cell migration JF - Cancers N2 - (1) Background: The recurrence of glioblastoma multiforme (GBM) is mainly due to invasion of the surrounding brain tissue, where organic solutes, including glucose and inositol, are abundant. Invasive cell migration has been linked to the aberrant expression of transmembrane solute-linked carriers (SLC). Here, we explore the role of glucose (SLC5A1) and inositol transporters (SLC5A3) in GBM cell migration. (2) Methods: Using immunofluorescence microscopy, we visualized the subcellular localization of SLC5A1 and SLC5A3 in two highly motile human GBM cell lines. We also employed wound-healing assays to examine the effect of SLC inhibition on GBM cell migration and examined the chemotactic potential of inositol. (3) Results: While GBM cell migration was significantly increased by extracellular inositol and glucose, it was strongly impaired by SLC transporter inhibition. In the GBM cell monolayers, both SLCs were exclusively detected in the migrating cells at the monolayer edge. In single GBM cells, both transporters were primarily localized at the leading edge of the lamellipodium. Interestingly, in GBM cells migrating via blebbing, SLC5A1 and SLC5A3 were predominantly detected in nascent and mature blebs, respectively. (4) Conclusion: We provide several lines of evidence for the involvement of SLC5A1 and SLC5A3 in GBM cell migration, thereby complementing the migration-associated transportome. Our findings suggest that SLC inhibition is a promising approach to GBM treatment. KW - volume regulation KW - transportome KW - phlorizin Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-297498 SN - 2072-6694 VL - 14 IS - 23 ER -