TY - JOUR A1 - Grözinger, Franziska A1 - Thein, Jürgen A1 - Feldhaar, Heike A1 - Rödel, Mark-Oliver T1 - Giants, Dwarfs and the Environment - Metamorphic Trait Plasticity in the Common Frog JF - PLOS ONE N2 - In order to understand adaptation processes and population dynamics, it is central to know how environmental parameters influence performance of organisms within populations, including their phenotypes. The impact of single or few particular parameters in concert was often assessed in laboratory and mesocosm experiments. However, under natural conditions, with many biotic and abiotic factors potentially interacting, outcomes on phenotypic changes may be different. To study the potential environmental impact on realized phenotypic plasticity within a natural population, we assessed metamorphic traits (developmental time, size and body mass) in an amphibian species, the European common frog Rana temporaria, since a) larval amphibians are known to exhibit high levels of phenotypic plasticity of these traits in response to habitat parameters and, b) the traits' features may strongly influence individuals' future performance and fitness. In 2007 we studied these metamorphic traits in 18 ponds spread over an area of 28 km 2. A subset of six ponds was reinvestigated in 2009 and 2010. This study revealed locally high variances in metamorphic traits in this presumed generalist species. We detected profound differences between metamorphing froglets (up to factor ten); both between and within ponds, on a very small geographic scale. Parameters such as predation and competition as well as many other pond characteristics, generally expected to have high impact on development, could not be related to the trait differences. We observed high divergence of patterns of mass at metamorphosis between ponds, but no detectable pattern when metamorphic traits were compared between ponds and years. Our results indicate that environment alone, i.e. as experienced by tadpoles sharing the same breeding pond, can only partly explain the variability of metamorphic traits observed. This emphasizes the importance to assess variability of reaction norms on the individual level to explain within-population variability. KW - rana temporaria populations KW - prey growth rate KW - phenotypic plasticity KW - larval density KW - amphibian metamorphosis KW - ambystoma opacum KW - predation risk KW - life history KW - developmental plasticity KW - adaptive plasticity Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-117203 SN - 1932-6203 VL - 9 IS - 3 ER - TY - JOUR A1 - Drakulić, Sanja A1 - Feldhaar, Heike A1 - Lisičić, Duje A1 - Mioč, Mia A1 - Cizelj, Ivan A1 - Seiler, Michael A1 - Spatz, Theresa A1 - Rödel, Mark-Oliver T1 - Population-specific effects of developmental temperature on body condition and jumping performance of a widespread European frog JF - Ecology and Evolution N2 - All physiological processes of ectotherms depend on environmental temperature. Thus, adaptation of physiological mechanisms to the thermal environments is important for achieving optimal performance and fitness. The European Common Frog, Rana temporaria, is widely distributed across different thermal habitats. This makes it an exceptional model for studying the adaptations to different thermal conditions. We raised tadpoles from Germany and Croatia at two constant temperature treatments (15°C, 20°C), and under natural temperature fluctuations (in outdoor treatments), and tested how different developmental temperatures affected developmental traits, that is, length of larval development, morphometrics, and body condition, as well as jumping performance of metamorphs. Our results revealed population‐specific differences in developmental time, body condition, and jumping performance. Croatian frogs developed faster in all treatments, were heavier, in better body condition, and had longer hind limbs and better jumping abilities than German metamorphs. The populations further differed in thermal sensitivity of jumping performance. While metamorphs from Croatia increased their jumping performance with higher temperatures, German metamorphs reached their performance maximum at lower temperatures. These population‐specific differences in common environments indicate local genetic adaptation, with southern populations being better adapted to higher temperatures than those from north of the Alps. KW - Amphibians KW - ectotherms KW - physiological traits KW - plasticity KW - thermal adaptation Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-164960 VL - 6 IS - 10 ER - TY - JOUR A1 - Peters, Marcell K. A1 - Hemp, Andreas A1 - Appelhans, Tim A1 - Behler, Christina A1 - Classen, Alice A1 - Detsch, Florian A1 - Ensslin, Andreas A1 - Ferger, Stefan W. A1 - Frederiksen, Sara B. A1 - Gebert, Frederike A1 - Haas, Michael A1 - Helbig-Bonitz, Maria A1 - Hemp, Claudia A1 - Kindeketa, William J. A1 - Mwangomo, Ephraim A1 - Ngereza, Christine A1 - Otte, Insa A1 - Röder, Juliane A1 - Rutten, Gemma A1 - Costa, David Schellenberger A1 - Tardanico, Joseph A1 - Zancolli, Giulia A1 - Deckert, Jürgen A1 - Eardley, Connal D. A1 - Peters, Ralph S. A1 - Rödel, Mark-Oliver A1 - Schleuning, Matthias A1 - Ssymank, Axel A1 - Kakengi, Victor A1 - Zhang, Jie A1 - Böhning-Gaese, Katrin A1 - Brandl, Roland A1 - Kalko, Elisabeth K.V. A1 - Kleyer, Michael A1 - Nauss, Thomas A1 - Tschapka, Marco A1 - Fischer, Markus A1 - Steffan-Dewenter, Ingolf T1 - Predictors of elevational biodiversity gradients change from single taxa to the multi-taxa community level JF - Nature Communications N2 - The factors determining gradients of biodiversity are a fundamental yet unresolved topic in ecology. While diversity gradients have been analysed for numerous single taxa, progress towards general explanatory models has been hampered by limitations in the phylogenetic coverage of past studies. By parallel sampling of 25 major plant and animal taxa along a 3.7 km elevational gradient on Mt. Kilimanjaro, we quantify cross-taxon consensus in diversity gradients and evaluate predictors of diversity from single taxa to a multi-taxa community level. While single taxa show complex distribution patterns and respond to different environmental factors, scaling up diversity to the community level leads to an unambiguous support for temperature as the main predictor of species richness in both plants and animals. Our findings illuminate the influence of taxonomic coverage for models of diversity gradients and point to the importance of temperature for diversification and species coexistence in plant and animal communities. KW - community ecology KW - macroecology KW - tropical ecology KW - biodiversity Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-169374 VL - 7 ER -