TY - THES A1 - Miller, Kirill T1 - Untersuchung von Nanostrukturen basierend auf LaAlO\(_3\)/SrTiO\(_3\) für Anwendungen in nicht von-Neumann-Rechnerarchitekturen T1 - Investigation of nanostructures based on LaAlO\(_3\)/SrTiO\(_3\) for applications in non von Neumann architectures N2 - Die Dissertation beschäftigt sich mit der Analyse von oxidischen Nanostrukturen. Die Grundlage der Bauelemente stellt dabei die LaAlO3/SrTiO3-Heterostruktur dar. Hierbei entsteht an der Grenzfläche beider Übergangsmetalloxide ein quasi zweidimensionales Elektronengas, welches wiederum eine Fülle von beachtlichen Eigenschaften und Charakteristika zeigt. Mithilfe lithographischer Verfahren wurden zwei unterschiedliche Bauelemente verwirklicht. Dabei handelt es sich einerseits um einen planaren Nanodraht mit lateralen Gates, welcher auf der Probenoberfläche prozessiert wurde und eine bemerkenswerte Trialität aufweist. Dieses Bauelement kann unter anderem als ein herkömmlicher Feldeffekttransistor agieren, wobei der Ladungstransport durch die lateral angelegte Spannung manipuliert wird. Zusätzlich konnten auch Speichereigenschaften beobachtet werden, sodass das gesamte Bauelement als ein sogenannter Memristor fungieren kann. In diesem Fall hängt der Ladungstransport von der Elektronenakkumulation auf den lateralen potentialfreien Gates ab. Die Memristanz des Nanodrahts lässt sich unter anderem durch Lichtleistungen im Nanowattbereich und mithilfe von kurzen Spannungspulsen verändern. Darüber hinaus kann die Elektronenakkumulation auch in Form einer memkapazitiven Charakteristik beobachtet werden. Neben dem Nanodraht wurde auch eine Kreuzstruktur, die eine ergänzende ferromagnetischen Elektrode beinhaltet, realisiert. Mit diesem neuartigen Bauteil wird die Umwandlung zwischen Spin- und Ladungsströmen innerhalb der nanoskaligen Struktur untersucht. Hierbei wird die starke Spin-Bahn-Kopplung im quasi zweidimensionalen Elektronengas ausgenutzt. N2 - The dissertation focuses on the analysis of oxide nanostructures. The basis of the devices consists of the LaAlO3/SrTiO3 heterostructure. A quasi two-dimensional electron gas is formed at the interface of the two transition metal oxides, which in turn exhibits a plethora of remarkable properties and characteristics. Two different components were realized using lithographic processes. The first is a planar nanowire with lateral gates, which was processed on the sample surface and exhibits remarkable triality. Among other things, this device can act as a conventional field-effect transistor, whereby the charge transport is manipulated by the laterally applied voltage. In addition, storage properties could also be observed, so that the entire component can function as a so-called memristor. In this case, the charge transport depends on the accumulation of electrons on the floating gates. The memristance of the nanowire can be altered using light power in the nanowatt range and with the aid of short voltage pulses. In addition, electron accumulation can also be observed in the form of a memcapacitive characteristic. In addition to the nanowire, a cross structure containing a complementary ferromagnetic electrode was also realized. This novel device is used to investigate the conversion between spin and charge currents within the nanoscale structure. Here, the strong spin-orbit coupling in the quasi two-dimensional electron gas is utilized. KW - Memristor KW - Heterostruktur-Bauelement KW - Spin-Bahn-Wechselwirkung KW - Grenzfläche KW - Übergangsmetalloxide KW - LaAlO\(_3\)/SrTiO\(_3\) KW - Transportspektroskopie KW - Spin-Ladungs-Umwandlung KW - Memkondensator KW - Nanoelektronik Y1 - 2024 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-354724 ER - TY - THES A1 - Gram, Maximilian T1 - Neue Methoden der Spin-Lock-basierten Magnetresonanztomographie: Myokardiale T\(_{1ρ}\)-Quantifizierung und Detektion magnetischer Oszillationen im nT-Bereich T1 - New methods of spin-lock-based magnetic resonance imaging: myocardial T\(_{1ρ}\) quantification and detection of magnetic oscillations in the nT range N2 - Das Ziel der vorliegenden Arbeit war die Entwicklung neuer, robuster Methoden der Spin-Lock-basierten MRT. Im Fokus stand hierbei vorerst die T1ρ-Quantifizierung des Myokards im Kleintiermodell. Neben der T1ρ-Bildgebung bietet Spin-Locking jedoch zusätzlich die Möglichkeit der Detektion ultra-schwacher, magnetischer Feldoszillationen. Die Projekte und Ergebnisse, die im Rahmen dieses Promotionsvorhabens umgesetzt und erzielt wurden, decken daher ein breites Spektrum der Spin-lock basierten Bildgebung ab und können grob in drei Bereiche unterteilt werden. Im ersten Schritt wurde die grundlegende Pulssequenz des Spin-Lock-Experimentes durch die Einführung des balancierten Spin-Locks optimiert. Der zweite Schritt war die Entwicklung einer kardialen MRT-Sequenz für die robuste Quantifizierung der myokardialen T1ρ-Relaxationszeit an einem präklinischen Hochfeld-MRT. Im letzten Schritt wurden Konzepte der robusten T1ρ-Bildgebung auf die Methodik der Felddetektion mittels Spin-Locking übertragen. Hierbei wurden erste, erfolgreiche Messungen magnetischer Oszillationen im nT-Bereich, welche lokal im untersuchten Gewebe auftreten, an einem klinischen MRT-System im menschlichen Gehirn realisiert. N2 - The main goal of the present work was to develop new, robust methods of spin-lock-based MRI. The initial focus was on T1ρ quantification of the myocardium in small animal models. However, in addition to T1ρ imaging, spin-locking offers the possibility of detecting ultra-weak magnetic field oscillations. The projects and results realized and obtained in this PhD project therefore cover a broad spectrum of spin-lock based imaging and can be roughly divided into three areas. The first step was to optimize the basic pulse sequence of the spin-lock experiment by introducing balanced spin-locking. The second step was to develop a cardiac MRI sequence for robust quantification of the myocardial T1ρ relaxation time on a preclinical high-field MRI scanner. In the final step, concepts of robust T1ρ imaging were adapted to spin-lock based magnetic field detection. First successful measurements of magnetic field oscillations in the nT range, which occur locally inside the tissue under investigation, were realized on a clinical MRI system in the human brain. KW - Kernspintomografie KW - Magnetresonanztomographie KW - Kernspinresonanz KW - Spin-Lock KW - T1ρ KW - T1rho KW - Kardio-MRT KW - Rotary Excitation KW - Myokardiale T1ρ-Quantifizierung KW - Felddetektion KW - funktionelle MRT Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-322552 ER - TY - THES A1 - Lutter, Fabian T1 - Elementsensitive Bildgebung - Einsatz chromatischer Pixelarrays in Röntgen nano-CT T1 - Element sensitive imaging - Use of chromatic pixel arrays in X-ray nano-CT N2 - Diese Arbeit befasst sich mit der Weiterentwicklung und Charakterisierung des XRM-II nanoCT Systems, sowie dessen Möglichkeiten zur Materialtrennung und Elementbestimmung in der nano-Computertomographie. Beim XRM-II nanoCT System handelt es sich um ein Röntgenmikroskop, welches in ein Rasterelektronenmikroskop integriert ist, und auf dem Prinzip der geometrischen Vergrößerung basiert. Neben zweidimensionalen Durchstrahlungsbildern ist dieses Mikroskop auch zur dreidimensionalen Bildgebung mittels Computertomographie fähig. Der Ausgangspunkt für die Weiterentwicklung ist das XRM-II, mit welchem bereits Computertomographien im Nanometerbereich möglich waren. Deren Aufnahmedauer liegt zwischen 14 und 21 Tagen, was das System trotz seiner hohen Auflösung wenig praktikabel macht. Durch eine Anpassung der Blendeneinstellungen am Rasterelektronenmikroskop konnte der Strahlstrom um den Faktor 40 erhöht und damit die Aufnahmedauer auf 24 Stunden reduziert werden, wobei weiterhin eine zweidimensionale Auflösung von \(167 \pm 9\) nm erreicht wird. Durch die Trennung von Objekt- und Targetmanipulator lassen sich beide unabhängig und genauer bewegen, wodurch es möglich ist selbst 50 nm große Strukturen abzubilden. Die Charakterisierung erfolgt sowohl für das komplette System als auch getrennt in die entscheidenden Komponenten wie Target und Detektor. Für das Röntgentarget werden Monte-Carlo Simulationen zur Brennfleckgröße, welche entscheidend für die erreichbare Auflösung ist, durchgeführt und mit Auflösungstests verglichen. Der Röntgendetektor wird hinsichtlich seiner spektralen Auflösung überprüft, welche hauptsächlich vom Charge Sharing Effekt beeinflusst wird. Die Charakterisierung des Gesamtsystems erfolgt durch den Vergleich mit einer höher auflösenden Bildgebungsmethode, der FIB Tomographie. Hierbei wird die gleiche Probe, ein Bruchstück einer CPU, mit beiden Methoden unter der Voraussetzung einer ähnlichen Aufnahmezeit (24 h) untersucht. In der nano-CT kann ein 12 mal größeres Volumen analysiert werden, was jedoch eine geringere räumliche Auflösung als die FIB Tomographie mit sich bringt. Da die spektrale Auflösung des Detektors aufgrund des Charge Sharing begrenzt ist, lassen sich nur Materialien mit einem großen Unterschied in der Ordnungszahl mittels der Energieschwellen des Detektors trennen. Jedoch kann in Verbindung mit der geeigneten Wahl des Targetmaterials der Absorptionskontrast für leichte Materialien, wie beispielsweise \(SiO_2\) verbessert werden. Darüber hinaus ist es am XRM-II nanoCT möglich, durch das integrierte EDX-System, Elemente in der Computertomographie zu identifizieren. Dies wird anhand eines Drei-Wegekatalysators und eines NCA-Partikel gezeigt. N2 - The general topic of this thesis is the development and characterization of the XRM-II nanoCT system, as well as its possibilities for material separation in nano-computed tomographay. The XRM-II nanoCT system is an X-ray microscope integrated into a scanning electron microscope and is based on the principle of geometric magnification. In addition to two-dimensional radiographs, this system is also capable of three-dimensional imaging by using computed tomography. The starting point for the development is the XRM-II system, which is already capable of performing computed tomography in the nanometer range. The acquisition time is between 14 and 21 days, which is the reason why this system is impractical despite its high resolution. By adjusting the aperture settings on the scanning electron microscope, the beam current could be increased by a factor of 40, reducing the acquisition time to 24 hours, while the achievable resolution is still at \(167 \pm 9\) nm. By separating the object and target manipulator, their movement becomes independent and more precisely, resulting in the possibility of resolving even 50 nm sized structures. The characterization is done both for the complete system and separately for the decisive components such as target and detector. Monte Carlo simulations of the focal spot size, which is crucial for the achievable resolution, are performed for the X-ray target and are compared to resolution tests. The spectral resolution of the X-ray detector is checked, which is mainly influenced by the charge sharing effect. The complete system is characterized by the comparison of it to a higher resolving imaging method, the FIB Tomography. The exact same sample, a fragment of a CPU, is analyzed with both imaging methods under the restriction of a similar measurement time (24 h). In the nano-CT the examined volume is 12 times larger than in the FIB tomography, resulting in a lower spatial resolution. Since the spectral resolution of the detector is mainly limited by charge sharing, only materials with a large difference in atomic number can be separated using the detector's energy thresholds. In connection with an appropriate choice of target material, the absorption contrast for light materials such as \(SiO_2\) can be improved. Furthermore, it is possible to identify elements in the computed tomography on the XRM-II nanoCT system using the integrated EDX system. This is demonstrated on a three-way catalytic converter and on a NCA particle. KW - Computertomographie KW - Rasterelektronenmikroskopie KW - Nanometerbereich KW - Röntgendetektor KW - Energieauflösung KW - Elementbestimmung KW - nano-CT KW - Röntgenmikroskopie Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-319955 ER - TY - THES A1 - Rückert, Martin Andreas T1 - Rotationsdriftspektroskopie T1 - Rotational Drift Spectroscopy N2 - Die wachsende Verfügbarkeit von magnetischen Nanopartikeln (MNPs) mit funktionalisierten Partikeloberflächen eröffnet weitreichende Möglichkeiten für chemische, biologische und klinische Analysemethoden. Durch Funktionalisierung kann eine gezielte Interaktion mit Molekülen bewirkt werden, die im Allgemeinen auch die Beweglichkeit der MNPs verändern. Methoden zur Charakterisierung von MNPs wie bspw. AC-Suszeptometrie, Magnetorelaxometrie (MRX) oder Magnetic Particle Spectroscopy (MPS) können diese Änderung der Beweglichkeit bei MNPs messen, wenn es sich um MNPs handelt, deren magnetisches Moment im Partikel fixiert ist. Damit ist mit funktionalisierten MNPs indirekt auch die spezifische Messung von Molekülkonzentrationen möglich. MNPs können zudem in biokompatibler Form hergestellt werden und sind dadurch auch als in-vivo Marker einsetzbar. Das 2005 das erste Mal veröffentlichte Magnetic Particle Imaging (MPI) kann als ein mittels Gradientenfeldern um die räumliche Kodierung erweitertes MPS betrachtet werden. Dank biokompatibler MNPs handelt es sich dabei um eine in-vivo-taugliche, nicht-invasive Bildgebungsmethode. Mit funktionalisierten MNPs als Marker ist damit im Prinzip auch molekulare Bildgebung möglich, die durch Detektion der beteiligten Moleküle (Biomarker) Stoffwechselprozesse räumlich abbilden kann. Im Vergleich zur Bildgebung von Gewebe- und Knochenstrukturen lassen sich die diagnostischen Möglichkeiten durch molekulare Bildgebung erheblich erweitern. Rotationsdriftspektroskopie (Rotational Drift Spectroscopy, RDS) ist eine in dieser Arbeit entwickelte Methode für die induktive Messung der Beweglichkeit von MNPs in flüssiger Suspension. Es verwendet die Rotationsdrift von MNPs in rotierenden magnetischen Feldern als Grundlage und bietet das Potential die Änderungen der Beweglichkeit von MNPs mit einer Empfindlichkeit messen zu können, welche potentiell um mehrere Größenordnungen höher sein kann als mit den oben erwähnten Verfahren. Die vorliegende Arbeit konzentriert sich auf die Verwendbarkeit dieses Effekts als Spektroskopiemethode. Die Eigenschaften des RDS-Signals sind jedoch auch als Grundlage für räumliche Kodierung vielversprechend. In weiterführenden Projekten soll daher auch die Entwicklung von Rotationsdriftbildgebung (Rotating Drift Imaging, RDI) als ein nicht-invasives Verfahren für molekulare Bildgebung angestrebt werden. Der Grundgedanke von RDS entlehnt sich aus einem in 2006 veröffentlichten Sensordesign basierend auf magnetische Mikropartikel in einem schwachen rotierenden Magnetfeld. Das rotierende Magnetfeld ist dabei so schwach gewählt, dass sich das Partikel aufgrund der viskosen Reibung nicht mehr synchron mit dem externen Feld drehen kann. Die Frequenz der resultierenden asynchronen Rotationsdrift liegt unterhalb der Frequenz des externen Rotationsfelds und ist Abhängig von der viskosen Reibung. Aufgrund dieser Abhängigkeit können Änderungen im Reibungskoeffizienten des Partikels über Änderungen in der Rotationsdriftfrequenz gemessen werden. RDS zielt darauf ab, diese Rotationsdrift bei suspendierten MNPs über deren makroskopische Magnetisierung messen zu können. Damit wird u.a. auch die nicht-invasive Messung von MNPs innerhalb opaker biologischer Proben möglich. MNP-Suspensionen sind großzahlige Nanopartikel-ensembles und können nicht wie ein einzelnes Mikropartikel gemessen werden. Für die induktive Messung ist vor dem Start eine Ausrichtung aller magnetischen Momente nötig, da sich deren makroskopische Magnetisierung andernfalls zu Null addiert. Aufgrund von Rotationsdiffusion bleibt diese Ausrichtung nur eine begrenzte Zeit bestehen, so dass auch die eigentliche Messung des RDS-Signals nur eine begrenzte Zeit möglich ist. Diese Ausrichtung wurde in den ersten Experimenten durch einen kurzen Magnetfeldpuls erzeugt. In der Empfangsspule ist die Induktion durch das Rotationsfeld typischer Weise um mehrere Größenordnungen höher als das zu erwartende Signal und muss durch einen Tiefpass unterdrückt werden. In diesem Tiefpassfilter ruft jedoch die Einkopplung des Anfangspulses eine Pulsantwort hervor, die ebenso mehrere Größenordnungen des zu erwartenden Signals betragen kann und ähnlich langsam wie typische Signale abklingt. Die Unterdrückung dieser Pulsantwort stellte in den ersten Experimenten die größte Hürde da. Der erste Aufbau hatte eine Relaisschaltung zur Pulsunterdrückung und resultierte in einer Totzeit von 3 ms zwischen Anfangspuls und Start der Messung. Aufgrund dieser Totzeit waren die ersten Messungen auf größere Agglomerate und Sedimente von MNPs beschränkt, da nur in diesem Fall eine hinreichend lange Zerfallsdauer der Probenmagnetisierung vorlag. Das Verhalten derartiger Partikelsysteme ist jedoch aufgrund von mechanischer und magnetischer Interpartikelwechselwirkung vergleichsweise komplex und theoretisch schwer modellierbar. Das primäre Zielsystem für RDS hingegen, Eindomänenpartikel mit im Partikel fixierter Magnetisierung und Punktsymmetrie bzgl. des Reibungstensors, erlaubt die Aufstellung einer parametrisierten Funktion für den Signalverlauf. Es ermöglicht somit aufgrund der besseren Berechenbarkeit eine solidere Auswertung des RDS-Signals. Um Eindomänenpartikel in wässriger Suspension mit typischen Partikeldurchmessern um 100 nm messen zu können ist eine Verkürzung der Totzeit auf mindestens 1/10 erforderlich. Prinzipiell kann diese Problematik durch die Verwendung schneller Halbleiterschalter in Verbindung mit einer präzise abstimmbaren induktiven Entkopplung des Spulensystems gemindert werden. Simulationen des RDS-Signals für verschiedene RDS-Sequenzen zeigen jedoch noch zwei weitere Möglichkeiten auf, die ohne aufwändigen Eingriffe in der Hardware auskommen. Zum einen kann durch orthogonales Frequenzmischen mit geeignetem Frequenz- und Phasenverhältnis eine Ausrichtung der magnetischen Momente bewirkt werden. Da die benötigten Frequenzen vollständig im Sperrband des Tiefpassfilters liegen können, lässt sich damit die Pulsantwort bei hinreichend „weichem“ Umschalten zwischen der Polarisierungssequenz und der RDS-Sequenz vollständig vermeiden. Darüber hinaus zeigt sich, dass es bei Anwesenheit eines schwachen Offsetfelds (< 10 % der Rotationsfeldamplitude) zu einer Ausrichtung der magnetischen Momente kommt, wenn das magnetische Rotationsfeld seine Richtung ändert und diese Änderung nicht abrupt erfolgt, sondern das Rotationsfeld übergangsweise in ein linear oszillierendes Feld übergeht. Hingegen wird die Wirkung des Offsetfelds durch das Rotationsfeld vor und nach dem Wechsel nahezu vollständig neutralisiert, so dass damit das Störsignale generierende Schalten eines Offsetfelds ersetzt werden kann. Es ist auf diese Weise nicht möglich, Echosequenzen zu erzeugen, da hier bei der für Echosequenzen benötigten Richtungsumkehr des Rotationsfelds die zuvor aufgeprägte Phasenverteilung durch das Offsetfeld zerstört wird und somit anstelle einer Signalechogenerierung eine neue RDS-Messung gestartet wird. Obwohl es Echosequenzen mit Anfangspuls erlauben, mehr MNP Parameter zu messen, bietet dieser Ansatz dennoch entscheidende Vorteile. So ergibt sich eine massive Vereinfachung der Hardware und es sind bei gleicher Rotationsfrequenz deutlich höhere Wiederholraten möglich. Die Vermeidung von Schaltvorgängen durch die Verwendung von Offsetfeldern ermöglicht es, mit dem ursprünglichem Aufbau auch Partikelsysteme zu untersuchen, deren Relaxationszeit weit unter 3 ms liegt. Hier zeigt sich, dass sich für unterschiedliche Partikelsysteme teils sehr charakteristische Signalmuster ergeben. Diese lassen sich grob in drei Kategorien einteilen. Die erste Kategorie sind suspendierte Eindomänenpartikel mit einer nicht vernachlässigbaren Relaxationszeit. Hier handelt es sich um das bevorzugte Zielsystem für RDS, das durch die Langevin-Gleichung beschrieben werden kann. Die zweite Kategorie sind Partikelsysteme, bei denen die Relaxationsdauer vernachlässigbar ist. In diesem Fall kann der Signalverlauf mit der Langevinfunktion beschrieben werden. Die dritte Kategorie umfasst alle übrigen Partikelsysteme, insbesondere Suspensionen von MNP-Clustern, die u.a. aufgrund von Interpartikelwechselwirkung komplexe Signalverläufe ergeben, die sich praktisch nicht berechnen lassen. Spektroskopische Untersuchungen sind damit dennoch durch das Anlegen entsprechender Referenzdatenbanken möglich (Fingerprinting). Multiparametrisches RDS, d.h. die Wiederholung der Messung für z.B. unterschiedliche Amplituden oder unterschiedliche Viskositäten des Suspensionsmediums, erzeugt aufgrund mehrerer nichtlinearer Abhängigkeiten massive Unterschiede im resultierenden multidimensionalen Datensatz. Das verspricht die Erreichbarkeit hoher spektroskopischer Trennschärfen bei geeigneter Partikel- und Sequenzoptimierung. Die Simulationen und experimentellen Ergebnisse dieser Arbeit zeigen grundsätzliche Hürden und Möglichkeiten für das ebenfalls in dieser Arbeit eingeführte RDS auf. Es zeigt damit grundlegende Aspekte auf, die für die Entwicklung von RDS-Hardware und die Optimierung von MNP-Suspensionen nötig sind. Mit RDS wird in weiterführenden Arbeiten die Entwicklung von hochempfindlichen Bioassays und die Erweiterung um die räumliche Kodierung angestrebt (RDI), da der zugrunde liegende Effekt zugleich sehr vielversprechend als Grundlage für molekulare Bildgebung ist. N2 - The growing availability of magnetic nanoparticles (MNPs) with functionalized particle surfaces opens up far-reaching possibilities for chemical, biological and clinical analytical methods. Functionalization can cause targeted interaction with molecules, which generally also change the mobility of MNPs. Methods for characterizing MNPs such as AC-susceptometry, magnetorelaxometry (MRX), or magnetic particle spectroscopy (MPS) can measure this change in mobility in MNPs if they are MNPs whose magnetic moment is fixed in the particle. Thus, functionalized MNPs can indirectly be used to specifically measure molecular concentrations. MNPs can also be produced in biocompatible form, making them useful as in vivo markers. Magnetic Particle Imaging (MPI), first published in 2005, can be viewed as an MPS extended by spatial coding using gradient fields. Thanks to biocompatible MNPs, it is an in vivo, non-invasive imaging method. With functionalized MNPs as markers, molecular imaging is thus in principle also possible, which can spatially map metabolic processes by detecting the molecules involved (biomarkers). Compared to imaging of tissue and bone structures, the diagnostic possibilities can be considerably extended by molecular imaging. Rotational drift spectroscopy (RDS) is a method developed in this work for inductively measuring the mobility of MNPs in liquid suspension. It uses the rotational drift of MNPs in rotating magnetic fields as a basis and offers the potential to measure the changes in the mobility of MNPs with a sensitivity that can potentially be several orders of magnitude higher than the methods mentioned above. The present work focuses on the applicability of this effect as a spectroscopy method. However, the properties of the RDS signal are also promising as a basis for spatial coding. Therefore, in further projects, the development of Rotating Drift Imaging (RDI) as a non-invasive method for molecular imaging will also be pursued. The basic idea of RDS is borrowed from a sensor design published in 2006 based on magnetic microparticles in a weak rotating magnetic field. The rotating magnetic field is chosen so weak that the particle cannot rotate synchronously with the external field due to viscous friction. The frequency of the resulting asynchronous rotational drift is below the frequency of the external rotating field and is dependent on the viscous friction. Due to this dependence, changes in the friction coefficient of the particle can be measured via changes in the rotational drift frequency. RDS aims to be able to measure this rotational drift in suspended MNPs via their macroscopic magnetization. Among other things, this will enable the non-invasive measurement of MNPs within opaque biological samples. MNP suspensions are large number nanoparticle ensembles and cannot be measured like a single microparticle. For inductive measurement, alignment of all magnetic moments is necessary before starting, otherwise their macroscopic magnetization adds up to zero. Due to rotational diffusion, this alignment remains only for a limited time, so that the actual measurement of the RDS signal is also possible only for a limited time. This alignment was created in the first experiments by a short magnetic field pulse. In the receiving coil, the induction due to the rotating field is typically several orders of magnitude higher than the expected signal and must be suppressed by a low-pass filter. In this low-pass filter, however, the injection of the initial pulse elicits a pulse response that can likewise be several orders of magnitude of the expected signal and decays similarly slowly to typical signals. Suppression of this pulse response was the major hurdle in the initial experiments. The initial setup had a relay circuit for pulse suppression and resulted in a dead time of 3 ms between the initial pulse and the start of the measurement. Due to this dead time, the first measurements were limited to larger agglomerates and sediments of MNPs, since only in this case there was a sufficiently long decay time of the sample magnetization. However, the behavior of such particle systems is comparatively complex and difficult to model theoretically due to mechanical and magnetic interparticle interactions. In contrast, the primary target system for RDS, single domain particles with magnetization fixed in the particle and point symmetry with respect to the friction tensor, allows the establishment of a parameterized function for the signal course. Thus, it allows a more solid evaluation of the RDS signal due to its better computability. In order to measure single domain particles in aqueous suspension with typical particle diameters around 100 nm, a reduction of the dead time to at least 1/10 is required. In principle, this problem can be mitigated by using fast semiconductor switches in conjunction with precisely tunable inductive decoupling of the coil system. Simulations of the RDS signal for various RDS sequences, however, reveal two other possibilities that do not require extensive intervention in the hardware. First, orthogonal frequency shuffling with suitable frequency and phase ratios can be used to cause alignment of the magnetic moments. Since the required frequencies can lie entirely within the stopband of the low-pass filter, this allows the pulse response to be completely avoided with sufficiently "soft" switching between the polarization sequence and the RDS sequence. Furthermore, it is shown that in the presence of a weak offset field (< 10 % of the rotating field amplitude), there is an alignment of the magnetic moments when the rotating magnetic field changes direction and this change does not occur abruptly, but the rotating field transitions to a linear oscillating field. On the other hand, the effect of the offset field is almost completely neutralized by the rotating field before and after the change, so that the switching of an offset field, which generates interference signals, can thus be replaced. It is not possible to generate echo sequences in this way, since here the previously imposed phase distribution is destroyed by the offset field when the direction of the rotation field is reversed, which is required for echo sequences, and thus a new RDS measurement is started instead of signal echo generation. Although echo sequences with an initial pulse allow more MNP parameters to be measured, this approach still offers decisive advantages. For example, there is a massive simplification of the hardware and significantly higher repetition rates are possible at the same rotation frequency. The avoidance of switching processes by using offset fields makes it possible to investigate particle systems with relaxation times far below 3 ms with the original setup. Here it is shown that for different particle systems partly very characteristic signal patterns result. These can be roughly divided into three categories. The first category is suspended single domain particles with a non- negligible relaxation time. This is the preferred target system for RDS, which can be described by the Langevin equation. The second category is particle systems where the relaxation time is negligible. In this case, the signal response can be described by the Langevin function. The third category includes all other particle systems, in particular suspensions of MNP clusters, which, due to interparticle interactions, among other things, yield complex signal courses that cannot be calculated in practice. Spectroscopic investigations are nevertheless possible by creating corresponding reference databases (fingerprinting). Multiparametric RDS, i.e. repeating the measurement for e.g. different amplitudes or different viscosities of the suspension medium, generates massive differences in the resulting multidimensional data set due to several nonlinear dependencies. This promises the achievability of high spectroscopic discriminatory power with suitable particle and sequence optimization. The simulations and experimental results of this work highlight fundamental hurdles and opportunities for RDS, which is also introduced in this work. It thus highlights fundamental aspects necessary for the development of RDS hardware and the optimization of MNP suspensions. With RDS, further work will aim to develop highly sensitive bioassays and extend them to include spatial encoding (RDI), as the underlying effect is at the same time very promising as a basis for molecular imaging. KW - Magnetteilchen KW - Nanopartikel KW - Spektroskopie KW - Magnetpartikelspektroskopie KW - magnetic nanoparticles KW - rotating magnetic field Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-268631 ER - TY - THES A1 - Stahlhut, Philipp T1 - Konzeption und Aufbau einer Nanofokus Labor CT Anlage in Reflexionsgeometrie auf Basis eines Rasterelektronenmikroskops T1 - Design and construction of a nanofocus laboratory CT system in reflection geometry based on a scanning electron microscope N2 - In der vorliegenden Arbeit werden die Konzeption und Realisierung eines Computertomographen zur Materialanalyse auf Basis eines Rasterelektronenmikroskops mit einem räumlichen Auflösungsvermögen im Nanometerbereich diskutiert. Durch einen fokussierten Elektronenstrahl, der mit einer Beschleunigungsspannung von 30 kV auf eine mikrostrukturierte Wolframnadel mit einem Spitzenradius von bis zu 50 nm gezielt wird, entsteht ein kleiner Röntgenbrennfleck über den mit geometrischer Vergrößerung hochauflösende Projektionen eines zu untersuchenden Objekts erzeugt werden. Durch Rotation des Testobjekts werden Projektionen aus verschiedenen Blickwinkeln aufgenommen und über einen speziellen Rekonstruktionsalgorithmus zu einem 3-dimensionalen Bild zusammengefügt. Bei der Beurteilung der Einzelkomponenten des Geräts wird insbesondere auf Struktur, Form und den elektrochemischen Herstellungsprozess der Röntgenquelle eingegangen. Eine ausreichend genaue Positionierung von Messobjekt und Röntgenbrennfleck wird über Piezoachsen realisiert, während die Stabilität des Röntgenbrennflecks über die Elektronenoptik des Rasterelektronenmikroskops und die Form der Quellnadel optimiert wird. Das räumliche Auflösungsvermögen wird über die Linienspreizfunktion an Materialkanten abgeschätzt. Für eine Wolfram-Block-Quelle ergibt sich dabei ein Auflösungsvermögen von 325 nm – 400 nm in 3D, während der Quellfleck einer Wolframnadel das Auflösungsvermögen der Anlage auf 65 nm – 90 nm in 2D und 170 nm – 300 nm in 3D bei Messungen an einem AlCu29-Testobjekt anhebt. Außerdem werden die Auswirkungen der Phasenkontrastcharakteristik der Röntgenquelle auf die rekonstruierten Bilder nach Anwendung eines Paganin-Filters diskutiert. Dabei zeigt sich, dass durch Anwendung des Filters ein verbessertes Signal-zu-Rausch-Verhältnis auf Kosten der räumlichen Bildauflösung erzielt werden kann. Eine Vergleichsmessung mit einem kommerziell verfügbaren Röntgenmikroskop zeigt die Stärken des vorgestellten Systems bei Untersuchung von stark absorbierenden Messobjekten. Das kompakte Design erlaubt eine Weiterentwicklung in Richtung eines nanoCT-Moduls als Upgrade Option für Rasterelektronenmikroskope im Gegensatz zu den weitaus teureren bisher verbreiteten nanoCT-Geräten. N2 - The presented thesis discusses the conceptual design and realization of a computed tomography system for material analysis based on a scanning electron microscope with a spatial resolution in the nanometer range. A focused electron beam accelerated through a field of 30 kV aimed at a microstructured tungsten needle with a tip radius of up to 50 nm creates a small X-ray focal spot enabling high-resolution projections of an object via geometric magnification. By rotating the object, projections from different angles are recorded and combined into a 3-dimensional image using a special reconstruction algorithm. When assessing the individual components of the device, particular attention is paid to the structure, shape and the electrochemical manufacturing process of the X-ray source. Sufficiently accurate positioning of the sample and the X-ray focal spot is realized via piezo axes, while the stability of the focal spot is optimized via the electron optics of the scanning electron microscope and the shape of the source needle. The spatial resolution is estimated via the line spread function at material edges. For a tungsten block source, this results in a spatial resolution of 325 nm – 400 nm in 3D, while the source spot of a tungsten needle increases the spatial resolution of the system to 65 nm – 90 nm in 2D and 170 nm – 300 nm in 3D for measurements on an AlCu29 test object. In addition, the effects of the phase contrast characteristics of the X-ray source on the reconstructed images after applying a Paganin phase retrieval filter are discussed. It is shown that by applying the filter, an improved signal-to-noise ratio can be achieved at the expense of spatial image resolution. Comparable measurements with a commercially available X-ray microscope shows the strengths of the presented system when investigating strongly absorbing samples. The compact design allows development towards a nanoCT-module as an upgrade option for scanning electron microscopes, reaching a similar resolution as the nanoCT-devices that are commercially available up to now but at reduced costs. KW - Computertomographie KW - Rasterelektronenmikroskopie KW - Nanometerbereich KW - Laborgerät KW - Materialanalytik KW - Reflexionsgeometrie Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-302648 ER - TY - THES A1 - Jung, Johannes T1 - Wechselwirkungen zwischen Kantenzuständen auf dem topologisch kristallinen Isolator Pb\(_{1-x}\)Sn\(_x\)Se T1 - Interactions between edge states on the topologically crystalline insulator Pb\(_{1-x}\)Sn\(_x\)Se N2 - Einerseits besteht die einfachste Möglichkeit zum Ladungs- und Informationstransport zwischen zwei Punkten in deren direkter Verbindung durch eindimensionale Kanäle. Andererseits besitzen topologische Materialien exotische und äußerst vorteilhafte Eigenschaften, weshalb es nahe liegt, dass schon bald neue Anwendungen aus ihnen realisiert werden. Wenn diese beiden Entwicklungen zusammenkommen, dann ist ein grundlegendes Verständnis von Quanteninterferenz oder Hybridisierungseffekten in eindimensionalen, topologischen Kanälen von fundamentaler Wichtigkeit. Deshalb werden in der vorliegenden Arbeit Wechselwirkungen von eindimensionalen, topologisch geschützten Kantenzuständen, die an ungeradzahligen Stufenkanten auf der (001)–Oberfläche von Pb1−xSnxSe auftreten, untersucht. Aufgrund der lateralen Lokalisierung auf wenige Nanometer um eine Stufenkante herum und der Notwendigkeit zwischen gerad- und ungeradzahligen Stufenkantenhöhen zu unterscheiden, bieten sich die Rastertunnelmikroskopie und -spektroskopie als Methoden an. Die neu entdeckten Kopplungs- bzw. Wechselwirkungseffekte zwischen benachbarten Kantenzuständen treten auf, sobald der Stufe zu Stufe Abstand einen kritischen Wert von dkri ≈ 25nm unterschreitet. Dieses Kriterium kann durch verschiedene räumliche Anordnungen von Stufenkanten erfüllt werden. Infolgedessen werden sich kreuzende, parallel verlaufende und zusammenlaufende Stufenkanten genauer untersucht. Bei letzteren verändert sich entlang der Struktur kontinuierlich der Abstand und damit die Kopplungsstärke zwischen den beiden Randkanälen. Infolgedessen wurden drei Koppelungsregime identifiziert. (I) Ausgehend von einer schwachen Wechselwirkung zeigt der für die Kantenzustände charakteristische Peak im Spektrum zunächst eine Verbreiterung und Verminderung der Intensität. (II) Mit weiter zunehmender Wechselwirkung beginnt sich der Zustand in zwei Peaks aufzuspalten, sodass ab dkri ≈ 15nm an beiden Stufenkanten durchgehen eine Doppelpeak zu beobachten ist . Mit weiter abnehmendem Abstand erreicht die Aufspaltung Werte von einigen 10 meV, während sich die Intensität weiter reduziert. (III) Sobald zwei Stufenkanten weniger als etwa 5nm voneinander getrennt sind, konvergieren aufgrund der schwindenden Intensität und des sinkenden energetischen Abstands der beiden Peaks zu den van Hove Singularitäten die Spektren an den Stufenkanten gegen das Spektrum über einer Terrasse. i Die Aufspaltung verläuft in den Bereichen I und II asymmetrisch, d. h. ein Peak verbleibt ungefähr bei der Ausgangsenergie, während der andere mit zunehmender Kopplung immer weiter weg schiebt. Bezüglich der Asymmetrie kann kein Unterschied festgestellt werden, ob die zusammenlaufenden Stufenkanten eine Insel oder Fehlstelleninsel bilden oder ob die Stufenkanten sogar gänzlich parallel verlaufen. Es zeigt sich keine Präferenz, ob zunächst der niederenergetische oder der hochenergetische Peak schiebt. Erst im Regime starker Kopplung (III) kann beobachtet werden, dass beide Peaks die Ausgangsenergie deutlich verlassen. Im Gegensatz dazu kann bei sich kreuzenden Stufen ein erheblicher Einfluss der Geometrie, in Form des eingeschlossenen Winkels, auf das Spektrum beobachtet werden. Unabhängig vom Winkel existiert am Kreuzungspunkt selbst kein Kantenzustand mehr. Die Zustände an den vier Stufen beginnen, abhängig vom Winkel, etwa 10-15nm vor dem Kreuzungspunkt abzuklingen. Überraschenderweise zeigt sich dabei, dass im Fall rechtwinkliger Stufen gar keine Aufspaltung zu beobachten ist, während bei allen anderen Winkeln ein Doppelpeak festgestellt werden kann. Diese Entdeckung deutet auf Orthogonalität bezüglich einer Quantenzahl bei den beteiligten Kantenzustände hin. Neben einer nur theoretisch vorhergesagten Spinpolarisation kann dieser Effekt auch von dem orbitalem Charakter der beteiligten Dirac–Kegel verursacht sein. Da der topologische Schutz in Pb1−xSnxSe durch Kristallsymmetrien garantiert ist, wird als letzter intrinsischer Effekt der Einfluss von eindimensionalen Defekten auf die Kantenzustände untersucht. Berücksichtigt werden dabei ein nicht näher klassifizierbarer, oberflächennaher Defekt und Schraubversetzungen. In beiden Fällen kann ebenfalls eine Aufspaltung des Kantenzustands in einen Doppelpeak gezeigt werden. Im zweiten Teil dieser Arbeit werden die Grundlagen für eine Wiederverwendung von (Pb,Sn)Se–Oberflächen bei zukünftige Experimenten mit (magnetischen) Adatomen geschaffen. Durch Kombination von Inoenzerstäubung und Tempern wird dabei nicht nur eine gereinigte Oberfläche erzeugt, sondern es kann auch das Ferminiveau gezielt erhöht oder gesenkt werden. Dieser Effekt beruht auf eine Modifikation der Sn– Konzentration und der von ihr kontrollierten Anzahl an Defektelektronen. Als letztes sind erste Messungen an Cu- und Fe–dotierte Proben gezeigt. Durch die Adatome tritt eine n–Dotierung auf, welche den Dirac–Punkt des Systems in Richtung des Ferminiveaus verschiebt. Sobald er dieses erreicht hat kommt es zu Wechselwirkungsphänomenen an freistehenden Stufenkanten. Dies führt zu einer Doppelpeakstruktur mit einer feinen Aufspaltung von wenigen meV. Das Phänomen ist auf ein schmales Energiefenster beschränkt, bei dem die Lage des Dirac–Punkts nur etwa 5 meV (in beide Richtungen) von der des Ferminiveaus abweichen darf. N2 - First, the simplest possibility of transporting charges and information between twopoints is given by there direct connection due to one dimensional channels. Second,topological materials have exotic and extremely advantageous properties, which makethem suitable for further applications. If these two come together, then a basic understandingof quantum interference or hybridization effects in one-dimensional, topologicalchannels is of fundamental importance. Therefore, in the present work, interactionsof one dimensional, topologically protected edge states, hosted at odd numbered stepedges on the (001) surface of (Pb,Sn)Se, are investigated.Due to the lateral localization to a few nanometers around a step edge and the needto differentiate between even and odd numbered step heights, scanning tunneling microscopyand spectroscopy are the tools of choice. The newly discovered coupling orinteraction effects between neighboring edge states appear as soon as their distancedecrease below a critical value of dcri ≈ 25 nm. This criterion can be met by variousspatial arrangements of step edges. As a result, crossing, parallel and converging stepedges are examined more closely.With the latter, the distance and thus the coupling strength between the two edgechannels changes continuously along the structure. As a result, three coupling regimeswere identified. (I) Starting from a weak interaction, the peak in the spectrum that ischaracteristic of the edge states initially shows a broadening and reduction in intensity.(II) With increasing interaction, the state begins to split into two peaks, so thatfrom dcri ≈ 15nm a double peak can be observed at both step edges. As the distancecontinues to decrease, the splitting reaches values of a few 10 meV, while the intensitycontinues to drop. (III) As soon as two step edges are separated by less than about 5nm, the spectra at the step edges converge against the spectrum over a terrace due tothe decreasing intensity and the decreasing energetic distance of the two peaks to thevan Hove singularities.iiiThe split is asymmetrical in areas I and II, which means that one peak remains roughlyat the original energy, while the other shifts further and further away with increasingcoupling. With regard to the asymmetry, no difference can be determined whether theconverging step edges form an island, a vacancy island or even run completely parallel.There is no preference as to whether the low energy or high energy peak shifts. Onlyin the regime of strong coupling (III) both peaks clearly leave the initial energy.In contrast to this, a considerable influence of the geometry on the spectrum can beobserved, with the included angle as parameter, for intersecting steps. Independentof the angle, there is no longer an edge state at the intersection itself. The statesat the four edges start to decay, depending on the angle, about 10-15nm before thepoint of intersection. Surprisingly, it turns out that in the case of right angled steps nosplitting at all can be observed, while a double peak can be found for all other angles.This discovery indicates orthogonality with respect to a quantum number in the edgestates involved. In addition to a theoretically predicted spin polarization, this effectcan also be caused by the orbital character of the Dirac cones involved.Since the topological protection in Pb1−xSnxSe is guaranteed by crystal symmetries,the last intrinsic effect to be examined is the influence of one dimensional defects onthe edge states. A near-surface defect, which cannot be classified in any more detailand a screw dislocation are taken into account. In both cases, a splitting of the edgestate into a double peak can also be shown.In the second part of this thesis the basis for reuse of surfaces in future experimentswith (magnetic) adatoms is created. The combination of sputtering and annealing notonly creates a cleaned surface, but in addition it tunes the Fermi level in a controllableway. This effect is based on a modification of the Sn concentration and the associatednumber of holes.Finally, the first measurements on Cu and Fe-doped samples are shown. The adatomscause n-doping, which shifts the Dirac point of the system in the direction of theFermi level. As soon as he has achieved this, there is an interaction phenomenon at thefreestanding step edges. This leads to a double peak structure with a fine split of a fewmeV. This phenomenon is limited to a narrow energy window in which the position ofthe Dirac point may only deviate by about 5 meV (in both directions) from that of theFermi level. KW - Topologischer Isolator KW - Rastertunnelmikroskopie KW - PbSnSe KW - Scanning tunneling microscopy KW - edge states KW - Kantenzustand Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-298616 ER - TY - THES A1 - Niehörster, Thomas T1 - Spektral aufgelöste Fluoreszenzlebensdauer-Mikroskopie mit vielen Farben T1 - Spectrally resolved fluorescence lifetime imaging microscopy with many colours N2 - Die Fluoreszenzmikroskopie ist eine vielseitig einsetzbare Untersuchungsmethode für biologische Proben, bei der Biomoleküle selektiv mit Fluoreszenzfarbstoffen markiert werden, um sie dann mit sehr gutem Kontrast abzubilden. Dies ist auch mit mehreren verschiedenartigen Zielmolekülen gleichzeitig möglich, wobei üblicherweise verschiedene Farbstoffe eingesetzt werden, die über ihre Spektren unterschieden werden können. Um die Anzahl gleichzeitig verwendbarer Färbungen zu maximieren, wird in dieser Arbeit zusätzlich zur spektralen Information auch das zeitliche Abklingverhalten der Fluoreszenzfarbstoffe mittels spektral aufgelöster Fluoreszenzlebensdauer-Mikroskopie (spectrally resolved fluorescence lifetime imaging microscopy, sFLIM) vermessen. Dazu wird die Probe in einem Konfokalmikroskop von drei abwechselnd gepulsten Lasern mit Wellenlängen von 485 nm, 532nm und 640nm angeregt. Die Detektion des Fluoreszenzlichtes erfolgt mit einer hohen spektralen Auflösung von 32 Kanälen und gleichzeitig mit sehr hoher zeitlicher Auflösung von einigen Picosekunden. Damit wird zu jedem detektierten Fluoreszenzphoton der Anregungslaser, der spektrale Kanal und die Ankunftszeit registriert. Diese detaillierte multidimensionale Information wird von einem Pattern-Matching-Algorithmus ausgewertet, der das Fluoreszenzsignal mit zuvor erstellten Referenzpattern der einzelnen Farbstoffe vergleicht. Der Algorithmus bestimmt so für jedes Pixel die Beiträge der einzelnen Farbstoffe. Mit dieser Technik konnten pro Anregungslaser fünf verschiedene Färbungen gleichzeitig dargestellt werden, also theoretisch insgesamt 15 Färbungen. In der Praxis konnten mit allen drei Lasern zusammen insgesamt neun Färbungen abgebildet werden, wobei die Anzahl der Farben vor allem durch die anspruchsvolle Probenvorbereitung limitiert war. In anderen Versuchen konnte die sehr hohe Sensitivität des sFLIM-Systems genutzt werden, um verschiedene Zielmoleküle voneinander zu unterscheiden, obwohl sie alle mit demselben Farbstoff markiert waren. Dies war möglich, weil sich die Fluoreszenzeigenschaften eines Farbstoffmoleküls geringfügig in Abhängigkeit von seiner Umgebung ändern. Weiterhin konnte die sFLIM-Technik mit der hochauflösenden STED-Mikroskopie (STED: stimulated emission depletion) kombiniert werden, um so hochaufgelöste zweifarbige Bilder zu erzeugen, wobei nur ein einziger gemeinsamer STED-Laser benötigt wurde. Die gleichzeitige Erfassung von mehreren photophysikalischen Messgrößen sowie deren Auswertung durch den Pattern-Matching-Algorithmus ermöglichten somit die Entwicklung von neuen Methoden der Fluoreszenzmikroskopie für Mehrfachfärbungen. N2 - Fluorescence microscopy is an important and near-universal technique to examine biological samples. Typically, biomolecules are selectively labelled with fluorophores and then imaged with high contrast. This can be done for several target molecules simultaneously, using different fluorophores that are usually distinguished by their spectra. This thesis describes a method to maximize the number of simultaneous stainings. Not only the spectral information but also the temporal information of the fluorescence decay is exploited by means of spectrally resolved fluorescence lifetime imaging microscopy (sFLIM). Using a confocal laser scanning microscope, the sample is excited by three alternatingly pulsed lasers at 485 nm, 532 nm, and 640 nm. Fluorescence light is detected on 32 spectrally separated detection channels with high time resolution of a few picoseconds. Thus, in this setup, we record the excitation laser, the spectral channel, and the time of arrival for each fluorescence photon. This detailed multi-dimensional information is then processed by a pattern-matching algorithm that compares the fluorescence signal with reference patterns of the used fluorophores to determine the contribution of each fluorophore in each pixel. Using this technique we imaged five different stainings per excitation laser, implying that 15 simultaneous stainings should theoretically be achievable. Current constraints in the sample preparation procedure limited the number of simultaneous stainings to nine. In additional experiments, we exploited the sensitivity of the sFLIM system to image several different target molecules simultaneously with the same fluorophore, taking advantage of slight changes in the fluorescence behaviour of the fluorophore due to environmental changes. We also combined sFLIM with stimulated emission depletion (STED) to perform super-resolution multi-target imaging with two stainings that operated with one common STED laser. Thus, the simultaneous exploitation of several photophysical parameters, in combination with algorythmic evaluation, allowed us to devise novel modes of multi-target imaging in fluorescence microscopy. KW - Fluoreszenzmikroskopie KW - Fluoreszenzlebensdauer-Mikroskopie KW - Konfokale Mikroskopie KW - STED-Mikroskopie KW - Fluoreszenz KW - Mustervergleich KW - Pattern Matching KW - sFLIM KW - TCSPC KW - Mikroskopie KW - Microscopy Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-296573 ER - TY - THES A1 - Iff, Oliver T1 - Implementierung und Charakterisierung von Einzelphotonenquellen in zweidimensionalen Übergangsmetall-Dichalkogeniden und deren Kopplung an optische Resonatoren T1 - Implementation and characterization of single photon sources in two-dimensional transition-metal dichalcogenides and their coupling to optical resonators N2 - Schon heute bilden Einzelphotonenquellen einen wichtigen Baustein in der Photonik und Quanteninformation. Der Fokus der Forschung liegt entsprechend auf dem Finden und Charakterisieren dafür geeigneter Materialsysteme. Konkret beschäftigt sich die vorliegende Arbeit vorwiegend mit dem Übergangsmetall-Dichalkogenid (TMDC1 ) Wolframdiselenid und seinen Eigenschaften. Diese Wahl ist durch den direkte Zugang zu Einzelphotonenquellen begründet, die sich in dessen Monolagen ausbilden können. Diese Lichtquellen können über eine Modulation der Verspannung der Monolage gezielt aktiviert werden. Durch die, verglichen mit ihrem Volumen, riesige Kontaktfläche lassen sich Monolagen zudem mit Hilfe des Substrats, auf das sie transferiert wurden, wesentlich beeinflussen. Im Rahmen dieser Arbeit wurden Monolagen von WSe2 in unterschiedlichen Bauteilen wie zirkulare Bragg-Gittern oder vorstrukturierten, metallischen Oberflächen implementiert und die Photolumineszenz des TMDCs untersucht. Diese Arbeit belegt die Möglichkeit, Einzelphotonenquellen basierend aufWSe2 -Monolagen auf verschiedenste Weise modulieren zu können. Dank ihrer zwei- dimensionalen Geometrie lassen sie sich einfach in bestehende Strukturen integrieren oder auch in der Zukunft mit weiteren 2D-Materialien kombinieren. N2 - Single photon sources are an important building block in today’s photonics and quantum information. This is the reason why a big focus lies on the exploration of new, suitable material systems. Specifically, the work in hand mainly discusses the transition metal dichalcogenide (TMDC) tungsten diselenide and its properties. The reason for this is the easy access to single photon sources, which can be found in WSe2 monolayers. These can deterministically be activated by utilizing strain. As the interface between a transferred monolayer and its underlying substrate is huge compared to its volume, the substrate itself always has a big impact on the TMDC. In scope of this work, WSe2 monolayers were transferred on several devices like circular Bragg gratings or structured metal surfaces in order to investigate the optical response of the TMDC. This work therefore proves the concept of modulating single photon sources based on WSe2 monolayers in many different ways. Thanks to their two-dimensional nature, monolayers of TMDCs can easily be integrated in existing devices and combined with other 2D materials in the future. KW - Einzelphotonenemission KW - Photolumineszenz KW - Optik KW - Zweidimensionales Material KW - Schwache Kopplung Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-281404 ER - TY - THES A1 - Suchomel, Holger Maximilian T1 - Entwicklung elektrooptischer Bauteile auf der Basis von Exziton-Polaritonen in Halbleiter-Mikroresonatoren T1 - Development of electro-optical devices based on exciton polaritons in semiconductor microresonators N2 - Exziton-Polaritonen (Polaritonen), hybride Quasiteilchen, die durch die starke Kopplung von Quantenfilm-Exzitonen mit Kavitätsphotonen entstehen, stellen auf Grund ihrer vielseitigen und kontrollierbaren Eigenschaften einen vielversprechenden Kandidaten für die Entwicklung einer neuen Generation von nichtlinearen und integrierten elektrooptischen Bauteilen dar. Die vorliegende Arbeit beschäftigt sich mit der Entwicklung und Untersuchung kompakter elektrooptischer Bauelemente auf der Basis von Exziton-Polaritonen in Halbleitermikrokavitäten. Als erstes wird die Implementierung einer elektrisch angeregten, oberflächenemittierenden Polariton-Laserdiode vorgestellt, die ohne ein externes Magnetfeld arbeiten kann. Dafür wird der Schichtaufbau, der Q-Faktor, das Dotierprofil und die RabiAufspaltung der Polariton-Laserdiode optimiert. Der Q-Faktor des finalen Aufbaus beläuft sich auf Q ~ 16.000, während die Rabi-Aufspaltung im Bereich von ~ 11,0 meV liegt. Darauf aufbauend werden Signaturen der Polariton-Kondensation unter elektrischer Anregung, wie ein nichtlinearer Anstieg der Intensität, die Reduktion der Linienbreite und eine fortgesetzte Verschiebung der Emission zu höheren Energien oberhalb der ersten Schwelle, demonstriert. Ferner werden die Kohärenzeigenschaften des Polariton-Kondensats mittels Interferenzspektroskopie untersucht. Basierend auf den optimierten Halbleiter-Mikroresonatoren wird eine Kontaktplattform für die elektrische Anregung ein- und zweidimensionaler Gitterstrukturen entwickelt. Dazu wird die Bandstrukturbildung eines Quadrat- und Graphen-Gitters unter elektrischer Anregung im linearen Regime untersucht und mit den Ergebnissen der optischen Charakterisierung verglichen. Die erhaltenen Dispersionen lassen sich durch das zugehörige Tight-Binding-Modell beschreiben. Ferner wird auch eine elektrisch induzierte Nichtlinearität in der Emission demonstriert. Die untersuchte Laser-Mode liegt auf der Höhe des unteren Flachbandes und an der Position der Γ-Punkte in der zweiten Brillouin-Zone. Die zugehörige Modenstruktur weist die erwartete Kagome-Symmetrie auf. Abschließend wird die Bandstrukturbildung eines SSH-Gitters mit eingebautem Defekt unter elektrischer Anregung untersucht und einige Eigenschaften des topologisch geschützten Defektzustandes gezeigt. Dazu gehört vor allem die Ausbildung der lokalisierten Defektmode in der Mitte der S-Bandlücke. Die erhaltenen Ergebnisse stellen einen wichtigen Schritt in der Realisierung eines elektrisch betriebenen topologischen Polariton-Lasers dar. Abschließend wird ein elektrooptisches Bauteil auf der Basis von Polaritonen in einem Mikrodrahtresonator vorgestellt, in dem sich die Propagation eines PolaritonKondensats mittels eines elektrostatischen Feldes kontrollieren lässt. Das Funktionsprinzip des Polariton-Schalters beruht auf der Kombination einer elektrostatischen Potentialsenke unterhalb des Kontaktes und der damit verbundenen erhöhten ExzitonIonisationsrate. Der Schaltvorgang wird sowohl qualitativ als auch quantitativ analysiert und die Erhaltenen Ergebnisse durch die Modellierung des Systems über die GrossPitaevskii-Gleichung beschrieben. Zusätzlich wird ein negativer differentieller Widerstand und ein bistabiles Verhalten in der Strom-Spannungs-Charakteristik in Abhängigkeit von der Ladungsträgerdichte im Kontaktbereich beobachtet. Dieses Verhalten wird auf gegenseitig konkurrierende Kondensats-Zustände innerhalb der Potentialsenke und deren Besetzung und damit direkt auf den räumlichen Freiheitsgrad der PolaritonZustände zurückgeführt. N2 - Exciton-polaritons (polaritons), hybrid quasi-particles formed by the strong coupling between quantum well excitons and microcavity photons, are promising candidates for the realization of a new generation of nonlinear and integrated electrooptical devices. Compared to photonic or electrical approaches distinguishing advantages of Polaritons are their versatile and tuneable properties that allow electrical excitation and easy manipulation, which is both advantageous for on-chip applications. The present thesis deals with the development, implementation, and improvement of compact electrooptical devices based on exciton-polaritons in semiconductor microcavities. At first the implementation of an electrically driven vertically emitting polariton laser diode, which operates without the need of an applied magnetic field, is presented. For this purpose, the layer structure, quality factor, doping profile and Rabi-splitting of the polariton laser diode is optimized. The final design consists of a high-quality factor Al0.20Ga0.80As/AlAs microcavity (Q ~ 16,000) and features a Rabi-splitting of ~ 11.0 meV. Signatures for polariton condensation under electrical excitation are shown in the processed device. It features a clear nonlinearity in its input-output characteristic, a well-pronounced drop in the emission linewidth and a persisting blueshift above the first threshold with increasing pump-power. On top of that, evidence of the systems coherence properties in the condensed phase is provided directly by utilizing interference spectroscopy. Based on the optimized microcavity structures a process for the electrical excitation of one- and two-dimensional potential landscapes is developed. At first, the linear band structures of polaritonic square as well as honeycomb lattices are studied under electrical injection and compared to the results acquired by optical excitation. The obtained dispersions are reproduced by a tight-binding model. Moreover, the capability of the device to facilitate an electrically induced nonlinear emission is demonstrated. The investigated laser mode at the high symmetry Γ points in the second Brillouin zone, is located at the low energy flatband, as verified by the kagome geometry of the measured mode structure. Subsequent, the results of a one-dimensional SSH chain are presented under electrical excitation. In addition, the properties of a built-in lattice defect, forming a topological protected state in the middle of the S band gap, are investigated, paving the way towards the realization of electrically driven topological polariton lasers. Finally, an electrooptical polariton switch is demonstrated as a prototype of a polaritonic field-effect transistor. Here, an optical generated polariton condensate propagating along a one-dimensional channel is controlled by an electrical gate. The operation of the device relies on the combination of an electrostatic potential trap underneath the contact, and the associated exciton ionization. The switching behaviour is analysed in a qualitative as well as in a quantitative manner and verified by modelling the experimental findings with the Gross-Pitaevskii equation. Furthermore, a pronounced negative differential resistance and a strong bistability is observed in the photocurrent response as a function of the carrier density. This is attributed to competing transitions of trapped condensate modes and thus directly to the spatial degree of freedom of the polariton states, which represents a completely new way to create bistability. KW - Drei-Fünf-Halbleiter KW - AlGaAs KW - Exziton-Polariton KW - Optischer Resonator KW - Quantenwell KW - Mikroresonator KW - Polariton Lasing Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-271630 ER - TY - THES A1 - Betzold, Simon T1 - Starke Licht-Materie-Wechselwirkung und Polaritonkondensation in hemisphärischen Mikrokavitäten mit eingebetteten organischen Halbleitern T1 - Strong light-matter interaction and polariton condensation in hemispherical microcavities with embedded organic semiconductors N2 - Kavitäts-Exziton-Polaritonen (Polaritonen) sind hybride Quasiteilchen, die sich aufgrund starker Kopplung von Halbleiter-Exzitonen mit Kavitätsphotonen ausbilden. Diese Quasiteilchen weisen eine Reihe interessanter Eigenschaften auf, was sie einerseits für die Grundlagenforschung, andererseits auch für die Entwicklung neuartiger Bauteile sehr vielversprechend macht. Bei Erreichen einer ausreichend großen Teilchendichte geht das System in den Exziton-Polariton-Kondensationszustand über, was zur Emission von laserartigem Licht führt. Organische Halbleiter als aktives Emittermaterial zeigen in diesem Kontext großes Potential, da deren Exzitonen neben großen Oszillatorstärken auch hohe Bindungsenergien aufweisen. Deshalb ist es möglich, unter Verwendung organischer Halbleiter selbst bei Umgebungsbedingungen äußerst stabile Polaritonen zu erzeugen. Eine wichtige Voraussetzung zur Umsetzung von integrierten opto-elektronischen Bauteilen basierend auf Polaritonen ist der kontrollierte räumliche Einschluss sowie die Realisierung von frei konfigurierbaren Potentiallandschaften. Diese Arbeit beschäftigt sich mit der Entwicklung und der Untersuchung geeigneter Plattformen zur Erzeugung von Exziton-Polaritonen und Polaritonkondensaten in hemisphärischen Mikrokavitäten, in die organische Halbleiter eingebettet sind. N2 - Cavity exciton-polaritons (polaritons) are hybrid quasiparticles which are formed due to the strong coupling of excitons with cavity photons. These quasiparticles exhibit a variety of interesting properties, rendering them very promising for both fundamental research and the development of novel opto-electronic devices. Once a suitably high particle density is reached, the system undergoes the transition into a state of exciton-polariton condensation, which leads to the emission of laser-like light. Organic semiconductors as active emitter material hold enormous potential in this context, as their excitons show both large oscillator strengths and high binding energies. Therefore it is possible to generate extremely stable polaritons using organic semiconductors even at ambient conditions. An important prerequisite for the implementation of integrated devices based on polaritons is the controlled spatial confinement and the realization of arbitrary potential landscapes. The present work deals with the development and investigation of suitable platforms for the generation of exciton-polaritons and polariton condensates in hemispheric microcavities with embedded organic semiconductors. KW - Exziton-Polariton KW - Organischer Halbleiter KW - Fourier-Spektroskopie KW - Laser KW - Optischer Resonator KW - FDTD Simulation KW - Hemisphärische Kavität Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-266654 ER - TY - THES A1 - Wiest, Wolfram T1 - Entwicklung einer Apparatur zur In-situ-Ermüdungsprüfung von Zahnimplantaten mittels Synchrotron Micro-CT T1 - Development of an apparatus for in-situ fatigue testing of dental implants using synchrotron micro-CT N2 - Die vorliegende Arbeit beschäftigt sich mit der volumenbildgebenden Untersuchung von mechanischen Ermüdungsprozessen in Titan-Zahnimplantaten. Im Vordergrund steht die Entwicklung einer neuen Messmethode der In-situ-Mikrotomografie am Synchrotron. Zahnimplantate werden beim Gebrauch mechanisch wiederholt belastet (Wechsellast). Nach vielen zyklischen Belastungen können aufgrund von mikroplastische Verformungen Ermüdungsschäden auftreten. Diese können im Extremfall zum Versagen und Verlust eines Implantats führen. Die Computertomographie ist eine sehr geeignete zerstörungsfrei Prüfmethode, um Zahnimplantate zu untersuchen. Diese Arbeit erweitert die bisherige CT-Methode insofern, dass In-situ-Beobachtungen bei mechanischer Belastung möglich sind. Die in dieser Arbeit untersuchten Zahnimplantate weisen an der Implantat-Abutment-Grenzfläche bei eintretender Ermüdung einen Mikrospalt auf. Dieser wird als Indikator für einsetzende Fatigue- Prozesse benutzt. Der in der Synchrotron CT verfügbare Inlinephasenkontrast ermöglicht eine verbesserte Bestimmung der Mikrospaltgröße. Da die schnellen Bewegungen der Ermüdungsprüfung mittels Standard-CT-Verfahren schwer zu erfassen sind, war die stroboskopische Aufnahmemethode das zielführende Messverfahren, um in-situ-Prüfung zu ermöglichen. Die 4 kommerziellen Zahnimplantattypen werden neben der In-situ-Fatigue Prüfung auch mittels klassischer Ermüdungsprüfung untersucht und mit der Neuen Messmethode verglichen. Die hier entwickelte In-situ-Fatigue-Prüfstation kann Proben bis zu 345 N tomographisch untersuchen. Neben den experimentellen Untersuchungen wird eine statische FEM-Betrachtung durchgeführt und mit experimentellen Messdaten verglichen. Zuletzt wird mit der entwickelten Messtation Knochenrisse in der Implantat Umgebung untersucht. N2 - The present work deals with the volume imaging investigation of mechanical fatigue processes in titanium dental implants. The focus is on the development of a new measurement method of in-situ microtomography at the synchrotron. Dental implants are exposed to repeated mechanical loads. After many cyclic loads, fatigue damage can occur due to microplastic deformation. These can lead to failure and loss of an implant. Computed tomography is a very suitable non-destructive testing method to examine dental implants. This work extended the existing method to the point where in situ CT observations under mechanical loading are achievable. The dental implants investigated in this work exhibit a microgap at the implant-abutment interface when fatigue occurs. This is used as an indicator for the occurrence of fatigue processes. The inline phase contrast available in synchrotron CT can be used to determine the size of the microgap. Since the fast motions of fatigue testing are difficult to capture using standard CT techniques, the stroboscopic imaging method was the used measurement technique, to enable in-situ testing. In addition to in-situ fatigue testing, the 4 commercial dental implant types are also examined and compared with each other by means of classical fatigue testing. The developed in-situ fatigue test station can tomographically investigate specimens up to 345 N. In addition to the experimental investigations, a static FEM analysis is performed and compared with experimental measurement data. Finally, the developed measuring station is used to investigate bone cracks in the implant environment. KW - Mikrocomputertomographie KW - Fatigue KW - In situ KW - Zahnimplantat KW - In situ KW - fatigue KW - microtomography KW - dental implant Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-257702 ER - TY - THES A1 - Scheuermann, Julian T1 - Interbandkaskadenlaser für Anwendungen in der Absorptionsspektroskopie T1 - Interband cascade lasers for applications in absorption spectroscopy N2 - Das Ziel dieser Arbeit war die Entwicklung und Weiterentwicklung von Laserlichtquellen basierend auf der Interbandkaskadentechnologie in einem Wellenlängenbereich von ca. 3 bis 6 µm. Der Fokus lag dabei auf der Entwicklung von Kantenemitter-Halbleiterlasern, welche bei verschiedensten Emissionswellenlängen erfolgreich hergestellt werden konnten. Dabei wurde auf jeweilige Herausforderungen eingegangen, welche entweder durch die Herstellung selbst oder der anwendungstechnischen Zielsetzung bedingt war. Im Rahmen dieser Arbeit wurden verschiedene, spektral einzelmodige Halbleiterlaser im angesprochenen Wellenlängenbereich entwickelt und hergestellt. Basierend auf dem jeweiligen Epitaxiematerial und der angestrebten Emissionswellenlänge wurden Simulationen der optischen Lasermode durchgeführt und die grundlegenden für die Herstellung notwendigen Parameter bestimmt und experimentell umgesetzt. Des Weiteren wurden die verwendeten Verfahren für den jeweiligen Herstellungsprozess angepasst und optimiert. Das umfasst die in den ersten Kapiteln beschriebenen Schritte wie optische Lithografie, Elektronenstrahllithografie, reaktives Trockenätzen und verschiedene Arten der Materialdeposition. Mit einer Emissionswellenlänge von 2,8 µm wurde beispielsweise der bislang kurzwelligste bei Raumtemperatur im Dauerstrichbetrieb betriebene einzelmodige Interbandkaskadenlaser hergestellt. Dessen Leistungsmerkmale sind mit Diodenlasern im entsprechenden Emissionsbereich vergleichbar. Somit ergänzt die Interbandkaskadentechnologie bestehende Technologien nahtlos und es ist eine lückenlose Wellenlängenabdeckung bis in den mittleren Infrarotbereich möglich. Je nach Herstellungsprozess wurde außerdem auf die verteilte Rückkopplung eingegangen und die Leistungsfähigkeit des verwendeten Metallgitterkonzeptes anhand von Messungen an spektral einzelmodigen Bauteile aufgezeigt. Es wurden aber auch die je nach Zielsetzung unterschiedlichen Herausforderungen aufgezeigt und diskutiert. Für eine Anwendung wurden spezielle Laserchips mit zwei einzelmodigen Emissionswellenlängen bei 3928 nm und 4009 nm entwickelt. Die beiden Wellenlängen sind für die Detektion von Schwefeldioxid und Schwefelwasserstoff geeignet, welche zur Überwachung und Optimierung der Schwefelgewinnung durch das Claus-Verfahren notwendig sind. Bei der Umsetzung wurden auf einzelnen Chips zwei Laseremitter in einem Abstand von 70 µm platziert und mit je einem Metallgitter versehen. Das verwendete Epitaxiematerial war so konzipiert, dass es optimal für beide Zielwellenlängen verwendet werden kann. Die geforderten Eigenschaften wurden erfüllt und die Bauteile konnten erfolgreich hergestellt werden. Die Emissionseigenschaften und das spektrale Verhalten wurde bei beiden Zielwellenlängen bestimmt. Einzeln betrachtet erfüllen beide Emitter die notwendigen Eigenschaften um für spektroskopische Anwendungen eingesetzt werden zu können. Ergänzend wurde zum einen das Abstimmverhalten der Emissionswellenlänge in Abhängigkeit der Modulationsfrequenz des Betriebsstromes untersucht und zusätzlich die thermische Abhängigkeit der Betriebsparameter beider Kanäle zueinander bestimmt. Diese Abhängigkeit ist für eine simultane Messung mit beiden Kanälen notwendig. Das Konzept mit mehreren Stegwellenleitern pro Laserchip wurde in einem weiteren Fall noch stärker ausgearbeitet. Denn je nach Komplexität eines Gasgemisches sind zur Bestimmung der einzelnen Komponenten mehr Messpunkte bzw. Wellenlängen notwendig. Im zweiten Fall ist die Analyse der Kohlenwasserstoffe Methan, Ethan, Propan, Butan, Iso-Butan, Pentan und Iso-Pentan von Interesse, welche als Hauptbestandteile von Erdgas z.B. in Erdgasaufbereitungsanlagen oder zur Bestimmung des Heizwertes analysiert werden müssen. Die genannten Kohlenwasserstoffe zeigen ein starkes Absorptionsverhalten im Wellenlängenbereich von 3,3 bis 3,5 µm. Auf dem entsprechend angepassten Interbandkaskadenmaterial wurden Bauteile mit neun Wellenleitern pro Laserchip hergestellt. Mithilfe der neun einzelmodigen Emissionskanäle konnte ein Bereich von bis zu 190 nm (21 meV, 167 cm-1) adressiert werden. Außerdem wurde der sich mit zunehmender Wellenlänge ändernde Schichtaufbau und dessen Einfluss auf die Bauteileigenschaften diskutiert. Die Leistungsdaten der langwelligsten Epitaxie waren im Vergleich deutlich schwächer. Um diesen Nachteil zu kompensieren, wurde eine spezielle Wellenleitergeometrie mit doppeltem Steg genutzt. Die Eigenschaften des Konzeptes wurden zuerst mittels Simulation untersucht und ein entsprechendes Herstellungsverfahren entwickelt. Mit der Simulation als Grundlage wurden die verschiedenen Prozessparameter über mehrere Prozessläufe iterativ optimiert und somit die Performance der Laser verbessert. Auch mit diesem Verfahren konnte ausreichende Kopplung an das Metallgitter erzielt werden. Abschließend wurden mit diesem Herstellungsverfahren einzelmodige Laser im Wellenlängenbereich von 5,9 bis über 6 Mikrometern realisiert. Diese Laser emittierten im Dauerstrichbetrieb bei einer maximalen Betriebstemperatur von -2 °C. Insgesamt wurde anhand der im Rahmen dieser Arbeit entwickelten Bauteilen und de ren Charakterisierung gezeigt, dass diese die Anforderungen von TLAS Anwendungen erfüllen. Jedoch konnte nur auf einen Teil der Möglichkeiten eingegangen werden, den die Interbandkaskadentechnologie bietet, denn die angesprochenen Einsatzgebiete stellen nur einzelne grundlegende Möglichkeiten dieser Technologie mit Schwerpunkt auf laserbasierte Lichtquellen dar. Zusammenfassend kann allerdings gesagt werden, dass sich die Interbandkaskadentechnologie etabliert hat. Gerade durch die gezeigten Leistungsdaten bei den Wellenlängen um 2,9 µm, 3,4 µm und 4,0 µm im Dauerstrichbetrieb bei Raumtemperatur wird ersichtlich, dass im Bereich der Sensorik die ICL Technologie in Bezug auf niedriger Strom- bzw. Leistungsaufnahme quasi konkurrenzlos ist. Sicherlich werden die Anwendungsgebiete in Zukunft noch vielfältiger. Denn es sind auf jeden Fall weitere Fortschritte in Richtung höherer Emissionswellenlängen, deutlich höherer Betriebstemperaturen, verbreiterte Emissionsbereiche oder gänzlich andere Bauteil Konzepte wie z.B. für Frequenzkämme bzw. Terahertz Anwendungen zu erwarten. Diese Entwicklung betrifft nicht nur den Einsatz als Lichtquelle, denn auch Interbandkaskadendetektoren bzw. Solarzellen wurden schon realisiert und werden weiterentwickelt. N2 - The work aimed for the development and enhancement of laser sources in the wavelength range from 3 to 6 μm, based on the interband cascade technology. The focus here was to work on edge-emitting semiconductor lasers, which were successfully realized at various wavelengths. In each chapter, the respective challenges were discussed, resulting either from the fabrication process itself or from the underlying application requirements. Within the scope of this work, various spectrally single-mode semiconductor lasers were developed and fabricated within the abovementioned wavelength range. Based on the particular epitaxial material and the targeted emission wavelength, optical mode simulations were performed, the basic processing parameters were derived and later experimentally realized. Furthermore, the methods for the respective manufacturing processes were varied and optimized. This includes processing steps like optical lithography, electron lithography, reactive ion etching and various kinds of material deposition, as described in the first chapters. For example, with an emission wavelength of 2.8 μm in continuous wave mode at room temperature, we demonstrated the shortest ICL DFB emission [SWE+15]. Its performance characteristics are comparable to conventional diode lasers in the same wavelength region. Therefore, the interband cascade technology supplements existing technologies and enables gap-free wavelength coverage up to the mid infrared region. Depending on the fabrication process, the distributed feedback and the efficiency of the used metal grating approach was shown by the demonstration of various spectrally singe mode devices and their performance figures. The various challenges were highlighted in terms of their individual requirements. Customized laser chips with two single-mode emission wavelengths at 3928 nm and 4009 nm were developed for one application [SWB+17]. Both wavelengths are useful for the detection of sulfur oxide and hydrogen sulfide within the Claus process, allowing monitoring and optimization when the concentration levels of these gases are known. Both emitters were realized on single chips, with a distance of 70 μm between each other and each ridge was provided with an individual metal grating. The underlying epitaxial material was designed that it could be optimally used for both target wavelengths. Ultimately, the requirements were met and the devices were fabricated successfully. The performance figures and the spectral behavior were determined at both target wavelengths. Individually, both emitters are capable of being used in spectroscopic applications. In addition, the tuning rate of the emission wavelength depending on the current modulation frequency and the thermal crosstalk between both emitters were investigated. Knowledge of the thermal crosstalk is of interest, when both emitters are used simultaneously. The concept of multiple ridge waveguides per laser chip was further elaborated in another case. Depending on the complexity of the gas mixture, more measurement points/wavelengths are required, to determine the individual components. In a second approach, mixtures of hydrocarbons such as methane, ethane, propane, butane, isobutene, pentane and isopentane are of interest. These main components of natural gas are tracked in natural gas processing plants, for example, or used to determine the calorific value. These hydrocarbons show strong absorption features in the 3.3 to 3.5 μm wavelength range. Devices with nine emitters per chip were fabricated on the appropriately adjusted epitaxial material. These nine single mode emission channels were able to cover a range of 190 nm (21 meV, 167 cm-1). In addition, the changes of the epitaxial structure with respect to increasing emission wavelength and their influence on the device behavior are discussed. The performance data of the longest wavelength epitaxy were significantly weaker in comparison. To compensate for that drawback, a special waveguide design with a double ridge structure was used. The properties of this concept were first investigated by means of simulation and an appropriate processing route was determined. Using the simulation as a basis, the design parameters were iteratively optimized over multiple fabrication runs and the performance of the lasers was improved. With this approach, sufficient coupling of the laser mode to the metal grating was also realized. Finally, single-mode lasers in the wavelength range from 5.9 to over 6 μm were realized using the double ridge fabrication technique. These lasers were operated in continuous wave mode at a maximum operation temperature of -2 °C. Overall, the devices developed within this work and their characteristics show, that the requirements for TLAS applications are met. However, only a part of the possibilities of the interband cascade technology could be addressed, since the discussed application areas are focused on laser-based light sources. In summary, interband cascade technology has established itself. In particular, the performance data at 2.9 μm, 3.4 μm and 4.0 μm in continuous wave operation at room temperature show that the ICL technology is almost unrivaled in terms of low current/power consumption. Certainly, the areas of application will be even more diverse in the future. Further progress in terms of higher emission wavelengths, higher operation temperatures, and broadband wavelength emission can be expected. Other concepts such as frequency combs [BFS+18, SWP+17] or terahertz [VM99] emission can also be realized. This development does not only concern the light sources, also interband cascade detectors or solar cells [YTK+10, HTR+13, TK15, HLL+18, LLL+17a, LLL+17b] have already been realized and are being further developed. KW - Halbleiterlaser KW - Interbandkaskadenlaser KW - Absorptionsspektroskopie Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-251797 ER - TY - THES A1 - Leisegang, Markus T1 - Eine neue Methode zur Detektion ballistischen Transports im Rastertunnelmikroskop: Die Molekulare Nanosonde T1 - A new method for detecting ballistic transport in the scanning tunneling microscope: The molecular nanoprobe N2 - Verlustarmer Ladungsträgertransport ist für die Realisierung effizienter und kleiner elektronischer Bauteile von großem Interesse. Dies hilft entstehende Wärme zu minimieren und den Energieverbrauch gleichzeitig zu reduzieren. Einzelne Streuprozesse, die den Verlust bei Ladungsträgertransport bestimmen, laufen jedoch auf Längenskalen von Nano- bis Mikrometern ab. Um diese detailliert untersuchen zu können, bedarf es Messmethoden mit hoher zeitlicher oder örtlicher Auflösung. Für Letztere gibt es wenige etablierte Experimente, häufig basierend auf der Rastertunnelmikroskopie, welche jedoch verschiedenen Einschränkungen unterliegen. Um die Möglichkeiten der Detektion von Ladungsträgertransport auf Distanzen der mittleren freien Weglänge und damit im ballistischen Regime zu verbessern, wurde im Rahmen dieser Dissertation die Molekulare Nanosonde charakterisiert und etabliert. Diese Messmethode nutzt ein einzelnes Molekül als Detektor für Ladungsträger, welche mit der Sondenspitze des Rastertunnelmikroskops (RTM) wenige Nanometer entfernt vom Molekül in das untersuchte Substrat injiziert werden. Die hohe Auflösung des RTM in Kombination mit der geringen Ausdehnung des molekularen Detektors ermöglicht dabei atomare Kontrolle von Transportpfaden über wenige Nanometer. Der erste Teil dieser Arbeit widmet sich der Charakterisierung der Molekularen Nanosonde. Hierfür werden zunächst die elektronischen Eigenschaften dreier Phthalocyanine mittels Rastertunnelspektroskpie untersucht, welche im Folgenden zur Charakterisierung des Moleküls als Detektor Anwendung finden. Die anschließende Analyse der Potentiallandschaft der Tautomerisation von H2Pc und HPc zeigt, dass die NH- Streckschwinung einem effizienten Schaltprozess zu Grunde liegt. Darauf basierend wird der Einfluss der Umgebung anhand von einzelnen Adatomen sowie des Substrats selbst auf den molekularen Schalter analysiert. In beiden Fällen zeigt sich eine signifikante Änderung der Potentiallandschaft der Tautomerisation. Anschließend wird der Einfluss geometrischer Eigenschaften des Moleküls selbst untersucht, wobei sich eine Entkopplung vom Substrat auf Grund von dreidimensionalen tert-Butyl-Substituenten ergibt. Zusätzlich zeigt sich bei dem Vergleich von Naphthalocyanin zu Phthalocyanin der Einfluss lateraler Ausdehnung auf die Detektionsfläche, was einen nicht-punktförmigen Detektor bestätigt. Im letzten Abschnitt werden zwei Anwendungen der Molekularen Nanosonde präsentiert. Zunächst wird mit Phthalocyanin auf Ag(111) demonstriert, dass die Interferenz von ballistischen Ladungsträgern auf Distanzen von wenigen Nanometern mit dieser Technik detektierbar ist. Im zweiten Teil zeigt sich, dass der ballistische Transport auf einer Pd(110)-Oberfläche durch die anisotrope Reihenstruktur auf atomarer Skala moduliert wird. N2 - Low-loss charge carrier transport is of great interest for the realization of efficient and small electronic components. Improvements would minimize heat generation and reduce energy consumption at the same time. However, individual scattering processes that determine the loss in charge carrier transport occur on length scales from nanometers to micrometers. To study these in detail, measurement methods with high temporal or spatial resolution are required. For the latter, few established experiments exist, often based on scanning tunneling microscopy, which are however subject to various limitations. In order to improve the possibilities of detecting charge carrier transport at distances of the mean free path and thus in the ballistic regime, the molecular nanoprobe was characterized and established in this dissertation. This measurement technique uses a single molecule as a detector for charge carriers, which are injected into the substrate under investigation with the scanning tunneling microscope (STM) tip a few nanometers away from the molecule. The high resolution of the STM combined with the small size of the molecular detector allows atomic control of transport paths over a few nanometers. The first part of this work is devoted to the characterization of the molecular nanoprobe. For this purpose, the electronic properties of three phthalocyanines are first investigated by scanning tunneling spectroscopy, which will be applied in the following studies to characterize the molecular detector. The subsequent analysis of the potential landscape for tautomerization within H2Pc and HPc reveals that the N-H stretching mode underlies an efficient switching process. Based on these findings, the influence of the direct environment on the molecular switch is analyzed by means of individual adatoms as well as the substrate itself. In both cases, a significant change in the potential landscape of the tautomerization is shown. Subsequently, the influence of geometric properties of the molecule itself is investigated, revealing a decoupling from the substrate due to three-dimensional tert-butyl substituents. In addition, the comparison through naphthalocyanine to phthalocyanine reveals the influence of lateral expansion on the detection area, confirming a non-point molecular detector. In the last section, two applications of the molecular nanoprobe are presented. First, using phthalocyanine on Ag(111), it is demonstrated that the interference of ballistic charge carriers at distances of a few nanometers is detectable with this technique. In the second part, it is shown that the anisotropic Pd(110) surface structure leads to a strong modulation of the ballistic transport on the atomic scale. KW - Rastertunnelmikroskopie KW - Ladungstransport KW - Molekül KW - Nanosonde KW - Ballistischer Transport KW - Molekulare Sonde KW - Tautomerisation KW - Molekularer Schalter Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-250762 ER - TY - THES A1 - Zipf, Matthias T1 - Berührungslose Temperaturmessung an Gasen und keramisch beschichteten Oberflächen bei hohen Temperaturen T1 - Non-contact temperature measurement of gases and ceramic coated surfaces N2 - Stationäre Gasturbinen können von großer Bedeutung für die Verlangsamung des Klima-wandels und bei der Bewältigung der Energiewende sein. Für die Weiterentwicklung von Gasturbinen zu höheren Betriebstemperaturen und damit einhergehend zu höheren Wirkungs-graden werden berührungslose Messverfahren zur Ermittlung der Oberflächentemperatur von Turbinenschaufeln und der Gastemperatur der heißen Verbrennungsgase während des Be-triebs benötigt. Im Rahmen dieser Arbeit werden daher Methoden der berührungslosen Tem-peraturmessung unter Verwendung von Infrarotstrahlung untersucht. Die berührungslose Messung der Oberflächentemperatur moderner Turbinenschaufeln muss aufgrund derer infrarot-optischer Oberflächeneigenschaften im Wellenlängenbereich des mitt-leren Infrarots durchgeführt werden, in welchem die Turbinenbrenngase starke Absorptions-banden aufweisen. Zur Entwicklung eines adäquaten Strahlungsthermometers für diesen Zweck wurden im Rahmen dieser Arbeit daher durch Ermittlung von Transmissionsspektren von Kohlenstoffdioxid und Wasserdampf bei hohen Temperaturen und Drücken in einer ei-gens hierfür konstruierten Heißgas-Messzelle zunächst Wellenlängenbereiche identifiziert, in welchen die geplanten Messungen möglich sind. Anschließend wurde der Prototyp eines ent-sprechend konfigurierten Strahlungsthermometers im Zuge des Testlaufes einer vollskaligen Gasturbine erfolgreich erprobt. Weiterhin wurden im Rahmen dieser Arbeit zwei mögliche Verfahren zur berührungslosen Gastemperaturmessung untersucht. Das erste untersuchte Verfahren setzt ebenfalls auf Strah-lungsthermometrie. Dieses Verfahren sieht vor, aufgrund der Temperaturabhängigkeit des spektralen Transmissionsgrades in den Randbereichen von gesättigten Absorptionsbanden von Gasen aus der in diesen Bereichen transmittierten spektralen Strahldichte auf die Gastempera-tur zu schließen. Im Rahmen dieser Arbeit wurden Voruntersuchungen für dieses Tempera-turmessverfahren durchgeführt. So konnten auf der Grundlage von experimentell ermittelten Transmissionsspektren von Kohlenstoffdioxid bei Drücken zwischen 5 kPa und 600 kPa und Gastemperaturen zwischen Raumtemperatur und 1073 K für das geplante Verfahren nutzbare Wellenlängenintervalle insbesondere im Bereich der Kohlenstoffdioxid-Bande bei 4,26 µm identifiziert werden. Das zweite im Rahmen dieser Arbeit untersuchte Verfahren zur berührungslosen Gastem-peraturmessung basiert auf der Temperaturabhängigkeit der Wellenlängenposition der Trans-missionsminima der Absorptionsbanden von infrarot-aktiven Gasen. Im Hinblick darauf wur-de dieses Phänomen anhand von experimentell bestimmten hochaufgelösten Transmissions-spektren von Kohlenstoffdioxid überprüft. Weiterhin wurden mögliche Wellenlängenbereiche identifiziert und hinsichtlich ihrer Eignung für das geplante Verfahren charakterisiert. Als am vielversprechendsten erwiesen sich hierbei Teilbanden in den Bereichen um 2,7 µm und um 9,2 µm. Unter Beimischung von Stickstoff mit Partialdrücken von bis zu 390 kPa erwies sich zudem auch die Bande bei 4,26 µm als geeignet. Die im Rahmen dieser Arbeit experimentell ermittelten Transmissionsspektren konnten dar-über hinaus schließlich durch Vergleich mit entsprechenden HITRAN-Simulationen verifiziert werden. N2 - Stationary gas turbines can be of significant importance for slowing down climate change and for the handling of the energy transition. The goal of the further development of gas tur-bines is to increase the operating temperatures and in consequence the efficiency factor. For this purpose, non-contact measurement methods are required to determine the surface temper-ature of turbine blades and the gas temperature of the hot combustion gases during operation. Therefore, methods of non-contact temperature measurement using infrared radiation are in-vestigated in this work. Due to the infrared-optical surface properties of modern turbine blades, non-contact tem-perature measurement has to be carried out in the mid-infrared wavelength range, where com-bustion gases of gas turbines have strong absorption bands. In order to develop an adequate radiation thermometer for this purpose, as a first step in this work, wavelength ranges were identified by determining the transmission spectra of carbon dioxide and water vapor at high temperatures and pressures in which the planned measurements are possible. Therefore, a spe-cial high-temperature high-pressure gas cell was developed. Then the prototype of a radiation thermometer, which was configured for measurements in the wavelength region identified before, was successfully tested in a full-scale gas turbine. Furthermore, two possible methods for non-contact gas temperature measurement were in-vestigated in the scope of this work. The first method examined also relies on radiation ther-mometry. Within this method, it is planned to obtain the gas temperature from the measure-ment of the spectral radiance that is transmitted in the wavelength region of the edge of a sat-urated absorption band of the gas, due to the temperature dependence of the spectral transmit-tance in this wavelength region. In this work, preliminary investigations for this temperature measurement method were carried out. Based on experimentally determined transmission spectra of carbon dioxide at pressures between 5 kPa and 600 kPa and at temperatures be-tween room temperature and 1073 K, wavelength intervals were identified that are suitable for the planned measurement method. Especially in the region of the carbon dioxide band at 4.26 µm, appropriate intervals could be found. The second method for non-contact gas temperature measurement investigated in this the-sis is based on the temperature dependence of the wavelength position of the transmission minima of the absorption bands of infrared-active gases. Therefore, this phenomenon was in-vestigated using experimentally determined high-resolution transmission spectra of carbon dioxide. Furthermore, suitable wavelength ranges with appropriate absorption bands were identified and characterized. The most promising sub-bands were found in the wavelength regions around 2.7 µm and 9.2 µm. Under addition of nitrogen with partial pressures up to 390 kPa, the carbon dioxide band at 4.26 µm also turned out to be suitable for the planned temperature measurement method. Finally, the experimentally gathered transmission spectra, which were obtained in the scope of this work, could be verified by a comparison with corresponding HITRAN-simulations. KW - Pyrometrie KW - Gas KW - thermal barrier coating Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-240248 ER - TY - THES A1 - Bathon, Thomas T1 - Gezielte Manipulation Topologischer Isolatoren T1 - Deliberate manipulation of topological insulators N2 - Neue physikalische Erkenntnisse vervollständigen die Sicht auf die Welt und erschließen gleichzeitig Wege für Folgeexperimente und technische Anwendungen. Das letzte Jahrzehnt der Festkörperforschung war vom zunehmenden Fokus der theoretischen und experimentellen Erkundung topologischer Materialien geprägt. Eine fundamentale Eigenschaft ist ihre Resistenz gegenüber solchen Störungen, welche spezielle physikalische Symmetrien nicht verletzen. Insbesondere die Topologischen Isolatoren - Halbleiter mit isolierenden Volumen- sowie gleichzeitig leitenden und spinpolarisierten Oberflächenzuständen - sind vielversprechende Kandidaten zur Realisierung breitgefächerter spintronischer Einsatzgebiete. Bis zur Verwirklichung von Quantencomputern und anderer, heute noch exotisch anmutender Konzepte bedarf es allerdings ein umfassenderes Verständnis der grundlegenden, physikalischen Zusammenhänge. Diese kommen vor allem an Grenzflächen zum Tragen, weshalb oberflächensensitive Methoden bei der Entdeckung der Topologischen Isolatoren eine wichtige Rolle spielten. Im Rahmen dieser Arbeit werden daher strukturelle, elektronische und magnetische Eigenschaften Topologischer Isolatoren mittels Tieftemperatur-Rastertunnelmikroskopie und -spektroskopie sowie begleitenden Methoden untersucht. Die Veränderung der Element-Ausgangskonzentration während dem Wachstum des prototypischen Topologischen Isolators Bi2Te3 führt zur Realisierung eines topologischen p-n Übergangs innerhalb des Kristalls. Bei einem spezifischen Verhältnis von Bi zu Te in der Schmelze kommt es aufgrund unterschiedlicher Erstarrungstemperaturen der Komponenten zu einer Ansammlung von Bi- und Te-reichen Gegenden an den gegenüberliegenden Enden des Kristalls. In diesen bildet sich infolge des jeweiligen Elementüberschusses durch Kristallersetzungen und -fehlstellen eine Dotierung des Materials aus. Daraus resultiert die Existenz eines Übergangsbereiches, welcher durch Transportmessungen verifiziert werden kann. Mit der räumlich auflösenden Rastertunnelmikroskopie wird diese Gegend lokalisiert und strukturell sowie elektronisch untersucht. Innerhalb des Übergangsbereiches treten charakteristische Kristalldefekte beider Arten auf - eine Defektunterdrückung bleibt folglich aus. Dennoch ist dort der Beitrag der Defekte zum Stromtransport aufgrund ihres gegensätzlichen Dotiercharakters vernachlässigbar, sodass der topologische Oberflächenzustand die maßgeblichen physikalischen Eigenschaften bestimmt. Darüber hinaus tritt der Übergangsbereich in energetischen und räumlichen Größenordnungen auf, die Anwendungen bei Raumtemperatur denkbar machen. Neben der Veränderung Topologischer Isolatoren durch den gezielten Einsatz intrinsischer Kristalldefekte bieten magnetische Störungen die Möglichkeit zur Prüfung des topologischen Oberflächenzustandes auf dessen Widerstandsfähigkeit sowie der gegenseitigen Wechselwirkungen. Die Zeitumkehrinvarianz ist ursächlich für den topologischen Schutz des Oberflächenzustandes, weshalb magnetische Oberflächen- und Volumendotierung diese Symmetrie brechen und zu neuartigem Verhalten führen kann. Die Oberflächendotierung Topologischer Isolatoren kann zu einer starken Bandverbiegung und einer energetischen Verschiebung des Fermi-Niveaus führen. Bei einer wohldosierten Menge der Adatome auf p-dotiertem Bi2Te3 kommt die Fermi-Energie innerhalb der Volumenzustands-Bandlücke zum Liegen. Folglich wird bei Energien rund um das Fermi-Niveau lediglich der topologische Oberflächenzustand bevölkert, welcher eine Wechselwirkung zwischen den Adatomen vermitteln kann. Für Mn-Adatome kann Rückstreuung beobachtet werden, die aufgrund der Zeitumkehrinvarianz in undotierten Topologischen Isolatoren verboten ist. Die überraschenderweise starken und fokussierten Streuintensitäten über mesoskopische Distanzen hinweg resultieren aus der ferromagnetischen Kopplung nahegelegener Adsorbate, was durch theoretische Berechnungen und Röntgendichroismus-Untersuchungen bestätigt wird. Gleichwohl wird für die Proben ein superparamagnetisches Verhalten beobachtet. Im Gegensatz dazu führt die ausreichende Volumendotierung von Sb2Te3 mit V-Atomen zu einem weitreichend ferromagnetischen Verhalten. Erstaunlicherweise kann trotz der weitläufig verbreiteten Theorie Zeitumkehrinvarianz-gebrochener Dirac-Zustände und der experimentellen Entdeckung des Anormalen Quanten-Hall-Effektes in ähnlichen Probensystemen keinerlei Anzeichen einer spektroskopischen Bandlücke beobachtet werden. Dies ist eine direkte Auswirkung der dualen Natur der magnetischen Adatome: Während sie einerseits eine magnetisch induzierte Bandlücke öffnen, besetzen sie diese durch Störstellenresonanzen wieder. Ihr stark lokaler Charakter kann durch die Aufnahme ihrer räumlichen Verteilung aufgezeichnet werden und führt zu einer Mobilitäts-Bandlücke, deren Indizien durch vergleichende Untersuchungen an undotiertem und dotiertem Sb2Te3 bestätigt werden. N2 - New physical insights make up for a more complete vision onto the world and allow for subsequent experiments and technical implementations. The last decade in solid state physics was increasingly focusing on the theoretical and experimental discovery and investigation of topological materials. A very basic property is their robustness against perturbations not violating certain physical symmetries. Especially Topological Insulators - semiconductors with insulating bulk but conducting and spin-polarized surface states - are promising candidates for the attainment of a wide spectrum of spintronics applications. Till realization of quantum computing and up to now futuristically sounding concepts a deeper understanding of the fundamental physics is required. Since topological properties usually manifest at boundaries, surface sensitive techniques played a substantial role in the exploration of Topological Insulators. Within this thesis structural, electronic and magnetic properties of Topological Insulators are investigated by means of scanning tunneling microscopy and spectrocopy and supporting methods. Variation of the initial elemental concentration in the crystal growth process of the prototypical Topological Insulator Bi2Te3 leads to the realization of a topological p-n junction within the crystal. At a certain elemental ratio in the melt excess of Bi and Te will be obtained at the opposing ends of the crystal due to the different solidification temperatures. In these areas vacancies and substitutions give rise to p- and n-type doping, respectively. This implies the very existence of an intrinsic transition area, which can by verified by transport experiments. The junction area can be localized and structurally as well as spectroscopically examined by means of scanning tunneling microscopy. It can be shown that in the vicinity of this transition region both types of characteristic defects are present. This indicates that defects are not suppressed but compensated in this region. Nevertheless their contribution to bulk transport is minimal because of their opposite doping character, letting the topological surface state dominate the relevant physical properties. Furthermore the transition region meets the energetic and spatial dimensions that are promising for applications at room temperature. Besides the manipulation of Topological Insulators by using intrinsic crystallographic defects, magnetic perturbations are a powerful method to test the robustness of and the interaction with the topological surface state. Since Topological Insulators are initially protected by the time-reversal symmetry, magnetic surface and bulk doping can lift this protection and give rise to novel phenomena. Surface magnetic doping of Topological Insulators with Co- and Mn-adatoms can yield for a rigid band bending and a shift of the Fermi level. At a well defined amount of dopants in the p-type Bi2Te3 the Fermi energy lies in the bulk bandgap. Therefore, at energies close to the Fermi level only the topological surface state is occupied and can mediate inter-adsorbate interactions. In the case of Mn-doping backscattering is observed that is forbidden on undoped Topological Insulators due to the time-reversal symmetry. As evidenced by theory and x-ray magnetic circular dichroism ferromagnetic coupling between adsorbates gives rise to surprisingly strong and focused scattering intensities. However, long-ranging ferromagnetic order is absent but superparamagnetic characteristics can be detected. In contrast to surface doping sufficient bulk doping of Sb2Te3 with V-atoms can give rise to long-range ferromagnetic order. Surprisingly, a spectral bandgap is absent despite the general assumed theoretical framework of time-reversal symmetry gapped Dirac states and the discovery of the quantum anomalous hall effect in similar sample systems. This is figured out to be a direct consequence of the dual nature of the magnetic dopants: while on the one hand opening up a magnetization induced gap, they fill it by creating intragap states. Their local character, visualized by mapping of their spatial distribution, leads to a mobility gap that is confirmed by direct comparison of the undoped and V-doped Topological Insulator by means of Landau level spectroscopy. KW - Rastertunnelmikroskopie KW - Topologischer Isolator KW - Dotierung KW - Magnetismus KW - Röntgendichroismus Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-239204 ER - TY - THES A1 - Schummer, Bernhard T1 - Stabilisierung von CdS Nanopartikeln mittels Pluronic P123 T1 - Stabilization of CdS nanoparticles using Pluronic P123 N2 - Ziel dieser Arbeit war die Stabilisierung von Cadmiumsulfid CdS mit Pluronic P123, einem Polymer. CdS ist ein Halbleiter, der zum Beispiel in der Photonik und bei optischen Anwendungen eingesetzt wird und ist deshalb äußerst interessant, da seine Bandlücke als Nanopartikel verschiebbar ist. Für die Photovoltaik ist es ein attraktives Material, da es im sichtbaren Licht absorbiert und durch die Bandlückenverschiebung effektiver absorbieren kann. Dies ist unter dem Namen Quantum Size Effekt bekannt. Als Feststoff ist CdS für einen solchen Anwendungsbereich weniger geeignet, zumal der Effekt der Bandlückenverschiebung dort nicht auftritt. Wissenschaftler bemühen sich deshalb CdS als Nanopartikeln zu stabilisieren, weil CdS in wässrigen Lösungen ein stark aggregierendes System, also stark hydrophob ist. Es wurden zwei Kriterien für die erfolgreiche Stabilisierung von CdS festgelegt. Zum einen muss das Cds homogen im Medium verteilt sein und darf nicht agglomerieren. Zum anderen, müssen die CdS Nanopartikel kleiner als 100 A sein. In meiner Arbeit habe ich solche Partikel hergestellt und stabilisiert, d.h. verhindert, dass die Partikel weiterwachsen und gleichzeitig ihre Bandlücke verschoben wird. Die Herausforderung liegt nicht in der Herstellung, aber in der Lösung von CdS im Trägerstoff, da CdS in den meisten Flüssigkeiten nicht löslich ist und ausfällt. Die Stabilisierung in wässrigen Lösungen wurde das erste Mal durch Herrn Prof. Dr. Rempel mit Ethylendiamintetraessigsäure EDTA erfolgreich durchgeführt. Mit EDTA können jedoch nur sehr kleine Konzentrationen stabilisiert werden. Zudem können Parameter wie Größe und Geschwindigkeit der Reaktion beim Stabilisieren der CdS-Nanopartikel nicht angepasst oder beeinflusst werden. Dieses Problem ist dem, vieler medizinischer Wirkstoffe sehr ähnlich, die in hohen Konzentrationen verabreicht werden sollen, aber nicht oder nur schwer in Wasser löslich sind (Bsp. Kurkumin). Ein vielversprechender Lösungsweg ist dort, die Wirkstoffe in große Trägerpartikel (sog. Mizellen) einzuschleusen, die ihrerseits gut löslich sind. In meiner Arbeit habe ich genau diesen Ansatz für CdS verfolgt. Als Trägerpartikel/Mizelle wurde das bekannte Copolymer Pluronic P123 verwendet. Aus dieser Pluronic Produktreihe wird P123 gewählt, da es die größte Masse bei gleichzeitig höchstem Anteil von Polypropylenoxid PPO im Vergleich zur Gesamtkettenlänge hat. P123 ist ein ternäres Polyether oder Dreiblockkopolymer und wird von BASAF industriell produziert. Es besteht aus drei Böcken, dem mittlere Block Polypropylenoxid PPO und den beiden äußeren Blöcken Polyethylenoxid PEO. Der Buchstabe P steht für pastös, die ersten beiden Ziffern in P123 mit 300 multipliziert ergeben das molare Gewicht und die letzte Ziffer mit 10 multipliziert entspricht dem prozentualen Gewichtsanteil PEO. Die Bildung von Mizellen aus den P123 Molekülen kann bewusst über geringe Temperaturänderungen gesteuert werden. Bei ungefähr Raumtemperatur liegen Mizellen vor, die sich bei höheren Temperaturen von sphärischen in wurmartige Mizellen umwandeln. Oberhalb einer Konzentration von 30 Gewichtsprozent wtp bilden die Mizellen außerdem einen Flüssigkristall. Ich habe in meiner Arbeit zunächst P123 mit Hilfe von Röntgenstreuung untersucht. Anders als andere Methoden gibt Röntgenstreuung direkten Aufschluss über die Morphologie der Stoffe. Röntgenstreuung kann die Mischung von P123 mit CdS abbilden und lässt darauf schließen, ob das Ziel erreicht werden konnte, stabile CdS Nanopartikel in P123 zu binden. Für die Stabilisierung der Nanopartikel ist es zunächst notwendig die richtigen Temperaturen für die Ausgangslösungen und gemischten Lösungen zu finden. Dazu muss P123 viel genauer untersucht werden, als der momentane Kenntnisstand in der Literatur. Zu diesem Zweck als auch für die Analyse des stabilisierten CdS habe ich ein neues Instrument am LRM entwickelt, sowie eine temperierbare Probenumgebung für Flüssigkeiten fürs Vakuum, um morphologische Eigenschaften aus Streuamplituden und -winkeln zu entschlüsseln. Diese Röntgenstreuanlage wurde konzipiert und gebaut, um auch im Labor P123 in kleinen Konzentrationen messen zu können. Röntgenkleinwinkelstreuung eignet sich besonders als Messmethode, da die Probe mit einer hohen statistischen Relevanz in Flüssigkeit und in verschiedenen Konzentrationen analysiert werden kann. Für die Konzentrationen 5, 10 und 30 wtp konnte das temperaturabhängige Verhalten von P123 präzise mit Röntgenkleinwinkelstreuung SAXS gemessen und dargestellt werden. Für 5 wtp konnten die Größen der Unimere und Mizellen bestimmt werden. Trotz der nicht vorhandenen Absolutkalibration für diese Konzentration konnten dank des neu eingeführten Parameters kappa eine Dehydrierung der Mizellen mit steigender Temperatur abgeschätzt, sowie eine Hysterese zwischen dem Heizen und Abkühlen festgestellt werden. Für die Konzentration von 10 wtp wurden kleinere Temperaturschritte gewählt und die Messungen zusätzlich absolut kalibriert. Es wurden die Größen und Streulängendichten SLD der Unimere und Mizellen präzise bestimmt und ein vollständiges Form-Phasendiagramm erstellt. Auch für diese Konzentration konnte eine Hysterese eindeutig an der Größe, SLD und am Parameter kappa gezeigt werden, sowie eine Dehydrierung des Mizellenkerns. Dies beweist, dass der Parameter kappa geeignet ist, um bei nicht absolut kalibrierten Messungen, Aussagen über die Hydrierung und Hysterese komplexer Kern-Hülle Modelle zu machen. Für die Konzentration von 30 wtp konnte zwischen 23°C und 35°C eine FCC Struktur nachgewiesen werden. Dabei vergrößert sich die Gitterkonstante der FCC Struktur von 260 A auf 289 A in Abhängigkeit der Temperatur. Durch das Mischen zweier Lösungen, zum einen CdCl2 und 30 wtp P123 und zum anderen Na2S und 30 wtp P123, konnte CdS erfolgreich stabilisiert werden. Mit einer Kamera wurde die Gelbfärbung der Lösung, und somit die Bildung des CdS, in Abhängigkeit der Zeit untersucht. Es konnte festgestellt werden, dass das Bilden der CdS Nanopartikel je nach Konzentration und Temperierprogramm zwischen 30 und 300 Sekunden dauert und einer logistischen Wachstumsfunktion folgt. Höhere Konzentrationen CdS bewirken einen schnelleren Anstieg der Wachstumsfunktion. Mittels UV-Vis Spektroskopie konnte gezeigt werden, dass die Bandlücke von CdS mit steigender Konzentration konstant bei 2,52 eV bleibt. Eine solche Verschiebung der Bandlücke von ungefähr 0,05 eV im Vergleich zum Festkörper, deutet auf einen CdS Partikeldurchmesser von 80A hin. Mit SAXS konnte gezeigt werden, dass sich die flüssigkristalline Struktur des P123 bei zwei verschiedenen Konzentrationen CdS, von 0,005 und 0,1 M, nicht ändert. Das CdS wird zwischen den Mizellen, also durch die Bildung des Flüssigkristalls, und im Kern der Mizelle aufgrund seiner Hydrophobizität stabilisiert. Die Anfangs definierten Kriterien für eine erfolgreiche Stabilisierung wurden erfüllt. P123 ist ein hervorragend geeignetes Polymer, um hydrophobes CdS, sowohl durch die Bildung eines Flüssigkristalls, als auch im Kern der Mizelle zu stabilisieren. N2 - Aim of this work was the stabilization of cadmium sulphide CdS with Pluronic P123, a polymer. CdS is a semiconductor, which is used for photonics and for optical applications. It is highly interesting since its band gap can be shifted if it has the size of a nanoparticle. Due to this band gap shift and the fact that CdS is absorbing in the visible range, it is highly attractive material. This is known as the quantum size effect. As a solid, CdS is less interesting in this area because of the non-existing band gap shift. Scientists endeavor to stabilize CdS as a nanoparticle, since CdS is hydrophobic in aqueous solutions and thus a strongly aggregating system. Two criteria of a successful stabilization process were set. Firstly, CdS has to be homogeneously distributed in the solution and must not aggregate. Secondly, the nanoparticles must be smaller then 100A. During my thesis I produced such particles and stabilized them homogeneously in an aqueous solution, which meant to hinder the further growth of those nanopaticles while shifting their band gap. The challenge is not the production, but the encapsulation of CdS in a carrier, since CdS is not soluble in most solutions and precipitates. Such a stabilization in an aqueous solution was succeeded by Prof. Dr. Rempel with ethylenediaminetetraacetic acid EDTA as a stabilizer for the first time. But with EDTA only very small concentrations of CdS can be stabilized. Moreover, properties like size and reaction speed during the stabilization of the CdS nanoparticles cannot be adjusted or influenced. This problem is also known from medical agents, which should be administered in high doses, but are not or barely soluble in water like Curcumin. A promising solution is to encapsulate these medical agents in big carrier, so-called micelles, which themselves are soluble in water. In my thesis I followed this approach for CdS. As a carrier/micelle the well known copolymer Pluronic P123 was used. Compared to other Pluronics, P123 was chosen since it offers the biggest mass with the highest proportion of polypropylene oxide PPO compared to the total chain length. P123 is a ternary polyether and is produced industrially by BASF. It consists of three blocks, where the middle one is PPO and the outer blocks are polyethylene oxide PEO. The letter P stands for pasty while the first two numbers in P123 multiplied with 300 equal the molar mass and the last number multiplied with 10 equals the mass proportion of PEO. The formation of micelles can be triggered on purpose with a change in temperature. Micelles are present at approximately room temperature \cite{Manet2011}, which transform from spherical to worm-like micelles at higher temperatures. Above a certain concentration of 30 weight percent, the micelles will form a liquid crystal. In my work I first examined P123 with X-ray scattering. Unlike other methods, X-ray scattering gives direct information about the morphology of the substances. X-ray scattering can also be used to study the mixture of P123 with CdS and indicates, whether the goal of encapsulate stable CdS nanoparticles in P123 could be achieved. To stabilize the nanoparticles, it is first necessary to find the right temperatures for both the staring point and the end point of the stabilization process. For this purpose, P123 has to be examined much more precisely than the current state of knowledge in the literature. For this purpose as well as for the analysis of the stabilized CdS, I have developed a new instrument at the chair of X-ray microscopy, as well as a temperature controllable sample holder for liquids in vacuum to decipher morphological properties from scattering amplitudes and angles. This X-ray scattering system was designed and built in order to be able to measure P123 in small concentrations in the laboratory. Small-angle X-ray scattering is particularly suitable as a measurement method, since the sample can be analyzed with a high statistical relevance in liquid and in various concentrations. For the concentrations 5, 10 and 30 wtp, the temperature-dependent behavior of P123 could be precisely measured and presented using small-angle X-ray scattering. The sizes of the unimers and micelles could be determined for 5 wtp without an absolute calibration. With a newly introduced parameter kappa, the dehydration of the micelles with increasing temperature could be estimated, despite the lack of the absolute calibration for this concentration, as well as a hysteresis between heating and cooling. Smaller temperature steps were chosen for the concentration of 10 wtp, furthermore the measurements were also absolutely calibrated. The sizes and scattering length densities SLDs of the unimers and micelles were precisely determined and a complete shape-phase diagram was created. Also for this concentration, a hysteresis was clearly shown in terms of size, SLD and the parameter kappa, as well as dehydration of the micellar nucleus. This proves that the parameter kappa is suitable for making statements about the hydrogenation and hysteresis of complex core-shell models in the case of measurements that are not absolutely calibrated. For the concentration of 30 wtp an FCC structure could be detected between 23°C and 35°C. The lattice constant of the FCC structure increases from 260 A to 289 A depending on the temperature. By mixing two solutions, CdCl2 in a 30 wtp P123 and Na2S in 30 wtp P123, CdS could be successfully stabilized. The yellow coloration of the solution, and thus the formation of CdS, was examined as a function of time with the help of a camera. It was found that the formation of the CdS nanoparticles takes between 30 and 300 seconds, depending on the concentration and temperature protocol and follows a logistical growth function. Higher concentrations of CdS cause a more rapid increase in growth function. Using UV-Vis spectroscopy it could be shown that the band gap of CdS remains constant at 2.52 eV with increasing concentration. The shift in the band gap of approximately 0.05 eV compared to the solid state, indicates a CdS particle diameter of 80 A. With SAXS it could be shown that the liquid-crystalline structure of the P123 does not change at two different concentrations of CdS, of 0.005 and 0.1 M. The CdS is stabilized between the micelles due to the formation of the liquid crystal and in the core of the micelles due to their hydrophobicity. The initially defined criteria for successful stabilization were met. P123 is an excellent polymer to stabilize hydrophobic CdS nanoparticles, both through the formation of a liquid crystal and in the core of the micelles. KW - Röntgen-Kleinwinkelstreuung KW - Polymere KW - Cadmiumsulfid KW - Röntgen-Weitwinkelstreuung KW - Nanopartikel KW - Stabilisierung Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-238443 ER - TY - THES A1 - Grimm, Manuel T1 - Anwendung und Weiterentwicklung der winkelaufgelösten Photoemission an Molekül-Metall-Grenzflächen: Geometrische Struktur von Bilagenschichten und Kondoeffekt T1 - Application and further development of angle-resolved photoemission on molecule-metal interfaces: Geometric structure of bilayers and kondo effect N2 - Im Rahmen dieser Dissertation wurden organische Dünnschichten und deren Grenzflächen an Metallen mittels Photoemissionsspektroskopie untersucht. Hierbei wurden, unter Einstrahlung von Photonen mit einer Energie von zumeist 20-50 eV Elektronen des Valenzbandes des zu untersuchenden Probensystems ausgelöst, und in Abhängigkeit der kinetischen Energie und des Austrittswinkels bzw. Impulses charakterisiert. Eine wesentliche Aufgabe dieser Arbeit war es, die technische Entwicklung experimenteller Apparaturen des letzten Jahrzehnts dazu zu verwenden, um mit möglichst großer energetischer Auflösung bereits etablierte aber dennoch vielversprechende Systeme erneut zu untersuchen. Im ersten Hauptabschnitt wurden hierzu Einzel- und Doppelschichten bestehend aus Pentacenmolekülen mittels Molekularstrahlepitaxie auf einer Ag(110)-Oberfläche abgeschieden. Eine anschließende Untersuchung der emittierten Photoelektronen mittels Impulsmikroskopie, wodurch man in der Lage ist, die Photoelektronen des gesamten oberen Halbraumes gleichzeitig zu detektieren, ergab eine Verkippung der Moleküle der ersten und zweiten Lage der Doppelschichten. Im Vergleich hierzu liegen die Moleküle der Einzelschicht flach auf dem Substrat auf. Der Übergang von der Einzel- zur Doppelschicht erwirkt demnach eine Verkippung der Moleküle der ersten Lage, welche aufgrund der direkten Wechselwirkung mit dem Substrat nicht zu erwarten war. Im weiteren Verlauf dieses Abschnittes konnten unter Verwendung eines hemisphärischen Analysators mit hoher Energieauflösung weitere Feinheiten des Valenzbandspektrums, wie z.B. ein ungewöhnlicher Kurvenverlauf des Intensitätsmaximums des zweiten besetzten Molekülorbitals der ersten (unteren) Pentacenlage ausgemacht werden. Im zweiten Hauptabschnitt wurde eine energetisch schmale Resonanz, welche in der Literatur mit dem Kondoeffekt in Verbindung gebracht wird, im Valenzbandspektrum zweier unterschiedlicher Metall-Phthalocyaninmoleküle (Nickel- und Kupfer-Phthalocyanin) auf den drei Oberflächen Ag(100), Ag(110) und Ag(111) adsorbiert und auf ihre Temperaturabhängigkeit im Bereich von 20-300 Kelvin untersucht. Hierbei ergab sich neben der Feststellung des Vorhandenseins des Maximums auf allen drei Silber-Oberflächen ein energetischer Versatz dieses Maximums durch Abkühlen der Probe im Falle der Substrate Ag(100) und Ag(110), welcher in der vorliegenden Größenordnung von bis zu 100 meV ungewöhnlich für bisherige bekannte Kondosysteme ist. Auf Ag(111) konnte kein signifikanter Versatz im Rahmen der Messungenauigkeit festgestellt werden. Im weiteren Verlauf wurden auch von diesen Probensystemen Messungen mittels Impulsmikroskopie durchgeführt, welche in den dadurch erhaltenen Impulskarten geringe Anomalien aufwiesen. Insgesamt kann das vorliegende Verhalten dieser Systeme bis zum Abschluss dieser Arbeit nicht endgültig erklärt werden. Die für organische Systeme höchst ungewöhnliche Theorie der Ausbildung eines Kondogitters, in welcher die Wechselwirkung einzelner Störstellen zur Ausbildung eines elektronenartigen Bandes führt, wäre jedoch zunächst in der Lage, ein derartiges Verhalten, wenn auch nicht in dem hier gezeigten Ausmaß, teilweise zu erklären. N2 - In this dissertation organic thin films and their interfaces to metals are investigated by photoemission spectroscopy. Electrons of the valence band of the sample system to be investigated are excited under irradiation of photons with an energy in the order of 20-50 eV, and characterized as a function of the kinetic energy and the exit angle or momentum. An essential task of this work was to use the technical development of state-of-the-art experimental apparatuses of the last decade in order to investigate already established but nevertheless promising systems with the highest possible energetic resolution. In the first main section, single and double layers consisting of pentacene were deposited by molecular beam epitaxy on an Ag(110) surface. A subsequent examination of the emitted photoelectrons by momentum microscopy, which enables the simultaneous measurement of the entire upper half-space, revealed a tilting of the molecules of the first and second layers of the double layers. In comparison, the molecules of the single layer lie flat on the substrate. Therefore, the transition from the single to the double layer causes a tilting of the molecules of the first layer, which was not to be expected due to the direct interaction with the substrate. In the further course of this section, using a hemispherical analyzer with high energy resolution, further small energetic features of the valence band spectrum could be detected, e.g. an unusual shape of the intensity of the second occupied orbital of the first (bottom) pentacene layer. In the second main section, an energetically narrow resonance, which is associated with the Kondo effect in the literature, was investigated in the valence band spectrum of two different metal phthalocyanine molecules (nickel and copper) adsorbed on the three surfaces Ag(100), Ag(110) and Ag(111) for their temperature dependence in the range of 20-300 Kelvin. Besides the determination of the occurrence of the maximum on all three silver surfaces, an energetic shift of this maximum resulted from cooling the sample on the substrates Ag(100) and Ag(110), which in the present order of magnitude of approx. 100 meV is unusual for the previously known Kondo systems. On Ag(111) no significant shift could be found within the uncertainty of the measurement. In the further course, measurements of these sample systems were also carried out using a momentum microscope, which showed minor anomalies in the resulting momentum maps. Overall, the presented behaviour of these systems could not be explained within the frame of this dissertation. However, the theory of the formation of a Kondo lattice, in which the interaction of individual impurities leads to the formation of an electron-like band, which is highly unusual for organic systems, might be able to partially explain such a behaviour, even if not to the extent shown here. KW - Winkelaufgelöste Photoemissionsspektroskopie KW - Molekülphysik KW - Kondo-Effekt KW - Tieftemperaturphänomene KW - Low temperature effects Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-213797 ER - TY - THES A1 - Brodbeck, Sebastian T1 - Elektrische und magnetische Felder zur Untersuchung und Manipulation von Exziton-Polaritonen T1 - Electric and magnetic fields for analysis and manipulation of exciton-polaritons N2 - Starke Licht-Materie-Wechselwirkung in Halbleiter-Mikroresonatoren führt zur Ausbildung von Eigenmoden mit gemischtem Licht-Materie-Charakter, die als Polaritonen bezeichnet werden. Die besonderen Eigenschaften dieser bosonischen Quasiteilchen können zur Realisierung neuartiger Bauteile genutzt werden, wie etwa des Polariton-Lasers, der auf stimulierter Streuung beruht anstatt auf stimulierter Emission, durch die Photon-Lasing ausgelöst wird. Durch den direkten Zugang zu Polariton-Zuständen in spektroskopischen Experimenten, sowie durch die Möglichkeit mit vielfältigen Mitteln nahezu beliebige Potentiallandschaften definieren zu können, eröffnen sich zahlreiche weitere Anwendungsgebiete, etwa in der Quantensimulation bzw. -emulation. Mittels externer elektrischer und magnetischer Felder können Erkenntnisse über Polaritonen gewonnen werden, die in rein optischen Experimenten nicht zugänglich sind. Durch die Felder, die nicht mit rein photonischen Moden wechselwirken, kann auf den Materie-Anteil der Hybridmoden zugegriffen werden. Weiterhin können die Felder zur in-situ Manipulation der Polariton-Energie genutzt werden, was für die Erzeugung dynamischer Potentiale relevant werden könnte. Der Fokus dieser Arbeit liegt daher auf der Betrachtung verschiedener Phänomene der Licht-Materie-Wechselwirkung unter dem Einfluss äußerer Felder. Dazu wurden auf das jeweilige Experiment abgestimmte Strukturen und Bauteile hergestellt und in magneto-optischen oder elektro-optischen Messungen untersucht. Um elektrische Felder entlang der Wachstumsrichtung anlegen zu können, d.h. in vertikaler Geometrie, wurden dotierte Resonatoren verwendet, die mit elektrischen Kontakten auf der Probenoberfläche und -rückseite versehen wurden. In diesen Bauteilen wurde die Energieverschiebung im elektrischen Feld untersucht, der sogenannte Stark-Effekt. Dieser im linearen Regime bereits mehrfach demonstrierte Effekt wurde systematisch auf den nichtlinearen Bereich des Polariton-Lasings erweitert. Dabei wurde besonderes Augenmerk auf die Probengeometrie und deren Einfluss auf die beobachteten Energieverschiebungen gelegt. Die Untersuchungen von Proben mit planarer, semi-planarer und Mikrotürmchen-Geometrie zeigen, dass ein lateraler Einschluss der Ladungsträger, wie er im Mikrotürmchen erzielt wird, zu einer Umkehrung der Energieverschiebung führt. Während in dieser Geometrie mit zunehmender Feldstärke eine Blauverschiebung des unteren Polaritons gemessen wird, die durch Abschirmungseffekte erklärt werden kann, wird in planarer und semi-planarer Geometrie die erwartete Rotverschiebung beobachtet. In beiden Fällen können, je nach Verstimmung, Energieverschiebungen im Bereich von einigen hundert µeV gemessen werden. Die gemessenen Energieverschiebungen zeigen gute Übereinstimmung mit den Werten, die nach einem Modell gekoppelter Oszillatoren berechnet wurden. Weiterhin werden vergleichbare Energieverschiebungen unter- und oberhalb der Schwelle zum Polariton-Lasing beobachtet, sodass der Polariton-Stark-Effekt als eindeutiges Merkmal erachtet werden kann, anhand dessen optisch angeregte Polariton- und Photon-Laser eindeutig unterschieden werden können. Wird das elektrische Feld nicht entlang der Wachstumsrichtung angelegt, sondern senkrecht dazu in der Ebene der Quantenfilme, dann kommt es schon bei geringen Feldstärken zur Feldionisation von Elektron-Loch-Paaren. Um diese Feldgeometrie zu realisieren, wurde ein Verfahren entwickelt, bei dem Kontakte direkt auf die durch einen Ätzvorgang teilweise freigelegten Quantenfilme eines undotierten Mikroresonators aufgebracht werden. Durch das Anlegen einer Spannung zwischen den lateralen Kontakten kann die Polariton-Emission unterdrückt werden, wobei sich die Feldabhängigkeit der Polariton-Besetzung durch ein Modell gekoppelter Ratengleichungen reproduzieren lässt. Die neuartige Kontaktierung erlaubt es weiterhin den Photostrom in den Quantenfilmen zu untersuchen, der proportional zur Dichte freier Ladungsträger ist. Dadurch lässt sich zeigen, dass die zwei Schwellen mit nichtlinearem Anstieg der Emission, die in derartigen Proben häufig beobachtet werden, auf grundsätzlich verschiedene Verstärkungsmechanismen zurückgehen. An der zweiten Schwelle wird ein Abknicken des leistungsabhängigen Photostroms beobachtet, da dort freie Ladungsträger als Reservoir des Photon-Lasings dienen, deren Dichte an der Schwelle teilweise abgeklemmt wird. Die erste Schwelle hingegen, die dem Polariton-Lasing zugeordnet wird, hat keinen Einfluss auf den linear mit der Anregungsleistung ansteigenden Photostrom, da dort gebundene Elektron-Loch-Paare als Reservoir dienen. Mittels angepasster Ratengleichungsmodelle für Polariton- und Photon-Laser lässt sich der ermittelte Verlauf der Ladungsträgerdichte über den gesamten Leistungsbereich qualitativ reproduzieren. Abschließend wird durch ein magnetisches Feld der Einfluss der Licht-Materie-Wechselwirkung auf die Elektron-Loch-Bindung im Regime der sehr starken Kopplung beleuchtet. Durch die Messung der diamagnetischen Verschiebung wird der mittlere Elektron-Loch-Abstand von unterem und oberem Polariton für zwei Resonatoren mit unterschiedlich starker Licht-Materie-Wechselwirkung bestimmt. Bei geringer Kopplungsstärke werden die Hybridmoden in guter Näherung als Linearkombinationen der ungekoppelten Licht- und Materie-Moden beschrieben. Für den Resonator mit großer Kopplungsstärke wird eine starke Asymmetrie zwischen unterem und oberem Polariton beobachtet. Die diamagnetische Verschiebung des oberen Polaritons steigt mit zunehmender Verstimmung auf bis etwa 2,1 meV an, was fast eine Größenordnung über der Verschiebung des unteren Polaritons (0,27 meV) bei derselben Verstimmung liegt und die Verschiebung des ungekoppelten Quantenfilms um mehr als den Faktor 2 übersteigt. Das bedeutet, dass das untere Polariton durch eine Wellenfunktion beschrieben wird, dessen Materie-Anteil einen verringerten mittleren Elektron-Loch-Abstand aufweist. Im oberen Polariton ist dieser mittlere Radius deutlich größer als der eines Elektron-Loch-Paars im ungekoppelten Quantenfilm, was sich durch eine von Photonen vermittelte Wechselwirkung mit angeregten und Kontinuumszuständen des Quantenfilms erklären lässt. N2 - Strong light-matter interaction in semiconductor microcavities leads to the formation of eigenmodes with mixed light-matter characteristics, so-called polaritons. The unique properties of these bosonic quasiparticles may be exploited to realize novel devices, such as polariton-lasers which rely on stimulated scattering instead of stimulated emission, which in turn triggers photon-lasing. Polariton states are directly accessible in spectroscopic experiments and can be subjected to almost arbitrary potential landscapes which could lead to numerous applications, for instance in quantum simulation or emulation. External electric and magnetic fields can be used to gain insights into polaritons that are not available in all-optical experiments. The matter part of the hybrid modes is accessed by the external fields that do not interact with purely photonic modes. Furthermore, in-situ manipulation of the polariton energy by external fields could be used to create dynamic potentials. This thesis is therefore focussed on studying different aspects of light-matter coupling under the influence of external fields. To this end, structures and devices tailored to the specific experiments were fabricated and investigated in electro-optical or magneto-optical measurements. Doped microcavities with electrical contacts on the sample surface and back side were used to apply electric fields along the growth direction, i.e. in vertical geometry. The energy shift in an electric field, the so-called Stark effect, was investigated in these devices. In this work, measurements of the polariton Stark effect, which has previously been demonstrated in the linear regime, were systematically extended to the nonlinear regime of polariton-lasing with special attention paid to the sample geometry and its influence on the observable energy shifts. Investigations of samples with planar, semi-planar and micropillar geometries show that lateral carrier confinement in a micropillar leads to an inversion of the energy shift. While in this geometry a blueshift with increasing field strength is measured, which can be explained by screening effects, the expected redshift is restored in planar and semi-planar geometries. In both cases, detuning-dependent energy shifts of up to hundreds of µeV are observed in good agreement with values calculated with a model of coupled harmonic oscillators. Furthermore, comparable shifts below and above the polariton-lasing threshold are observed both in the semi-planar and in the micropillar geometry. The polariton Stark effect may therefore be considered as criterion to unambiguously distinguish optically excited polariton- and photon-lasers. If the electric field is not oriented along the growth direction but perpendicular to it, i.e. in the plane of the quantum wells, then field ionization of electron-hole pairs occurs already at low field strengths. To realize this field geometry, a process was developed to deposit electrical contacts directly onto the quantum wells of an undoped microcavity which are partially exposed in an etching step. The polariton emission can be suppressed by applying voltage to the lateral contacts and the dependency of the polariton occupation upon the electric field is reproduced using a set of coupled rate equations. This novel contacting technique furthermore allows to measure the photocurrent in the quantum wells which is proportional to the free carrier density. The two thresholds of nonlinear emission, which are commonly observed in similar samples, can then be shown to rely on fundamentally different gain mechanisms. A kink in the power dependence of the photocurrent is observed at the second threshold, where free carriers act as reservoir for photon-lasing which is why their density is partially clamped at threshold. The first threshold on the other hand, which is attributed to polariton-lasing, has no influence on the linear increase of the photocurrent with increasing excitation power, since there bound electron-hole pairs act as reservoir. The experimentally determined power dependence of the photocurrent is reproduced qualitatively over the whole range of excitation powers using adapted rate equation models for polariton- and photon-lasers. Finally, a magnetic field is used to reveal the impact of light-matter interactions on electron-hole coupling in the regime of very strong coupling. By measuring the diamagnetic shift, the average electron-hole separations of lower and upper polariton are determined for two microcavities with different light-matter coupling strengths. At small coupling strength, describing the hybrid modes as linear combinations of uncoupled light and matter modes is a valid approximation. At large coupling strength, significant asymmetries between lower and upper polariton are observed. With increasing detuning, the upper polariton diamagnetic shift increases up to 2.1 meV, almost an order of magnitude larger than the lower polariton shift (0.27 meV) at the same detuning and more than twice as large as the bare quantum well diamagnetic shift. Thus, the lower polariton is described by a wavefunction with a matter part exhibiting a decreased average electron-hole separation. For the upper polariton, this average radius is much larger than that of an electron-hole pair in the uncoupled quantum well which can be explained by photon-mediated interactions with excited and continuum states of the quantum well. KW - Drei-Fünf-Halbleiter KW - Exziton-Polariton KW - Quantenwell KW - Optischer Resonator KW - Polariton Lasing KW - Quantum confined Stark effect KW - Very strong coupling KW - Mikroresonator Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-207397 ER - TY - THES A1 - Huppmann, Sophia T1 - Atomlagenabscheidung von Oxidschichten auf Edelmetalloberflächen und deren Haftung T1 - Atomic Layer Deposition of Oxides on Nobel Metal Surfaces and their Adhesion N2 - Ziel dieser Arbeit war die Untersuchung einer Passivierungsschicht auf Silber, um es vor Degradation unter Feuchte oder Schadgasen zu schützen. Dazu wurden Al\(_2\)O\(_3\) und Ta\(_2\)O\(_5\) mittels Atomlagenabscheidung (atomic layer deposition: ALD) auf polykristallinen Silberoberflächen abgeschieden und deren Wachstum und Haftung analysiert. Zum Vergleich wurden die Edelmetalle Gold und Platin herangezogen. Die Beurteilung der Barriereeigenschaften gegenüber Schadgas erfolgte mittels einer Ozon-Behandlung in der ALD-Prozesskammer. Es zeigte sich, dass nur ALD-Schichten, die bis zu eine Abscheidetemperatur von unter 140~°C abgeschieden wurden, eine ausreichende Barrierewirkung liefern konnten. Erklärt werden konnte dieses Phänomen durch unterschiedliche Wachtumsregime für unterschiedliche Abscheidetemperaturen zwischen 100 und 300~°C, die in einer temperaturabhängigen Bedeckung der Silberoberfläche resultieren. Während bei niedrigen Temperaturen eine geschlossene Schicht aufwächst, findet ALD-Wachstum bei höheren Temperaturen, beginnend über 115~°C, nur an Korngrenzen, Stufenkanten und Defekten statt. Es wurden verschiedene Oberflächenbehandlungen untersucht und nur eine Vorbehandlung mit H\(_2\)O bei 100~°C in der ALD-Prozesskammer konnte auch bei höheren Temperaturen zu einem geschlossenen Schichtwachstum führen. In-vacuo XPS Untersuchungen der ersten Zyklen des Al\(_2\)O\(_3\)-Wachstums bei 100 und 200~°C auf Silber wurden miteinander und mit einer Silizium Referenzprobe verglichen. Bei beiden Wachstumstemperaturen kam es nicht zur Oxidation von Ag. Ab dem ersten TMA-Puls konnten Al-Verbindungen auf der Oberfläche nachgewiesen werden. Es zeigte sich, dass TMA auf der Ag-Oberfläche zu Methylaluminium und Methylresten dissoziieren und an Adsorbaten anbinden kann. Zusätzlich zeigte sich ein erhöhtes, nicht gesättigtes Wachstumsverhalten bei 200~°C, das über einen Sauerstoffdiffusionsprozess erklärt werden kann. Sauerstoff-Verunreinigungen, die sich in der Silberschicht befinden, konnten über Korngrenzendiffusion an die Oberfläche gelangen und dort mit TMA reagieren. Aufgrund von Oberflächendiffusion bei höheren Temperaturen gab es eine stabile Adsorption nur an Korngrenzen, Stufenkanten und Defekten. Nur die Si-Oberfläche zeigte ein typisches ALD-Wachstum. Auf Pt und Au lag unabhängig von weiteren Vorbehandlungen bei allen Beschichtungstemperaturen ein geschlossenes ALD-Anwachsen vor. Damit eignete sich Au gut um die Barriere-Eigenschaften der ALD-Schicht gegen Feuchtigkeit in Abhängigkeit von der Wachstumstemperatur nachzuweisen. Dies wurde mit einer cyanidischen Ätzlösung getestet. Während für eine Barriere gegen Ozon bereits eine dünne geschlossene Schicht, abgeschieden bei 100~°C ausreicht, musste gegen die Ätzlösung eine höhere Beschichtungstemperatur verwendet werden. Für die Bewertung der Haftung der Passivierungsschicht wurde neben den üblichen einfachen Tesatest und Schertest, ein pneumatischer Haftungstest entwickelt und eingesetzt. Dafür wurde die Methode des Blistertest angepasst, der ursprünglich für die Bestimmung der Haftung organischer Schichten, wie beispielsweise Kleber und Lacke, eingesetzt wurde, sodass er sich für die Untersuchung dünner Schichten eignet. Dazu wurde die zu testende Grenzfläche mittels eines Si-Trägers mechanisch unterstützt. Hierdurch kann die Deformation der Schicht minimiert werden und es kommt stattdessen zu einem Bruch. Die Delamination der Testschicht wurde durch das Anlegen des hydrostatischen Drucks erreicht, was eine gleichmäßige Kraftverteilung gewährleistet. Die Proben ließen sich mittels Standard-Dünnfilmtechnologie herstellen und können damit industriell gut eingesetzt werden. Sowohl der Messaufbau als auch die Probenpräparation wurden in dieser Arbeit vorgestellt. Es wurde mittels der beiden Bondmaterialien AuSn und Indium die maximal bestimmbare Adhäsionsspannung evaluiert und dafür Werte von (0,26 \(\pm\) 0,03) \(\cdot 10^9 \) Pa für AuSn und (0,09 \(\pm\) 0,01) \(\cdot 10^9 \) Pa für In bestimmt. Da im In bereits bei sehr niedrigen Drücken ein kohäsives Versagen auftritt, eignet sich AuSn besser für die Messung anderer Grenzflächen. Damit wurden schließlich die Grenzflächen ALD-Al\(_2\)O\(_3\) und ALD-Ta\(_2\)O\(_5\) auf Ag mit H\(_2\)O-Vorbehandlung sowie ALD-Al\(_2\)O\(_3\) auf Pt untersucht. Es wurden die folgenden Adhäsionsspannungen erreicht: Für ALD-Al\(_2\)O\(_3\) auf Ag: (0,23 \(\pm\) 0,01) \(\cdot 10^9 \) Pa, für ALD-Ta\(_2\)O\(_5\) auf Ag: (0,15 \(\pm\) 0,03) \(\cdot 10^9 \) Pa und für ALD-Al\(_2\)O\(_3\) auf Pt: (0,20 \(\pm\) 0,01) \(\cdot 10^9 \) Pa. Somit wurde bestätigt, dass mit Hilfe der Vorbehandlung der Ag-Oberfläche die ALD-Al\(_2\)O\(_3\)-Schicht nicht nur geschlossen ist, sondern auch ausreichend gut haftet und sich damit hervorragend als Barriere eignet. N2 - In this thesis, a barrier layer against degradation under humidity or corrosive gases on silver was studied. For this purpose Al\(_2\)O\(_3\) und Ta\(_2\)O\(_5\) using atomic layer deposition (ALD) were grown on polycrystalline silver surfaces and the growth mechanism as well as the adhesion were analyzed. The resulting characteristics were compared with gold and platinum. The barrier effect against corrosive gases was evaluated by an ozone treatment in the ALD-process chamber. Only ALD-layers grown below 140~°C could protect the underlying Ag. This fact could be explained by different growth regimes for varying process temperatures between 100 and 300~°C, resulting in a temperature dependent coverage of the Ag-surface. Only for temperatures below 115~°C a complete ALD-layer on Ag could be grown. However, at temperatures above 115~°C, the Al\(_2\)O\(_3\)-growth on silver only occurred on grain boundaries, step edges and defects, whereas no growth on single-crystalline facets could be observed. Different pretreatments of the surface were analyzed, but only a H\(_2\)O-pretreatment at 100~°C inside the ALD-process chamber resulted in a closed layer growth at elevated temperatures. In-situ XPS measurements of the first cycles of Al\(_2\)O\(_3\)-growth on Ag at 100 and 200~°C were compared, while a Silicon-sample served as reference. At both deposition temperatures, the silver substrate was not oxidized during the ALD process. Aluminum species could be identified immediately after the first TMA pulse. It was found, that on the Ag-surface TMA could dissoziate to methyl aluminum and methyl residues and bind on adsorbates. In addition, an unsaturated growth at 200~°C deposition temperature occured, which could be explained by an oxygen diffusion mechanism. Oxygen impurities stored in the silver film were proposed to be the source of reactants for this growth. This oxygen could diffuse along grain boundaries to the surface, where they react with TMA. Due to surface diffusions mechanism at increased temperatures, a stable adsorption only occurred at step edges, grain boundaries and defects. Only for the Si-surface a typical ALD-growth was reported. For Au and Pt a closed layer growth of ALD-Al\(_2\)O\(_3\) was found independent of pretreatments at all deposition temperatures. Au is therefore well suited for the evaluation of the barrier properties against humidity. The temperature dependency was investigated with an immersion in cyanide solution. While as barrier against ozone a very thin layer grown at 100~°C is sufficient, against etching solution a higher deposition temperature is necessary. For evaluation of the adhesion of the passivation layer a high pressure supported blister testing method was set up and used besides the common simple scotch tape test and a shear test. In contrast to the standard blister test, the examined interface is supported mechanically by silicon in order to avoid the formation of a blister and a possible film rupture. Thereby, a vertical detachment of the layer can be expected. Since the deformation of the tested layers is minimized, there is no constraint to ductile materials, as it is the case in standard blister tests. In contrast, it can be applied to various materials. Contactless delamination of the film is achieved by applying hydrostatic pressure to the interface that causes an even force distribution. The samples could be processed with standard thin film technology, with the benefit that the test can be applied industrially. In this thesis, the the setup of the test and the sample preparation were presented. In order to determine the maximum adhesion range of the test, samples with two different bonding techniques are compared. AuSn eutectic bonding resulted in (0,26 \(\pm\) 0,03) \(\cdot 10^9 \) Pa, In bonding in (0,09 \(\pm\) 0,01) \(\cdot 10^9 \) Pa. In showed a cohesive failure mode allready at very low pressures, while eutectic bonding offered enough stability to be applied for following experiments. With this setup ALD-Al\(_2\)O\(_3\) and ALD-Ta\(_2\)O\(_5\) on Ag with the H\(_2\)O-pretreatment as well as ALD-Al\(_2\)O\(_3\) on Pt were measured. The test resulted in the following adhesion strength: ALD-Al\(_2\)O\(_3\) on Ag: (0,23 \(\pm\) 0,01) \(\cdot 10^9 \) Pa, ALD-Ta\(_2\)O\(_5\) on Ag: (0,15 \(\pm\) 0,03) \(\cdot 10^9 \) Pa and ALD-Al\(_2\)O\(_3\) on Pt: (0,20 \(\pm\) 0,01) \(\cdot 10^9 \) Pa. These values verify that the pretreatment of silver leads not only to a complete covered ALD-Al\(_2\)O\(_3\)-layer, but also to a sufficent adhesion. Therefore the ALD-layer was most suitable as a barrier. KW - Aluminiumoxide KW - Atomlagenabscheidung KW - Edelmetall KW - Adhäsion KW - Haftungstest Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-207085 ER - TY - THES A1 - Vogt, Matthias Guido T1 - Elektronische Eigenschaften von Wabengittern mit starker Spin-Bahn-Kopplung T1 - Electronic Properties of honeycomb lattices with strong spin-orbit coupling N2 - Im Rahmen dieser Arbeit wurden die elektronischen Eigenschaften von Graphen auf Metalloberflächen mittels Rastertunnelmikroskopie und Quasiteilcheninterferenz (englisch quasiparticle interference, QPI)-Messungen untersucht. Durch das Verwenden schwerer Substrate sollte die Spin-Bahn-Wechselwirkung des Graphen verstärkt werden und damit eine Bandlücke am K-Punkt der Bandstruktur mittels QPI beobachtet werden. Um das Messen von QPI auf Graphen zu testen, wurde auf der Oberfläche eines SiC(0001)-Kristalls durch Erhitzen Graphen erzeugt und mit dem Rastertunnelmikroskop untersucht. Dieses System wurde schon ausführlich in der Literatur beschrieben und bereits bekannte QPI-Messungen von Streuringen, die auf den Dirac-Kegeln des Graphen am K-Punkt basieren, konnte ich auf gr/SiC(0001) in guter Qualität erfolgreich reproduzieren. Anschließend wurde Graphen nach einem wohlbekannten Verfahren durch Aufbringen von Ethylen auf ein erhitztes Ir(111)-Substrat erzeugt. Dieses gr/Ir(111)-System diente auch als Grundlage für Interkalationsversuche von Bismut (gr/Bi/Ir(111)) und Gadolinium (gr/Gd/Ir(111)) zwischen das Graphen und das Substrat. Auf gr/Bi/Ir(111) wurde ein schon aus der Literatur bekanntes Netzwerk aus Versetzungslinien beobachtet, dem zusätzlich eine Temperaturabhängigkeit nachgewiesen werden konnte. Beim Versuch, Gadolinium zu interkalieren, wurden zwei verschieden Oberflächenstrukturen beobachtet, die auf eine unterschiedlich Anordnung bzw. Menge des interkalierten Gadoliniums zurückzuführen sein könnten. Auf keinem dieser drei Systeme konnten allerdings Streuringe mittels QPI beobachtet werden. Als Vorbereitung der Interkalation von Gadolinium wurden dessen Wachstum und magnetische Eigenschaften auf einem W(110)-Kristall untersucht. Dabei konnte eine aus der Literatur bekannte temperaturabhängige Austauschaufspaltung reproduziert werden. Darüber hinaus konnten sechs verschieden magnetische Domänen beobachtet werden. Zusätzlich sind auf der Oberfläche magnetische Streifen auszumachen, die möglicherweise auf einer Spinspirale basieren. Als Grundlage für die mögliche zukünftige Erzeugung Graphen-artiger Molekülgitter wurde das Wachstum von H-TBTQ und Me-TBTQ auf Ag(111) untersucht. Die Moleküle richten sich dabei nach der Oberflächenstruktur des Silber aus und bilden längliche Inseln, deren Kanten in drei Vorzugsrichtungen verlaufen. Auf H-TBTQ wurde zudem eine zweite, Windmühlen-artige Ausrichtung der Moleküle auf der Oberfläche beobachtet. Auf den mit den Molekülen bedeckten Stellen der Oberfläche wurde eine Verschiebung des Ag-Oberflächenzustands beobachtet, die mit einem Ladungstransfer vom Ag(111)-Substrat auf die TBTQ-Moleküle zu erklären sein könnte. N2 - In this thesis, the electronic properties of graphene on metal surfaces were investigated by scanning tunneling microscopy and quasiparticle interference (QPI) measurements. In order to enhance the spin orbital interaction of the graphene and possibly observe a band gap at the K-point of the band structure via QPI, substrates with heavy atoms were used. To test the ability to measure QPI on graphene, graphene was produced on the surface of a SiC(0001) crystal by heating and examined with a scanning tunneling microscope. This system has already been described in detail in the literature and I was able to successfully reproduce QPI measurements of clearly recognizable scattering rings, which are due to the Dirac cones of the graphene at the K-point Afterwards, graphene was produced by a well-known process by applying ethylene to a heated Ir(111) substrate. This gr/Ir(111) system also served as a basis for intercalation experiments of bismuth (gr/Bi/Ir(111)) and gadolinium (gr/Gd/Ir(111)) between the graphene and the substrate. On gr/Bi/Ir(111), a network of dislocation lines known from literature was observed, which also showed a temperature dependence. In the attempt to intercalate gadolinium, two different surface structures were observed which could be due to a different arrangement or quantity of the intercalated gadolinium. However, on none of these three systems scattering rings were observed by QPI. In preparation for the intercalation of gadolinium, its growth and magnetic properties were investigated on a W(110) substrate. A temperature-dependent exchange splitting of the surface density of states known from the literature could be reproduced. In addition, six different magnetic domains and magnetic stripes were observed on the surface, which may be based on a spin spiral. The growth of H-TBTQ and Me-TBTQ on Ag(111) was investigated as a basis for a possible subsequent generation of graphene-like molecular lattices in the future. The molecules are aligned to the surface structure of the silver and form elongated islands with edges in three preferred directions. H-TBTQ also appeared in a second, windmilllike orientation of the molecules on the surface. A shift of the Ag surface state was observed on the surface areas covered by the molecules, which might be explained by a charge transfer from the Ag(111) substrate to the TBTQ molecules. KW - Spin-Bahn-Wechselwirkung KW - Graphen KW - Rastertunnelmikroskopie KW - Wabengitter KW - Tribenzotriquinacen KW - Quasiteilcheninterferenz Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-207506 ER - TY - THES A1 - Langer, Fabian T1 - Wachstum und Charakterisierung von 1,0 eV GaInNAs-Halbleitern für die Anwendung in Mehrfachsolarzellen T1 - Growth and characterization of 1.0 eV GaInNAs-semiconductors for the application in multi-junction solar cells N2 - Im Rahmen dieser Arbeit wurden GaInP/GaAs/GaInNAs 3J-Mehrfachsolarzellen in einem MBE/MOVPE-Hybridprozess hergestellt und untersucht. Der verwendete Hybridprozess, bei dem nur die GaInNAs-Teilsolarzelle mittels MBE hergestellt wird, kombiniert diese beiden Technologien und setzt sie entsprechend ihrer jeweiligen Vorteile ein. Die gezeigten Ergebnisse bestätigen grundsätzlich die Machbarkeit des Hybridprozesses, denn eine Degradation des mittels MBE hergestellten GaInNAs-Materials durch die Atmosphäre im MOVPE-Reaktor konnte nicht festgestellt werden. Dieses Resultat wurde von im Hybridprozess hergestellten 3J-Mehrfachsolarzellen, die GaInNAs-Teilsolarzellen enthalten, bekräftigt. Die offene Klemmspannung einer gezeigten Solarzelle erreichte bereits 2,59 V (AM1.5d) bzw. 2,48 V (AM0) und liegt damit jeweils über einer als Referenz hergestellten 2J-Mehrfachsolarzelle ohne GaInNAs. Die mittlere interne Quanteneffizienz der enthaltenen GaInNAs-Teilsolarzelle liegt bei 79 %. Die Berechnungen auf Grundlage dieser Effizienz unter Beleuchtung mit AM1.5d und unter Beleuchtung mit AM0 zeigten, dass nicht die enthaltene GaInNAs-Teilsolarzelle Strom limitierend wirkt, sondern die mittels MOVPE gewachsene GaInP-Teilsolarzelle. Die experimentell bestimmte Kurzschlussstromdichte der hergestellten Mehrfachsolarzelle ist wegen dieser Limitierung etwas geringer als die der 2J-Referenzsolarzelle. Der MOVPE-Überwachsvorgang bietet zwar noch weiteres Verbesserungspotential, aber es ist naheliegend, dass der Anwachsvorgang auf dem MBE-Material soweit optimiert werden kann, dass die aufgewachsenen GaInP- und GaAs-Schichten frei von Degradation bleiben. Damit bietet der Hybridprozess perspektivisch das Potential günstigere Produktionskosten in der Epitaxie von Mehrfachsolarzellen mit verdünnten Nitriden zu erreichen als es ausschließlich mittels MBE möglich ist. Im Vorfeld zur Herstellung der 3J-Mehrfachsolarzellen wurden umfassende Optimierungsarbeiten des MBE-Prozesses zur Herstellung der GaInNAs-Teilsolarzelle durchgeführt. So wurde insbesondere festgestellt, dass das As/III-Verhältnis während dem Wachstum einen entscheidenden Einfluss auf die elektrisch aktive Dotierung des GaInNAs-Materials besitzt. Die elektrisch aktive Dotierung wiederum beeinflusst sehr stark die Ausdehnung der Raumladungszone in den als p-i-n-Struktur hergestellten GaInNAs-Solarzellen und hat damit einen direkten Einfluss auf deren Stromerzeugung. In der Tendenz zeigte sich eine Zunahme der Stromerzeugung der GaInNAs-Teilsolarzellen bei einer gleichzeitigen Abnahme ihrer offenen Klemmspannung, sobald das As/III-Verhältnis während des Wachstums reduziert wurde. Durch eine sehr exakte Kalibration des As/III-Verhältnisses konnte ein bestmöglicher Kompromiss zwischen offener Klemmspannung und Stromerzeugung gefunden werden. Eine gezeigte GaInNAs-Einfachsolarzelle erreichte eine mittlere interne Quanteneffizienz von 88 % und eine offene Klemmspannung von 341 mV (AM1.5d) bzw. 351 mV (AM0). Berechnungen auf Grundlage der Quanteneffizienz ergaben, dass diese Solarzelle integriert in eine 3J-Mehrfachsolarzelle unter dem Beleuchtungsspektrum AM1.5g eine Stromdichte von 14,2 mA/cm^2 und unter AM0 von 17,6 mA/cm^2 erzeugen würde. Diese Stromdichten sind so hoch, dass diese GaInNAs-Solarzelle die Stromproduktion der GaInP- und GaAs-Teilsolarzellen in einer gängigen Mehrfachsolarzelle erreicht und keine Ladungsträgerverluste auftreten würden. Aufgrund ihrer höheren offenen Klemmspannung gegenüber einer Ge-Teilsolarzelle bietet diese GaInNAs-Teilsolarzelle das Potential die Effizienz der Mehrfachsolarzelle zu steigern. Messungen der Dotierkonzentration in der GaInNAs-Schicht dieser Solarzelle ergaben extrem geringe Werte im Bereich von 1x10^14 1/cm^3 bis 1x10^15 1/cm^3 (p-Leitung). In Ergänzung zu den Optimierungen des As/III-Verhältnisses konnte gezeigt werden, dass sich ein Übergang von p- zu n-Leitung im GaInNAs mit der Verringerung des As/III-Verhältnisses erzeugen lässt. Nahe des Übergangsbereiches wurden sehr geringe Dotierungen erreicht, die sich durch eine hohe Stromproduktion aufgrund der Ausbildung einer extrem breiten Verarmungszone gezeigt haben. Durch eine reduzierte offene Klemmspannung der bei relativ geringen As/III-Verhältnissen hergestellten Solarzellen mit n-leitendem GaInNAs konnte auf das Vorhandensein von elektrisch aktiven Defekten geschlossen werden. Generell konnten die gemessenen elektrisch aktiven Dotierkonzentrationen im Bereich von üblicherweise 10^16 1/cm^3 mit hoher Wahrscheinlichkeit auf elektrisch aktive Kristalldefekte im GaInNAs zurückgeführt werden. Eine Kontamination des Materials mit Kohlenstoffatomen in dieser Größenordnung wurde ausgeschlossen. N2 - In scope of this work GaInP/GaAs/GaInNAs 3J multi-junction solar cells have been produced by a MBE/MOVPE hybrid process and were investigated. The applied hybrid process, which only produces the GaInNAs sub cell by means of MBE, combines both technologies and uses them according to their advantages. The shown results confirm the feasibility of the hybrid process in principle, because a degradation of the GaInNAs material grown by MBE could not be found. This result was reconfirmed by 3J multi-junction solar cells, which contain GaInNAs sub cells. The open circuit voltage of one shown solar cell already reached 2.59 V (AM1.5d) and 2.48 V (AM0), respecitvely and outperformed in terms of voltage a produced 2J multi-junction solar cell without GaInNAs. The averaged internal quantum efficiency of the included GaInNAs sub cell reached 79 \%. The calculations based on this efficiency under illumantion with AM1.5d and under illumination with AM0 showed that not the included GaInNAs sub cell is limiting the current but the by means of MOVPE grown GaInP sub cell. The short current density under experimental conditions is somewhat lower than the one of the 2J reference solar cell due to this limitation. The MOVPE overgrowth indeed offers further potential for optimization, however, it is plausible that the initial growth procedure running on the MBE material can be optimized far enough to the point that the overgrown GaInP and GaAs layer remain degradation free. Thereby, the hybrid process offers perspectively the potential to reach lower production costs in the epitaxy of multi-junction solar cells including diluted nitrides as it is possible with the MBE method only. \newline Previous to the production of the 3J multi-junction solar cells comprehensive optimizations of the MBE process to produce the GaInNAs sub cell have been performed. First and foremost it was found that the As/III ratio during the growth has a critical influence on the electrical active doping of the GaInNAs material. However, the electrical active doping affects the extension of the depletion layer in the as p-i-n structure produced GaInNAs solar cells very strongly, which is directly related to their current generation. In general it was found that the increase of the current generation of the GaInNAs sub cell comes along with a decrease of its open circuit voltage as soon as the As/III ratio during the growth was lowered. Due to a very precise calibration of the As/III ratio a best possible compromise between the open circuit voltage and the current generation was found. A shown GaInNAs single-junction solar cell reached an averaged internal quantum efficiency of 88 \% and an open circuit voltage of 341 mV (AM1.5d) and 351 mV (AM0), respectively. Calculations based on the quantum efficiency showed that this solar cell integrated in a 3J multi-junction solar cell would produce a current density of 14.2 mA/cm$^{2}$ under the illumination spectrum AM1.5g and a current density of 17.6 mA/cm$^{2}$ under AM0. With such high current densities the GaInNAs solar cell reaches the current generation of the GaInP and GaAs sub cells in a current multi-junction solar cell and no charge carrier loss would occur. Due to its increased open circuit voltage, compared to a Ge sub cell, this GaInNAs sub cell indeed offers the potential to increase the efficiency of the multi-junction solar cell. Doping concentration measurements of the GaInNAs layer showed extremly low doping densities in the range between 1x10$^{14}$ 1/cm$^{3}$ and 1x10$^{15}$ 1/cm$^{3}$ (p-conductivity). In addition to the optimization of the As/III ratio we were able to show that a transition of p- to n-type conductivity of the GaInNAs material by reducing the As/III ratio can be induced. Close to the transition region a very low doping was achieved indicated by a high current generation due to the formation of an extreme broad depletion zone. Finding that the open circuit voltage of solar cells with n-type GaInNAs produced with relatively low As/III ratios is reduced, proved the existance of electrical active defects. So we can state, that the measured electrical active doping concentration in the range of typically 1x10$^{16}$ 1/cm$^{3}$ can be traced back to electrical active crystal defects in the GaInNAs layers with high probability. A contamination of the material with carbon atoms in this range was excluded. \newline KW - Mehrfach-Solarzelle KW - Molekularstrahlepitaxie KW - dilute nitride KW - GaInNAs Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-200881 ER - TY - THES A1 - Zinner, Martin Gerhard T1 - Adsorbat-induzierte Oberflächensysteme und ultra-dünne intermetallische Legierungsfilme im Fokus der niederenergetischen Elektronenbeugung und spektroskopischer Analysemethoden T1 - Adsorbate-unduced surface systems and ultra-thin intermetallic alloy films in the focus of low-energy electron diffraction and spectroscopic analysis methods N2 - Im Rahmen der vorliegenden Dissertation werden mit unterschiedlichen Analysemethoden die Korrelationen zwischen den strukturellen, elektronischen und magnetischen Eigenschaften von Selten Erd-basierten intermetallischen Oberflächenlegierungen anhand der beiden Probensysteme LaPt$_5$/Pt(111) und CePt$_5$/Pt(111) untersucht. Darüber hinaus werden die strukturellen Eigenschaften von Adsorbat-induzierten Oberflächenrekonstruktionen im sub-ML Bereich in reduzierten Dimensionen auf der Halbleiteroberfläche Si(111) anhand der beiden Materialsysteme Si(111)-(5$\times$2)-Au und Si(111)-($\sqrt{3}\times\sqrt{3}$)R30${\degree}$-Sn mit der Methode LEED-IV analysiert. Das erste experimentelle Kapitel dieser Arbeit behandelt die intermetallische Oberflächenlegierung LaPt$_5$/Pt(111), die sich ausbildet wenn La-Atome auf einem sauberen Pt(111)-Substrat abgeschieden werden und anschließend thermische Energie hinzugefügt wird. Die Dicke der gebildeten Legierung lässt sich über die zuvor angebotene Menge an La-Atomen variieren und resultiert aufgrund der Gitterfehlanpassung von Pt(111) und den obenauf liegenden LaPt$_5$-Filmen in sechs unterschiedliche Beugungsmuster im LEED, deren Überstrukturvektoren durch zwei unterschiedliche Rotationsausrichtungen in Bezug auf das Gitter des Substrats und unterschiedlichen lateralen Gitterkonstanten der Filme gekennzeichnet sind. Die atomare Struktur kann auf eine gemeinsame Kristallstruktur zurückgeführt werden, deren Stöchiometrie aus dickenabhängigen AES-Messungen zu LaPt$_5$ mit einer Pt-reichen Oberflächenabschlusslage bestimmt werden konnte. Die Ergebnisse einer durchgeführten LEED-IV Studie bestätigen das Wachstum der Filme in der CaCu$_5$-Struktur, wobei die Oberflächenterminierungslage im Vergleich zum Volumengitter ein zusätzliches Pt-Atom pro Einheitszelle aufweist, das zusätzlich um einen Wert von \unit{0.26}{\angstrom} aus der Oberfläche hervorsteht. Die La-Atome, die direkt unterhalb der Terminierungslage liegen, erfahren eine Verschiebung in entgegengesetzter Richtung, so dass im Vergleich zum Volumen der Filme eine lokal veränderte Symmetrie im oberflächennahen Bereich vorherrscht und sich auf die elektronischen Eigenschaften der LaPt$_5$-Filme auswirkt. Darüber hinaus wurden die Schwingungseigenschaften der LaPt$_5$-Filme mittels der polarisierten in situ Raman-Spektroskopie bestimmt, bei der die auftretenden Schwingungspeaks durch die Kenntnis der atomaren Struktur und mit Überlegungen aus der Gruppentheorie unterschiedlichen Tiefenbereichen der LaPt$_5$-Filme (Volumen und Oberfläche) zugewiesen werden konnten. Im zweiten experimentellen Kapitel liegt der Fokus auf der atomaren Struktur sowie auf den elektronischen und magnetischen Eigenschaften des Kondo- und Schwerfermionensystems CePt$_5$/Pt(111). In Abhängigkeit von der vor dem Legierungsprozess angebotenen Menge an Ce-Atomen auf dem Pt(111)-Substrat konnten insgesamt sieben verschiedene LEED-Phasen der CePt$_5$-Filme identifiziert werden, deren jeweilige Oberflächenrekonstruktionen durch eine unterschiedliche Rotationsausrichtung in Bezug auf das Pt(111)-Substrat gekennzeichnet sind. Zusätzlich ist die laterale Gitterkonstante einem Prozess aus Verspannung und Dehnung aufgrund der Gitterfehlanpassung von Film und Substrat ausgesetzt. Eine durchgeführte LEED-IV Analyse bestätigt das Wachstum der Filme in der CaCu$_5$-Struktur mit einer Pt-reichen Oberflächenabschlusslage, deren Pt$_3$-Kagom\'{e}-Lage im Vergleich zum Volumengitter mit einem zusätzlichen Pt-Atom pro Einheitszelle gefüllt ist. Die strukturellen Ergebnisse stimmen mit erzielten Resultaten aus früheren Arbeiten überein und verdeutlichen zudem die isostrukturellen Eigenschaften zur intermetallischen Oberflächenlegierung LaPt$_5$/Pt(111). Dies ermöglicht durch geeignete Vergleichsexperimente an LaPt$_5$/Pt(111) die induzierten Phänomene der $4f$-Elektronen bezüglich des Kondo- und Schwerfermionenverhaltens bei CePt$_5$/Pt(111) zu bestimmen, da La-Atome in ihrem atomaren Aufbau keine $4f$-Elektronen beherbergen. Mit der polarisierten in situ Raman-Spektroskopie aufgenommene Spektren anhand von unterschiedlich dicken CePt$_5$-Filmen beinhalten sowohl charakteristische Schwingungspeaks als auch elektronische Übergänge. Das spektroskopische Verhalten der Schwingungspeaks zeigt dabei nicht nur Gemeinsamkeiten zu LaPt$_5$/Pt(111) bei der Zuweisung der Schwingungsmoden zu den jeweiligen Tiefenbereichen in den CePt$_5$-Filmen, sondern es treten auch Unterschiede auf, da eine CePt$_5$-Schwingungsmode einem anormalen Temperaturverhalten unterliegt, das auf die Wechselwirkung mit den $4f$-Elektronen zurückzuführen ist. Weitere spezifische Raman-Signaturen, die elektronischen Übergängen in Form von Kristallfeldniveauaufspaltungen der $4f$-Elektronen von Ce zugewiesen werden konnten, resultieren ebenfalls aus unterschiedlichen Regionen der CePt$_5$-Filme (Oberfläche, inneres Volumen, Interface). Die magnetischen Eigenschaften der CePt$_5$-Filme wurden mit XAS und XMCD an den Ce M$_{4,5}$-Kanten in Abhängigkeit von der Temperatur, dem Einfallswinkel, der Filmdicke und der Stärke des Magnetfelds analysiert. Die markanten Übergänge zwischen unterschiedlichen Curie-Weiss-Regimen in der inversen Suszeptibilität erlauben Rückschlüsse über das Kristallfeldaufspaltungsschema, die Kondo- und die RKKY-Wechselwirkung und korrelieren mit der Ce-Valenz. Zudem konnte bei tiefen Temperaturen ein Übergang in den kohärenten Schwerfermionen-Zustand für alle untersuchten CePt$_5$-Filmdicken in dieser Arbeit nachgewiesen werden. Durch die Vorhersage eines metamagnetischen Lifshitz-Übergangs für diese Filme, der sich in der Magnetfeldabhängigkeit des magnetischen Moments äußert, konnte durch die Aufnahme von Magnetisierungskurven bei tiefen Temperaturen und hohen Magnetfeldern auf zwei weitere charakteristische Energieskalen der renormalisierten Bandstruktur zugegriffen werden. Das dritte experimentelle Kapitel widmet sich der mit LEED und LEED-IV durchgeführten Aufklärung der atomaren Struktur eines quasi-eindimensionalen Elektronensystems, bei dem sich die gebildeten Au-Nanodrähte auf der Si(111)-Oberfläche durch eine Si(111)-(5$\times$2)-Au Rekonstruktion beschreiben lassen. Die aufgenommenen LEED-Bilder mit ihren markanten Beugungsreflexen und sogenannten Streifen deuten auf drei gleichwertige Rotationsdomänen, die jeweils um einen Winkel von \unit{120}{\degree} gegeneinander gedreht sind, auf der Oberfläche hin. Zudem konnte aus einer Simulation der Beugungsbilder das Auftreten von Streifen durch drei zusätzliche Spiegeldomänen, die eine Phasenverschiebung von einem halben Überstrukturvektor einführen und bei einer sorgfältigen LEED-IV Analyse ebenfalls berücksichtigt werden sollten, erklärt werden. Aus den in der Literatur nach einer zweiten Rekalibrierung der nötigen Menge an Au-Atomen zur Ausbildung der Si(111)-(5$\times$2)-Au Rekonstruktion in den letzten Jahren heftig diskutierten Strukturmodellen gibt das von Kwon und Kang aufgestellte Geometriemodell (KK-Modell) die beobachteten energieabhängigen Intensitätsmodulationen in den experimentellen Daten beim Vergleich mit theoretisch berechneten IV-Kurven am besten wieder. Für dieses Modell nimmt der R-Faktor nach Pendry bei den unabhängig voneinander betrachteten drei Energieserien unter verschiedenen Einfallswinkeln der Elektronen auf die Probenoberfläche stets den kleinsten Wert an. Unter der expliziten Berücksichtigung von Si-Adatomen, die sich zusätzlich auf der Oberfläche befinden und in einer (5$\times$4)-Einheitszelle beschrieben werden können, bleibt das KK-Modell das zu präferierende Strukturmodell zur Beschreibung der ausgebildeten Au-Ketten und der Si-Honigwabenstruktur bei der Si(111)-(5$\times$2)-Au Oberflächenrekonstruktion. Im letzten experimentellen Kapitel wird ein zweidimensionales Elektronensystem -- die $\alpha$-Si(111)-($\sqrt{3}\times\sqrt{3}$)R30${\degree}$-Sn Oberflächenrekonstruktion, die sich bei 1/3 ML an Sn-Adsorbaten auf dem Si(111)-Substrat ausbildet -- im Hinblick auf die atomare Struktur bei Raumtemperatur mit LEED und LEED-IV untersucht. Aus den insgesamt sechs in die Analyse aufgenommenen Strukturmodellen, bei denen die Sn-Atome innerhalb der rekonstruierten ($\sqrt{3}\times\sqrt{3}$)R30${\degree}$-Einheitszelle unterschiedliche Adsorptionsplätze auf einer ideal terminierten Si(111)-Oberfläche einnehmen, konnte ein Legierungsverhalten, wie es bei der $\gamma$-Si(111)-($\sqrt{3}\times\sqrt{3}$)R30${\degree}$-Sn Phase auftritt, ausgeschlossen werden. Die Sn-Atome ordnen sich ausschließlich auf der Oberfläche neu an und führen zu einer Relaxation des darunterliegenden Substrats, deren atomare Verschiebungen sich bis in die sechste Si-Lage nachverfolgen lassen. Im Vergleich zu früheren Strukturaufklärungen an diesem Materialsystem bestätigt diese Analyse, dass sich die abgeschiedenen Sn-Atome auf T$_4$-Adsorptionsplätzen energetisch günstig anlagern, wobei die bei drei unterschiedlichen Einfallswinkeln aufgenommenen experimentellen Daten an unterschiedlichen Probenpositionen auf ein vorhandenes bzw. fehlendes Si-Atom auf einem S$_5$-Gitterplatz im darunterliegenden Si(111)-Substrat hindeuten. Außerdem konnte das theoretisch vorhergesagte dynamische Fluktuations-Modell aufgrund der sehr stark erhöhten thermischen Auslenkungen der Sn-Atome aus ihrer Gleichgewichtslage in den Modellrechnungen zur dynamischen Streutheorie nachgewiesen werden. Dies könnte neben den unregelmäßig angeordneten Si-Fehlstellen eine Ursache für das Ausbleiben des strukturell reversiblen Phasenübergangs von einer ($\sqrt{3}\times\sqrt{3}$)R30${\degree}$-Phase zu einer (3$\times$3)-Phase bei tiefen Temperaturen, wie er beispielsweise beim elektronisch vergleichbaren Adsorbatsystem Ge(111)-($\sqrt{3}\times\sqrt{3}$)R30${\degree}$-Sn auftritt, sein. N2 - In the scope of the present PhD thesis the correlations between the structural, electronic, and magnetic properties of rare earth-based intermetallic surface compounds are examined by means of different analysis methods on the basis of the two sample systems LaPt$_5$/Pt(111) and CePt$_5$/Pt(111). In addition, the structural properties of adsorbate-induced surface reconstructions in the sub-ML range in reduced dimensions on the semiconductor surface Si(111) are analyzed on the basis of the two material systems Si(111)-(5$\times$2)-Au and Si(111)-($\sqrt{3}\times\sqrt{3}$)R30${\degree}$-Sn with LEED-IV. The first experimental chapter of this thesis deals with the intermetallic surface compound LaPt$_5$/Pt(111). LaPt$_5$/Pt(111) forms when La atoms are deposited onto a clean Pt(111) substrate and subsequently thermal energy is applied. The thickness of the intermetallic film can be varied over the amount of La atoms offered before the alloying process and results in a total of six different diffraction patterns in LEED due to the lattice mismatch of Pt(111) and the LaPt$_5$ films on top. The superstructure vectors of the films formed are characterized by two different rotational orientations with respect to the lattice of the substrate and different lateral lattice constants of the films. The atomic structure can be traced back to a common crystal structure whose stoichiometry could be determined out of thickness dependent AES measurements to LaPt$_5$ with a Pt-rich surface termination layer. The results of a LEED-IV study confirm the growth of the films in the CaCu$_5$ structure, where the surface termination layer contains an additional Pt atom per unit cell compared to the bulk lattice. Additionally, this Pt atom protrudes from the surface by a value of \unit{0.26}{\angstrom}. The La atoms directly underneath the termination layer are shifted in opposite direction and therefore a locally changed symmetry prevails in the near surface region compared to the volume of the films and furthermore the electronic properties of the LaPt$_5$ films are affected. In addition, the vibrational properties of the LaPt$_5$ films were determined by means of polarized in situ Raman spectroscopy, in which the occurring vibrational peaks could be assigned to different depth regions of the LaPt$_5$ films (volume and surface) by knowledge of the detailed atomic structure and further considerations from group theory. In the second experimental chapter, the focus is put on the atomic structure and the electronic and magnetic properties of the Kondo- and heavy-fermion system CePt$_5$/Pt(111). Depending on the amount of Ce atoms offered before the alloying process on the Pt(111) substrate, a total of seven different LEED phases of the CePt$_5$ films could be identified, whose respective surface reconstructions are characterized by two different rotational orientations with respect to the Pt(111) substrate. Additionally the lateral lattice constant of the films are exposed to a process of stress and strain due to the lattice mismatch between film and substrate. A LEED-IV analysis confirms the growth of the films in the CaCu$_5$ structure with a Pt-rich surface termination layer whose Pt$_3$-Kagom\'{e} layer is filled with one additional Pt atom per unit cell compared to the bulk lattice. The structural results agree with results obtained in earlier studies and furthermore also illustrate the isostructural properties towards the intermetallic surface compound LaPt$_5$/Pt(111). The structural agreement between the two intermetallic surface compounds allows the determination of the $4f$ electrons induced phenomena with respect to the Kondo- and heavy-fermion behavior in CePt$_5$/Pt(111) by suitable comparative experiments on LaPt$_5$/Pt(111), since La atoms in their atomic structure do not contain $4f$ electrons. Spectra recorded with polarized in situ Raman spectroscopy of CePt$_5$ films with different film thicknesses contain both characteristic vibrational peaks and signatures of electronic transitions. The spectroscopic behavior of the vibrational peaks show similarities to LaPt$_5$/Pt(111) in the assignment of the vibrational modes to the respective depth regions in the CePt$_5$ films, but also differences occur, since one vibrational mode of CePt$_5$ is subject to an anomalous temperature behavior, which is attributed to the interaction with the $4f$ electrons. Further specific Raman signatures, which could be assigned to electronic transitions in form of level splitting of the $4f$ electron of the Ce atoms due to the crystal field of the Pt atoms, also originate from different depth regions of the CePt$_5$ films (surface, inner volume, interface). The magnetic properties of the CePt$_5$ films were analyzed with XAS and XMCD at the Ce M$_{4,5}$ edges as a function of temperature, angle of incidence, film thickness, and magnetic field strength. The prominent transitions in the inverse susceptibility between different Curie-Weiss regimes allow conclusions to be drawn about the crystal field splitting scheme, the Kondo- and RKKY-interactions and show a significant correlation with the Ce-valence. Furthermore, for all investigated CePt$_5$ film thicknesses in this thesis at low temperatures a transition to the coherent heavy-fermion state could be detected. By predicting a metamagnetic Lifshitz transition for these films, which is expressed in the magnetic field dependence of the magnetic moment, two further characteristic energy scales of the renormalized band structure could be accessed by recording magnetization curves at low temperatures and high magnetic fields. The third experimental chapter is devoted to the elucidation of the atomic structure of a quasi one-dimensional electron system with LEED and LEED-IV, in which the Au nanowires formed on the Si(111) surface can be described by a Si(111)-(5$\times$2)-Au reconstruction. The recorded LEED images include both a striking diffraction pattern and so-called diffraction streaks indicative for the existence of three equivalent rotational domains on the reconstructed surface, rotated by an angle of \unit{120}{\degree} against each other. In addition, the occurrence of diffraction streaks in the observed diffraction pattern could be explained through a theoretical simulation by the existence of three additional mirror domains on the surface, which introduce a phase shift of half a superstructure vector and should also be considered in a thorough LEED-IV analysis. From the structural models discussed vigorously in recent years in the literature after the introduction of a second recalibration of the necessary amount of Au atoms required for the formation of the Si(111)-(5$\times$2)-Au reconstruction, the geometry model established by Kwon and Kang (KK model) reflects best the observed energy-dependent intensity modulations in the experimental data when compared with calculated IV curves. For this model, the R-factor by Pendry always adopts its smallest value for the three energy series considered independently of each other at different angles of incidence of the electrons on the sample surface. Furthermore, even under explicit consideration of Si adatoms, which are additionally located on top of the reconstructed surface and can be described in a (5$\times$4) unit cell, the KK model remains the preferred structural model for the description of the Au chains formed and the Si honeycomb structure of the Si(111)-(5$\times$2)-Au surface reconstruction. In the final experimental chapter, a two-dimensional electron system -- the $\alpha$-Si(111)-($\sqrt{3}\times\sqrt{3}$)R30${\degree}$-Sn surface reconstruction, which is formed at a total coverage of 1/3 ML of Sn adsorbates on the Si(111) substrate -- is investigated with regard to the atomic structure at room temperature with LEED and LEED-IV. From a total of six structural models included in the analysis, in which the Sn atoms on an ideally terminated Si(111) surface occupy different adsorption sites within the reconstructed ($\sqrt{3}\times\sqrt{3}$)R30${\degree}$ unit cell, it was possible to exclude alloying such as observed for the $\gamma$- Si(111)-($\sqrt{3}\times\sqrt{3}$)R30${\degree}$-Sn phase. The Sn atoms rearrange exclusively on the surface and lead to a relaxation of the underlying substrate, whose atomic displacements can be traced back to the sixth Si layer. In comparison to earlier structural investigations conducted on this material system, the presented analysis confirms that the deposited Sn atoms are energetically favorably deposited at T$_4$ adsorption sites. Furthermore, the experimental data recorded at three different angles of incidence from different positions on the sample show indications of an existing and/or missing Si atom on a S$_5$ lattice site in the underlying Si(111) substrate. In addition, the theoretical prediction of the dynamic fluctuation model for this surface reconstruction could be proven in the model calculations of the dynamic scattering theory due to the very strongly increased thermal displacements of the Sn atoms from their equilibrium position. Besides from the irregularly arranged Si defects, this could be a hint for the absence of the reversible structural phase transition at low temperatures from a ($\sqrt{3}\times\sqrt{3}$)R30${\degree}$ phase to a (3$\times$3) phase, as it occurs in the electronically comparable adsorbate system Ge(111)-($\sqrt{3}\times\sqrt{3}$)R30${\degree}$-Sn. KW - Schwere-Fermionen-System KW - LEED KW - Magnetischer Röntgenzirkulardichroismus KW - Raman-Spektroskopie KW - Kristallfeld KW - dünne intermetallische Filme KW - geordnete Metalladsorbate auf Halbleiteroberflächen Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-192749 ER - TY - THES A1 - Anneser, Katrin T1 - Elektrochemische Doppelschichtkondensatoren zur Stabilisierung fluktuierender photovoltaischer Leistung T1 - Electric double layer capacitors for stabilizing intermittent photovoltaic power N2 - Der Ausbau der regenerativen Energiequellen führt vermehrt zu unvorhersehbaren Schwankungen der erzeugten Leistung, da Windkraft und Photovoltaik von natürlichen Bedingungen abhängen. Gerade Kurzzeitfluktuationen im Sekunden- bis Minutenbereich, die bei Solarzellen durch die Verschattung von vorüberziehenden Wolken zustande kommen, wird bislang wenig Beachtung geschenkt. Kurzzeitspeicher müssen eine hohe Zyklenstabilität aufweisen, um zur Glättung dieser Leistungsfluktuationen in Frage zu kommen. Im Rahmen der vorliegenden Dissertation wurden elektrochemische Doppelschichtkondensatoren für die Kopplung mit Siliziumsolarzellen und organischen Solarmodulen mit Hilfe von Simulationen und Messungen untersucht. Zusätzlich wurden grundlegende Fragestellungen zur Prozessierung und Alterung von Doppelschichtkondensatoren im Hinblick auf ein in der Literatur bereits diskutiertes System betrachtet, das beide Komponenten in einem Bauteil integriert - den sogenannten photocapacitor. Um die Druckbarkeit des gesamten elektrochemischen Doppelschichtkondensators zu ermöglichen, wurde der konventionell verwendete Flüssigelektrolyt durch einen Polymer-Gel-Elektrolyten auf Basis von Polyvinylalkohol und einer Säure ersetzt. Durch eine Verbesserung der Prozessierung konnte ein größerer Anteil der spezifischen Fläche der porösen Kohlenstoffelektroden vom Elektrolyten benetzt und somit zur Speicherung genutzt werden. Die Untersuchungen zeigen, dass mit Polymer-Gel-Elektrolyten ähnliche Kapazitäten erreicht werden wie mit Flüssigelektrolyten. Im Hinblick auf die Anwendung im gekoppelten System muss der elektrochemische Doppelschichtkondensator den gleichen Umweltbedingungen hinsichtlich Temperatur und Luftfeuchte standhalten wie die Solarzelle. Hierzu wurden umfangreiche Alterungstests durchgeführt und festgestellt, dass die Kapazität zwar bei Austrocknung des wasserhaltigen Polymer-Gel-Elektrolyten sinkt, bei einer Wiederbefeuchtung aber auch eine Regeneration des Speichers erfolgt. Zur passenden Auslegung des elektrochemischen Doppelschichtkondensators wurde eine detaillierte Analyse der Leistungsfluktuationen durchgeführt, die mit einem eigens entwickelten MPP-Messgerät an organischen Solarmodulen gemessen wurden. Anhand der Daten wurde analysiert, welche Energiemengen für welche Zeit im Kurzzeitspeicher zwischengespeichert werden müssen, um eine effiziente Glättung der ins Netz einzuspeisenden Leistung zu erreichen. Aus der Statistik der Fluktuationen wurde eine Kapazität berechnet, die als Richtwert in die Simulationen einging und dann mit anderen Kapazitäten verglichen wurde. Neben einem idealen MPP-Tracking für verschiedene Arten von Solarzellen und Beleuchtungsprofilen konnte die Simulation auch die Kopplung aus Solarzelle und elektrochemischem Doppelschichtkondensator mit zwei verschiedenen Betriebsstrategien nachbilden. Zum einen wurde ein fester Lastwiderstand genutzt, zum anderen eine Zielspannung für den Kurzzeitspeicher und somit auch die Solarzelle vorgegeben und der Lastwiderstand variabel so angepasst, dass die Zielspannung gehalten wird. Beide Betriebsmethoden haben einen Energieverlust gegenüber der MPP-getrackten Solarzelle zu verzeichnen, führen aber zu einer Glättung der Leistung des gekoppelten Systems. Die Simulation konnte für Siliziumsolarzellen mit einem Demonstratorversuch im Labor und für organische Solarzellen unter realen Bedingungen validiert werden. Insgesamt ergibt sich eine vielversprechende Glättung der Leistungsfluktuationen von Solarzellen durch den Einsatz von elektrochemischen Doppelschichtkondensatoren. N2 - The increased usage of regenerative energy sources leads to more unpredictable fluctuations in power output, as wind power and photovoltaics depend on natural conditions. Especially short-term fluctuations in the range of seconds to minutes, which occur in solar cells due to the shading by passing clouds, have received little attention so far. Corresponding short-term storage units that can be used to smooth these power fluctuations must have a high cycle stability. In the scope of this thesis the suitability of electrochemical double layer capacitors for coupling with silicon solar cells and organic solar modules was investigated with simulations and measurements. Processing methods and aging of electrochemical double layer capacitors in respect to an integrated system consisting of both components - already discussed in the literature as the so-called photocapacitor - were considered. As the liquid electrolyte was replaced by a polymer gel electrolyte based on polyvinyl alcohol and an acid in order to enable printability of the entire electrochemical double-layer capacitor. An increase of the capacitance to the level of the capacitance for electrodes with liquid electrolytes was achieved by improved processing in which a larger proportion of the specific area of the porous carbon electrodes could be wetted by the electrolyte and thus used for storage. In the application as coupled system the electrochemical double-layer capacitor must withstand the same environmental conditions with regard to temperature and humidity as the solar cell. Extensive aging tests were carried out and it was found that, although the capacitance decreases when the water-containing polymer gel electrolyte dries out, remoistening also regenerates the storage capacitance. A detailed analysis of the power fluctuations, which were measured under real conditions with small organic solar modules using a specially developed MPP measuring device, was carried out to determine the appropriate characteristics of the electrochemical double layer capacitor. Using a mathematically smoothed mean curve, it was determined which amounts of energy have to be stored in the short-term storage device for which time in order to achieve the smoothed curve. From the statistics of the fluctuations a capacitance could be calculated which was used as a guide value in the simulations and could then be compared to the impact of other capacities. In addition to ideal MPP tracking for different types of solar cells and lighting profiles, the simulation was also able to model the coupling of solar cell and electrochemical double layer capacitor with two different operating strategies. On the one hand a fixed load resistance was used, on the other hand a target voltage for the short-term storage device and thus also for the solar cell was specified. The load resistance was variably adapted so that the target voltage was reached. Both operating methods show an energy loss compared to the MPP tracked solar cell without storage component, but lead to smoothing of the power output of the coupled system. The simulation could be validated for silicon solar cells with a demonstrator test in the laboratory and for organic solar cells on the external test setup under real conditions. Overall, the use of electrochemical double layer capacitors results in a promising smoothing of the power fluctuations of solar cells. KW - Energie KW - Photovoltaik KW - Energiespeicher Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-199339 ER - TY - THES A1 - Knebl, Georg T1 - Epitaktisches Wachstum und Transportuntersuchung topologisch isolierender Materialien: GaSb/InAs Doppelquantenfilme und Bi\(_2\)Se\(_3\) Nanostrukturen T1 - Epitaxial growth and transport characterisation of topolological insulating materials: GaSb/InAs double quantum wells and Bi\(_2\)Se\(_3\) nanostructures N2 - Topologische Isolatoren gehören zu einer Klasse von Materialien, an deren Realisation im Rahmen der zweiten quantenmechanischen Revolution gearbeitet wird. Einerseits sind zahlreiche Fragestellungen zu diesen Materialen und deren Nutzbarmachung noch nicht beantwortet, andererseits treiben vielversprechende Anwendungen im Feld der Quantencomputer und Spintronik die Lösung dieser Fragen voran. Topologische Rand- bzw. Oberflächenzustände wurden für unterschiedlichste Materialien und Strukturen theoretisch vorhergesagt, so auch für GaSb/InAs Doppelquantenfilme und Bi2Se3. Trotz intensiver Forschungsarbeiten und großer Fortschritte bedürfen viele Prozesse v. a. im Bereich der Probenherstellung und Verarbeitung noch der Optimierung. Die vorliegende Arbeit präsentiert Ergebnisse zur Molekularstahlepitaxie, zur Probenfertigung sowie zu elektro-optisch modulierter Transportuntersuchung von GaSb/InAs Doppelquantenfilmen und der epitaktischen Fertigung von Bi2Se3 Nanostrukturen. Im ersten Teil dieser Arbeit werden die Parameter zur Molekularstrahlepitaxie sowie die Anpassung der Probenfertigung von GaSb/InAs Doppelquantenfilmen an material- und untersuchungsbedingte Notwendigkeiten beschrieben. Dieser verbesserte Prozess ermöglicht die Fertigung quantitativ vergleichbarer Probenserien. Anschließend werden Ergebnisse für Strukturen mit variabler InAs Schichtdicke unter elektrostatischer Kontrolle mit einem Frontgate präsentiert. Auch mit verbessertem Prozess zeigten sich Leckströme zum Substrat. Diese erschweren eine elektrostatische Kontrolle über Backgates. Die erstmals durch optische Anregung präsentierte Manipulation der Ladungsträgerart sowie des Phasenzustandes in GaSb/InAs Doppelquantenfilmen bietet eine Alternative zu problembehafteten elektrostatisch betriebenen Gates. Im zweiten Teil wird die epitaktische Herstellung von Bi2Se3 Nanostrukturen gezeigt. Mit dem Ziel, Vorteile aus dem erhöhten Oberfläche-zu-Volumen Verhältnis zu ziehen, wurden im Rahmen dieser Arbeit erstmals Bi2Se3 Nanodrähte und -flocken mittels Molekularstrahlepitaxie für die Verwendung als topologischer Isolator hergestellt. Ein Quantensprung – Kapitel 1 führt über die umgangssprachliche Wortbedeutung des Quantensprungs und des damit verbundenen Modells der Quantenmechanik in das Thema. Die Anwendung dieses Modells auf Quanten-Ensembles und dessen technische Realisation wird heute als erste Quantenmechanische Revolution bezeichnet und ist aus unserem Alltag nicht mehr wegzudenken. Im Rahmen der zweiten Quantenmechanischen Revolution soll nun die Anwendung auf einzelne Zustände realisiert und technisch nutzbar gemacht werden. Hierbei sind topologische Isolatoren ein vielversprechender Baustein. Es werden das Konzept des topologischen Isolators sowie die Eigenschaften der beiden in dieser Arbeit betrachteten Systeme beschrieben: GaSb/InAs Doppelquantenfilme und Bi2Se3 Nanostrukturen. GaSb/InAs Doppelquantenfilme Kapitel 2 beschreibt die notwendigen physikalischen und technischen Grundlagen. Ausgehend von der Entdeckung des Hall-Effekts 1879 werden die Quanten-Hall-Effekte eingeführt. Quanten-Spin-Hall-Isolatoren oder allgemeiner topologische Isolatoren sind Materialien mit einem isolierenden Inneren, weisen an der Oberfläche aber topologisch geschützte Zustände auf. Doppelquantenfilme aus GaSb/InAs, die in AlSb gebettet werden, weisen – abhängig vom Aufbau der Heterostruktur – eine typische invertierte Bandstruktur auf und sind ein vielversprechender Kandidat für die Nutzbarmachung der topologischen Isolatoren. GaSb, InAs und AlSb gehören zur 6,1 Ångström-Familie, welche für ihre opto-elektronischen Eigenschaften bekannt ist und häufig verwendet wird. Die Eigenschaften sowie die technologischen Grundlagen der epitaktischen Fertigung von Heterostrukturen aus den Materialien der 6,1 Ångström-Familie mittels Molekularstrahlepitaxie werden besprochen. Abschließend folgen die Charakterisierungs- und Messmethoden. Ein Überblick über die Literatur zu GaSb/InAs Doppelquantenfilmen in Bezug auf topologische Isolatoren rundet dieses Kapitel ab. Zu Beginn dieser Arbeit stellten Kurzschlusskanäle eine Herausforderung für die Detektion der topologischen Randkanäle dar. Kapitel 3 behandelt Lösungsansätze hierfür und beschreibt die Verbesserung der Herstellung von GaSb/InAs Doppelquantenfilm-Strukturen mit Blick auf die zukünftige Realisation topologischer Randkanäle. In Abschnitt 3.1 werden numerische Simulationen präsentiert, die sich mit der Inversion der elektronischen Niveaus in Abhängigkeit der GaSb und InAs Schichtdicken dGaSb und dInAs beschäftigen. Ein geeigneter Schichtaufbau für Strukturen mit invertierter Bandordnung liegt im Parameterraum von 8 nm ≾ dInAs ≾ 12 nm und 8 nm ≾ dGaSb ≾ 10 nm. Abschnitt 3.2 beschreibt die epitaktische Herstellung von GaSb/InAs Doppelquantenfilmen mittels Molekularstrahlepitaxie. Die Fertigung eines GaSb Quasisubstrats auf ein GaAs Substrat wird präsentiert und anschließend der Wechsel auf native GaSb Substrate mit einer reduzierten Defektdichte sowie reproduzierbar hoher Probenqualität begründet. Ein Wechseln von binärem AlSb auf gitterangepasstes AlAsSb erlaubt die Verwendung dickerer Barrieren. Versuche, eine hinlängliche Isolation des Backgates durch das Einbringen einer dickeren unteren Barriere zu erreichen, werden in diesem Abschnitt diskutiert. In Abschnitt 3.3 wird die Optimierung der Probenprozessierung gezeigt. Die Kombination zweier angepasster Ätzprozesse – eines trockenchemischen und eines sukzessive folgenden nasschemischen Schrittes – liefert zusammen mit der Entfernung von Oberflächenoxiden reproduzierbar gute Ergebnisse. Ein materialselektiver Ätzprozess mit darauffolgender direkter Kontaktierung des InAs Quantenfilmes liefert gute Kontaktwiderstände, ohne Kurzschlusskanäle zu erzeugen. Abschnitt 3.4 gibt einen kompakten Überblick, über den im weiteren Verlauf der Arbeit verwendeten „best practice“ Prozess. Mit diesem verbesserten Prozess wurden Proben mit variabler InAs Schichtdicke gefertigt und bei 4,2 K auf ihre Transporteigenschaften hin untersucht. Dies ist in Kapitel 4 präsentiert und diskutiert. Abschnitt 4.1 beschreibt die Serie aus drei Proben mit GaSb/InAs Doppelquantenfilm in AlSb Matrix mit einer variablen InAs Schichtdicke. Die InAs Schichtdicke wurde über numerische Simulationen so gewählt, dass je eine Probe im trivialen Regime, eine im invertierten Regime und eine am Übergang liegt. Gezeigt werden in Kapitel 4.2 Magnetotransportmessungen für konstante Frontgatespannungen sowie Messungen mit konstantem Magnetfeld gegen die Frontgatespannung. Die Messungen bestätigen eine Fertigung quantitativ vergleichbarer Proben, zeigen aber auch, dass keine der Proben im topologischen Regime liegt. Hierfür kommen mehrere Ursachen in Betracht: Eine Überschätzung der Hybridisierung durch die numerische Simulation, zu geringe InAs Schichtdicken in der Fertigung oder ein asymmetrisches Verschieben mit nur einem Gate (Kapitel 4.3). Zur Reduktion der Volumenleitfähigkeit wurden Al-haltigen Schichten am GaSb/InAs Übergang eingebracht. Die erwartete Widerstandssteigerung konnte in ersten Versuchen nicht gezeigt werde. Die in Kapitel 5 gezeigte optische Manipulation des dominanten Ladungsträgertyps der InAs/GaSb-Doppelquantentöpfe gibt eine zusätzliche Kontrollmöglichkeit im Phasendiagramm. Optische Anregung ermöglicht den Wechsel der Majoritätsladungsträger von Elektronen zu Löchern. Dabei wird ein Regime durchlaufen, in dem beide Ladungsträger koexistieren. Dies weist stark auf eine Elektron-Loch-Hybridisierung mit nichttrivialer topologischer Phase hin. Dabei spielen zwei unterschiedliche physikalische Prozesse eine Rolle, die analog eines Frontgates bzw. eines Backgates wirken. Der Frontgate Effekt beruht auf der negativ persistenten Photoleitfähigkeit, der Backgate Effekt fußt auf der Akkumulation von Elektronen auf der Substratseite. Das hier gezeigte optisch kontrollierte Verschieben der Zustände belegt die Realisation von opto-elektronischem Schalten zwischen unterschiedlichen topologischen Phasen. Dies zeigt die Möglichkeit einer optischen Kontrolle des Phasendiagramms der topologischen Zustände in GaSb/InAs Doppelquantenfilmen. In Abschnitt 5.1 wird die optische Verstimmung von GaSb/InAs Quantenfilmen gezeigt und erklärt. Sie wird in Abhängigkeit von der Temperatur, der Anregungswellenlänge sowie der Anregungsintensität untersucht. Kontrollversuche an Proben mit einem unterschiedlichen Strukturaufbau zeigen, dass das Vorhandensein eines Übergitters auf der Substratseite der Quantenfilmstruktur essentiell für die Entstehung der Backgate-Wirkung ist (Abschnitt 5.2). Abschließend werden in Abschnitt 5.3 die Erkenntnisse zur optischen Kontrolle zusammengefasst und deren Möglichkeiten, wie optisch definierte topologischen Phasen-Grenzflächen, diskutiert. Bi2Se3 Nanostrukturen Mit Blick auf die Vorteile eines erhöhten Oberfläche-zu-Volumen Verhältnisses ist die Verwendung von Nanostrukturen für das Anwendungsgebiet der dreidimensionalen topologischen Isolatoren effizient. Mit dem Ziel, diesen Effekt für die Realisation des topologischen Isolators in Bi2Se3 auszunutzen, wurde im Rahmen dieser Arbeit erstmalig das Wachstum von Bi2Se3 Nanodrähten und -flocken mit Molekularstrahlepitaxie realisiert. In Kapitel 6 werden technische und physikalische Grundlagen hierzu erläutert (Abschnitt 6.1). Ausgehend von einer Einführung in dreidimensionale topologische Isolatoren werden die Eigenschaften des topologischen Zustandes in Bi2Se3 gezeigt. Darauf folgen die Kristalleigenschaften von Bi2Se3 sowie die Erklärung des epitaktischen Wachstums von Nanostrukturen mit Molekularstrahlepitaxie. In Abschnitt 6.2 schließt sich die Beschreibung der epitaktischen Herstellung an. Die Kristallstruktur wurde mittels hochauflösender Röntgendiffraktometrie und Transmissionselektronenmikroskopie als Bi2Se3 identifiziert. Rasterelektronenmikroskopie-Aufnahmen zeigen Nanodrähte und Nanoflocken auf mit Gold vorbehandelten bzw. nicht mit Gold vorbehandelten Proben. Der Wachstumsmechanismus für Nanodrähte kann nicht zweifelsfrei definiert werden. Das Fehlen von Goldtröpfchen an der Drahtspitze legt einen wurzelbasierten Wachstumsmechanismus nahe (Abschnitt 6.3). N2 - Topological insulators are among the concepts being worked on in the second quantum mechanical revolution. On the one hand, numerous questions on these materials and their utilization have not yet been answered; on the other hand, promising applications in the field of quantum computing and spintronics are driving the solution of these questions. Topological edge and surface states have been predicted theoretically for a wide variety of materials and structures, including GaSb/InAs double quantum wells and Bi2Se3. Despite intensive research and great progress, many processes, especially in the field of sample preparation and processing, still require optimization. This thesis presents detailed studies on growth, fabrication and electro-optically modulated transport analysis of GaSb/InAs double quantum films as well as the epitaxial fabrication of Bi2Se3 nanostructures. In the first part of this thesis, the parameters for molecular beam epitaxy and sample preparation for GaSb/InAs double quantum films are described. The protocols for sample preparation have been adapted to the necessities of the material and experimental requirements. The achieved reproducibility of the presented process enables the production of quantitatively comparable sample series. Subsequently, results for structures with variable InAs layer thickness under electrostatic control with a front gate are presented. Despite of an improved process, leakage currents to the substrate were still observed. These hinder electrostatic control via back gates. The manipulation of the charge carrier type and the phase state in GaSb/InAs double quantum films are presented for the first time by optical excitation and offer an alternative to problematic electrostatically operated gates. The second part shows the epitaxial production of Bi2Se3 nanostructures. The increased surface-to-volume ratio of nanostructures is advantageous to supress the bulk conductivity in reference to surface conduction. Here, the molecular beam epitaxy of Bi2Se3 nanowires and flakes is shown for the first time. Chapter 1 introduces the topic of quantum technology, and in particular protected quantum (edge) states, starting with the proverb “Quantum Leap” (german “Quantensprung”). The application of quantum mechanics to quantum ensembles and its technical realization nowadays is called the first quantum mechanical revolution and is an indispensable part of our everyday life. Within the framework of the second quantum mechanical revolution, the application to individual states is now to be realized and made technically usable. Here topological insulators are a promising building block. The concept of the topological insulator as well as the properties of the two systems considered in this thesis are briefly described: GaSb/InAs double quantum films and Bi2Se3 nanostructures. GaSb/InAs double quantum films Chapter 2 describes the physical and technical basics of topological insulators as well as methods used for fabrication and analysis. Starting with the discovery of the Hall effect in 1879, the quantum Hall effects are introduced. Quantum spin Hall insulators or general topological insulators are materials with an insulating bulk but have topologically protected states at the surface. Double quantum films of GaSb/InAs embedded in AlSb matrix show – depending on the structure of the heterostructure – a typical inverted band structure and are a promising candidate for the utilization of topological insulators. GaSb, InAs and AlSb belong to the 6.1 Ångstrom family, which is known for its opto-electronic properties and is frequently used. The properties as well as the technological basics of epitaxial fabrication of heterostructures from the materials of the 6.1 Ångstrom family by molecular beam epitaxy are reviewed. Finally, the characterization and measurement methods are shown. At the beginning of the work leading up to this thesis, various short circuit channels hindered the detection of topological edge channels. Chapter 3 deals with possible solutions and describes the improvement of the fabrication of GaSb/InAs double quantum film structures with regard to the future realization of topological edge channels. In section 3.1 numerical simulations are presented. The inversion of the electronic level is calculated as a function of GaSb and InAs layer thicknesses dGaSb and dInAs. A suitable layer structure for structures with inverted band order lies within the parameter space of 8 nm ≾ dInAs ≾ 12 nm and 8 nm ≾ dGaSb ≾ 10 nm. Section 3.2 describes the epitaxial production of GaSb/InAs double quantum films by molecular beam epitaxy. The production of a GaSb quasi-substrate on a GaAs substrate is presented. Subsequently, the change to native GaSb substrates is motivated with a reduced defect density as well as reproducibly high sample quality. Changing from binary AlSb to lattice-matched AlAsSb allows the use of thicker barriers. Attempts to achieve sufficient isolation of the back gate by introducing a thicker lower barrier are discussed in this section. Section 3.3 shows the optimization of sample processing. The combination of two adapted etching processes – a dry chemical and a successive wet chemical step – in combination with the removal of surface oxides provide reproducible good results. A material selective etching process with subsequent direct contacting of the InAs quantum film provides good contact resistance without creating short circuit channels. Section 3.4 gives a compact overview of the "best practice" process used in the further course of this thesis. With this improved process, samples with variable InAs layer thickness were produced and examined at 4.2 K regarding their transport properties. This is presented and discussed in chapter 4. Section 4.1 describes a series of three samples with GaSb/InAs double quantum films in AlSb matrix with a variable InAs layer thickness. The InAs layer thickness was selected by numerical simulations in such a way that one sample is in the trivial regime, one in the inverted regime and one at the transition point. In section 4.2 magneto-transport measurements for constant front gate voltage and measurements with constant magnetic field versus the front gate voltage are shown. The measurements confirm a production of quantitatively comparable samples, but also show that none of the samples are in the topological regime. This might be explained by several possible reasons: an overestimation of hybridization by numerical simulation, insufficient InAs layer thicknesses in production or asymmetric shifting with only one gate (section 4.3). To reduce the volume conductivity, Al-containing layers were introduced at the GaSb/InAs transition. The expected increase in resistance could not be shown in first experiments. The optical manipulation of the dominant charge carrier type of the InAs/GaSb double quantum wells shown in chapter 5 provides an additional possibility of control in the phase diagram. Optical excitation allows the change of the majority charge carriers from electrons to holes. The transition involves a regime in which both charge carriers coexist. This strongly suggests electron-hole hybridization with a non-trivial topological phase. Here, two different physical processes play a role, which act analogously to a front gate or a back gate. The front gate effect is based on the negative persistent photoconductivity, the back-gate effect is based on the accumulation of electrons on the substrate side. The optically controlled shifting of the states shown here proves the realization of opto-electronic switching between different topological phases. This shows the possibility of an optical control of the phase diagram of the topological states in GaSb/InAs double quantum films. Section 5.1 displays and explains the optical detuning of GaSb/InAs quantum films. It is investigated as a function of temperature, excitation wavelength and excitation intensity. Control experiments on samples with a different structure show that the presence of a superlattice on the substrate side of the quantum film structure is essential for the formation of the back-gate effect (section 5.2). Finally, Section 5.3 summarizes the findings on optical control and discusses its possibilities for optical defined interfaces between topological phases in this system. Bi2Se3 Nanostructures Due to the increased surface-to-volume ratio, it is beneficial to use nanostructures for the application of three-dimensional Tis. With the aim to exploit this effect for the realization of a Bi2Se3 topological insulator, the growth of Bi2Se3 nanowires and flakes with molecular beam epitaxy was first realized in the context of this work. Chapter 6 explains the technical and physical basics (Section 6.1). Starting from an introduction to three-dimensional topological isolators, the properties of the topological state in Bi2Se3 are shown. This is followed by the crystal properties of Bi2Se3 and the explanation of the epitaxial growth of nanostructures with molecular beam epitaxy. Section 6.2 describes the epitaxial production. The crystal structure was identified as Bi2Se3 by high-resolution X-ray diffraction and transmission electron microscopy. Scanning electron microscopy images show nanowires and nanoflakes on samples that were either pre-treated with gold or not pre-treated with gold. While the growth mechanism for the nanowires cannot be defined beyond doubt, the absence of gold droplets at the wire tip suggests a root-catalysed growth mechanism (section 6.3). KW - GaSb/InAs KW - Bi2Se3 KW - Quantenfilm KW - Quantum well KW - Molekularstrahlepitaxie KW - molecular beam epitaxy KW - nano structure KW - Nanostruktur KW - topological insulator KW - Topologischer Isolator Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-191471 ER - TY - THES A1 - Lykowsky, Gunthard T1 - Hardware- und Methodenentwicklung für die 23Na- und 19F-Magnetresonanztomographie T1 - Hardware and method development for 23Na and 19F magnetic resonance imaging N2 - Neben dem Wasserstoffkern 1H können auch andere Kerne für die Magnetresonanztomographie (MRT) genutzt werden. Diese sogenannten X-Kerne können komplementäre Informationen zur klassischen 1H-MRT liefern und so das Anwendungsspektrum der MRT erweitern. Die Herausforderung bei der X-Kern-Bildgebung liegt zum großen Teil in dem intrinsisch niedrigen Signal-zu-Rauschen-Verhältnis (SNR), aber auch in den spezifischen Kerneigenschaften. Um X-Kern-Bildgebung optimal betreiben zu können, müssen daher Sende-/Empfangsspulen, Messsequenzen und -methoden auf den jeweiligen Kern angepasst werden. Im Fokus dieser Dissertation standen die beiden Kerne Natrium (23Na) und Fluor (19F), für die optimierte Hardware und Methoden entwickelt wurden. 23Na spielte in dieser Arbeit vor allem wegen seiner Funktion als Biomarker für Arthrose, einer degenerativen Gelenkserkrankung, eine Rolle. Hierbei ist insbesondere die quantitative Natriumbildgebung von Bedeutung, da sich mit ihr der Knorpelzustand auch im Zeitverlauf charakterisieren lässt. Für die quantitative Messung mittels MRT ist die Kenntnis des B1-Feldes der eingesetzten MR-Spule entscheidend, denn dieses kann die relative Signalintensität stark beeinflussen und so zu Fehlern in der Quantifizierung führen. Daher wurde eine Methode zur Bestimmung des B1-Feldes untersucht und entwickelt. Dies stellte aufgrund des niedrigen SNR und der kurzen sowie biexponentiellen T2-Relaxationszeit von 23Na eine Herausforderung dar. Mit einer retrospektiven Korrekturmethode konnte eine genaue und zugleich schnelle Korrekturmethode gefunden werden. Für die 1H- und 23Na-Bildgebung am menschlichen Knieknorpel wurden zwei praxistaugliche, doppelresonante Quadratur-Birdcage-Resonatoren entwickelt, gebaut und charakterisiert. Der Vergleich der beiden Spulen bezüglich Sensitivität und Feldhomogenität zeigte, dass der Vier-Ring-Birdcage dem Alternating-Rungs-Birdcage für den vorliegenden Anwendungsfall überlegen ist. Die in vivo erzielte Auflösung und das SNR der 23Na-Bilder waren bei beiden Spulen für die Quantifizierung der Natriumkonzentration im Knieknorpel ausreichend. Hochauflösende anatomische 1H-Bilder konnten ohne Mittelungen aufgenommen werden. In einer umfangreichen Multiparameter-MR-Tierstudie an Ziegen wurde der Verlauf einer chirurgisch induzierten Arthrose mittels 23Na- und 1H-Bildgebungsmethoden untersucht. Hierbei kamen dGEMRIC, T1ρ-Messung und quantitative Natrium-MRT zum Einsatz. Trotz des im Vergleich zum Menschen dünneren Ziegenknorpels, der niedrigen Feldstärke von 1,5 T und den auftretenden Ödemen konnten erstmals diese MR-Parameter über den Studienverlauf hinweg an den gleichen Versuchstieren und zu den gleichen Zeitpunkten ermittelt werden. Die Ergebnisse wurden verglichen und die ermittelten Korrelationen entsprechen den zugrundeliegenden biochemischen Mechanismen. Die im Rahmen dieser Studie entwickelten Methoden, Bildgebungsprotokolle und Auswertungen lassen sich auf zukünftige Humanstudien übertragen. Die mit klinischen Bildgebungssequenzen nicht zugängliche kurze Komponente der biexponentiellen T2*-Relaxationszeit von 23Na konnte mittels einer radialen Ultra-Short-Echo-Time-Sequenz bestimmt werden. Hierzu wurde eine Multi-Echo-Sequenz mit einem quasizufälligen Abtastschema kombiniert. Hierdurch gelang es, die kurze und lange T2*-Komponente des patellaren Knorpels in vivo zu bestimmen. 19F wird in der MRT wegen seiner hohen relativen Sensitivität und seines minimalen, körpereigenen Hintergrundsignals als Marker eingesetzt. Zur Detektion der niedrigen in-vivo-Konzentrationen der Markersubstanzen werden hochsensitive Messspulen benötigt. Für die 19F-Bildgebung an Mäusen wurde eine Birdcage-Volumenspule entwickelt, die sowohl für 19F als auch 1H in Quadratur betrieben werden kann, ohne Kompromisse in Sensitivität oder Feldhomogenität gegenüber einer monoresonanten Spule eingehen zu müssen. Dies gelang durch eine verschiebbare Hochfrequenzabschirmung, mit der die Resonanzfrequenz des Birdcage verändert werden kann. Es konnte weiterhin gezeigt werden, dass die Feldverteilungen bei 1H und 19F im Rahmen der Messgenauigkeit identisch sind und so der 1H-Kanal für die Pulskalibrierung und die Erstellung von B1-Karten für die 19F-Bildgebung genutzt werden kann. Hierdurch kann die Messzeit deutlich reduziert werden. Ein grundsätzliches Problemfeld stellt die Korrelation unterschiedlicher Bildgebungsmodalitäten dar. In der MRT betrifft das häufig die Korrelation von in-/ex-vivo-MR-Daten und den dazugehörigen Lichtbildaufnahmen an histologischen Schnitten. In dieser Arbeit wurde erstmals erfolgreich eine 1H- und 19F-MR-Messung an einem histologischen Schnitt vorgenommen. Durch die Verwendung einer optimierten 1H/19F-Oberflächenspule konnte die 19F-Signalverteilung in einer dünnen Tumorscheibe in akzeptabler Messzeit aufgenommen werden. Da der gleiche Schnitt sowohl mit Fluoreszenzmikroskopie als auch mit MRT gemessen wurde, konnten Histologie und MR-Ergebnisse exakt korreliert werden. Zusammenfassend konnten in dieser Arbeit durch Hardware- und Methodenentwicklung zahlreiche neue Aspekte der 19F- und 23Na-MRT beleuchtet werden und so zukünftige Anwendungsfelder erschlossen werden. N2 - In addition to the hydrogen nucleus 1H, other nuclei can also be used for magnetic resonance imaging (MRI). These so-called X-nuclei can provide complementary information on classical 1H MRI and thus expand the range of applications of MRI. The challenge in X-nucleus imaging is largely due to the intrinsically low signal-to-noise ratio (SNR), but also to the specific properties of the nucleus. In order to optimally perform X-nuclei imaging, transmit/receive coils, imaging sequences and methods must be adapted to the respective nucleus. The two nuclei sodium (23Na) and fluorine (19F) were in the focus of this dissertation and thus optimized hardware and methods were developed for these nuclei. 23Na played a major role in this work, mainly because of its function as a biomarker of osteoarthritis, a degenerative joint disease. In particular, the quantitative sodium imaging is of importance, as it can characterize the cartilage state over time. For quantitative measurements by MRI, the knowledge of the B1 field of the MR coil used is crucial, because this can strongly influence the signal intensity and thus lead to errors in the quantification. Therefore, a method for the determination of the B1 field was developed. This presented a challenge due to the low SNR and the short and biexponential T2 relaxation time of 23Na. Using a retrospective correction method, a precise and at the same time rapid correction method could be found. Two practicable double resonant quadrature birdcage resonators have been developed, constructed and characterized for 1H/23Na imaging on human knee cartilage. The comparison of the two coils in terms of sensitivity and field homogeneity showed that the four-ring birdcage is superior to the alternating-rungs birdcage for the present application. The in vivo resolution and SNR of the 23Na images were sufficient for both coils to quantify the sodium concentration in the knee cartilage. High-resolution 1H anatomical images could be acquired without averaging. In a large multiparameter MRI animal study on goats, the progression of surgically induced osteoarthritis was studied using 23Na and 1H imaging techniques. DGEMRIC, T1ρ and quantitative sodium MRI were used. Despite thinner goat cartilage compared to humans, low field strength of 1.5 T and the occurring edema, it was possible for the first time to determine these MR parameters over the course of the study on the same experimental animals and at the same time points. The correlations of the MR parameters correspond to the underlying biochemical mechanisms. The methods, imaging protocols and evaluations developed in this study can be applied to future human studies. The short component of the biexponential T2* relaxation time of 23Na, which is not accessible with clinical imaging sequences, could be determined by means of a radial ultra-short echo time sequence. For this purpose, a multi-echo sequence was combined with a quasi-random sampling scheme. This enabled the determination of the short and long T2* component of patellar cartilage in vivo. 19F is used as a marker in MRI because of its high relative sensitivity and minimal body’s own background signal. To detect the low in vivo concentrations of the marker substances, highly sensitive measuring coils are required. For 19F imaging of mice, a birdcage volume coil was developed that can be operated in quadrature for both 19F and 1H without compromising sensitivity or field homogeneity compared to monoresonant coils. This is due to a slidable RF shield, which is used to change the resonance frequency of the birdcage. It has also been shown that field distributions at 1H and 19F are identical allowing the 1H channel to be used for pulse calibration and B1 mapping for 19F imaging. This can significantly reduce the acquisition time. A fundamental challenge is the correlation of different imaging modalities. In MRI, this often affects the correlation of in and ex vivo MR data and the associated images of histological sections. In this work, 1H and 19F MR measurements of a histological section were successfully performed for the first time. By using an optimized 1H/19F surface coil, the 19F signal distribution in a thin tumor slice was acquired within an acceptable acquisition time. Since the same section was measured by fluorescence microscopy as well as by MRI, histology and MR results could be correlated exactly. In summary, hardware and method development in this work has highlighted numerous new aspects of 19F and 23Na MRI, opening up future fields of application. KW - Kernspintomografie KW - Fluor-19 KW - Natrium-23 KW - 19F-MRT KW - 23Na-MRT Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-188710 ER - TY - THES A1 - Elsholz, Markus T1 - Das akademische Selbstkonzept angehender Physiklehrkräfte als Teil ihrer professionellen Identität – Dimensionalität und Veränderung während einer zentralen Praxisphase T1 - Pre-Service Teachers‘ Academic Self-Concept as Part of their Professional Identity – Dimensionality and Change during a Practical Training N2 - Die vorliegende Arbeit untersucht die Struktur und die Veränderung des akademischen Selbstkonzepts angehender Physiklehrkräfte. Als selbstbezogene Kognition wird es als eine Grundlage der professionellen Identität von Lehrkräften verstanden. Selbstkonzepte bilden sich aus der Kategorisierung selbstrelevanter Informationen, die eine Person in verschiedenen Kontexten sammelt, bewertet und interpretiert. Für angehende Lehrkräfte wird der professionelle Kontext durch die Struktur und die Inhalte des Lehramtsstudiums gebildet. Daraus folgt die erste zentrale Hypothese der Arbeit: Im akademischen Selbstkonzept angehender Physiklehrkräfte lassen sich drei Facetten empirisch trennen, die den inhaltlichen Domänen des Lehramtsstudiums entsprechen. Demnach strukturieren Studierende ihre Fähigkeitszuschreibungen in Bezug auf (1) die Fachwissenschaft Physik, (2) die Fachdidaktik Physik sowie (3) die Erziehungswissenschaften. Konkrete Erfahrungen bilden als Quelle selbstrelevanter Informationen die Basis für den Aufbau bzw. die Veränderung von domänenspezifischen Selbstkonzeptfacetten. Sie stabilisieren das Selbstkonzept, falls sie im Einklang mit dem bisherigen Bild der Person von sich selbst stehen bzw. können eine Veränderung des Selbstkonzepts initiieren, wenn sie sich nicht konsistent in dieses Bild einfügen lassen. Vor diesem Hintergrund folgt die zweite zentrale Hypothese der vorliegenden Arbeit: Während der Praxisphasen des Studiums verändert sich das akademische Selbstkonzept der Studierenden. Die Hypothesen werden mit Ansätzen der latenten Modellierung untersucht. Mittels konfirmatorischer Faktorenanalyse wird die empirische Trennbarkeit der drei angenommenen Facetten bestätigt. In einer querschnittlichen Betrachtung zeigt sich ein deutlicher Einfluss des Geschlechts der Studierenden auf den Zusammenhang zwischen ihrem fachdidaktischen Selbstkonzept und ihrer bisherigen Praxiserfahrung. Die längsschnittliche Analyse der Veränderung des Selbstkonzepts während einer zentralen fachdidaktischen Lehrveranstaltung mit ausgeprägten Praxisphasen (Lehr-Lern-Labor-Seminar) wird mit einem latenten Wachstumskurvenmodell untersucht. Das auf die Fachdidaktik Physik bezogene Selbstkonzept steigt während des Seminars leicht an, wenn die Studierenden zum Seminarbeginn bereits über Praxiserfahrung verfügten. Fehlt diese, so ist ein leichter Rückgang in der Ausprägung des Selbstkonzepts feststellbar, der für weibliche Studierende stärker ausfällt als für ihre männlichen Kommilitonen. Mit den Befunden zu Struktur und Veränderung des akademischen Selbstkonzepts angehender Physiklehrkräfte trägt die vorliegende Arbeit dazu bei, die überwiegend qualitativen Analysen von Identitätsprozessen bei Studierenden durch den Einsatz eines theoretisch fundierten und klar umrissenen Konstrukts um eine quantitative Perspektive zu ergänzen. N2 - This study examines the structure and the change of the academic self-concept of preservice physics teachers. As a self-directed cognition, self-concept is understood as a basis for the professional identity of teachers. Self-concepts are formed by the categorization of context specific self-relevant information that a person collects, evaluates and interprets. In teacher education, the professional context for prospective teachers is formed by the structure and content of the specific teacher education program. Therefore the first central hypothesis of this thesis can be deduced: In the academic self-concept of pre-service physics teachers three facets can be separated empirically, which correspond to the content domains of the teacher education program, i. e. (1) physics, (2) physics didactics, and (3) educational sciences. Self-relevant experiences form the basis for building up or changing domain-specific self-concept facets. They are the source of self-relevant information that either stabilizes the self-concept if it is consistent with the person’s perception of him- or herself or can initiate a self-concept change if it can not be consistently integrated. Against this background, the second central hypothesis of the study follows: Practical trainings in initial teacher education are accompanied by a change in the pre-service teachers’ academic self-concept. The hypotheses are examined within a latent modeling approach. Confirmatory factor analysis confirms the empirical separability of the three assumed self-concept facets. A cross-sectional analysis reveals the influence of gender on the interrelation between pre-service teachers’ didactic self-concept and their prior teaching experience. The change in self-concept accompanying to a mandatory course in physics didactics and a practical training (Lehr-Lern-Labor-Seminar) is evaluated fitting a latent growth curve model. The self-concept facet related to physics didactics slightly increases during the seminar if the pre-service teachers already had teaching experience at the beginning of the seminar. In the subsample without teaching experience, a slight decline in the self-concept is noticeable. With the findings on the structure and change of the academic self-concept, this study contributes to supplementing the predominantly qualitative analyzes of identity processes in prospective teachers with a quantitative perspective by using a theoretically founded and clearly defined construct. KW - Selbstbild KW - Identität KW - Lehrerbildung KW - Analyse latenter Strukturen KW - Fachdidaktik KW - Selbstkonzept KW - self-concept KW - pre-service teachers KW - Lehramtsstudierende Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-172153 N1 - Erscheint auch als Buchhandelsausgabe im Logos Verlag Berlin (2019) ER - TY - THES A1 - Pfister, Julian T1 - Beschleunigte Magnetresonanz-Relaxographie T1 - Accelerated Magnetic Resonance Relaxography N2 - Ziel dieser Arbeit ist es, die quantitative MRT in den Fokus zu rücken. In den letzten Jahren hat sich auf diesem Forschungsgebiet viel weiterentwickelt und es wurden verschiedenste Sequenzen und Methoden vorgestellt, um insbesondere Relaxationszeitparameter quantitativ in kurzer Zeit zu messen. Steady-State-Sequenzen eignen sich besonders für diese Thematik, da sie kurze Messzeiten benötigen und darüber hinaus ein relativ hohes SNR besitzen. Speziell die IR TrueFISP-Sequenz bietet für die Parameterquantifizierung viel Potential. Ursprünglich wurde diese Sequenz an der Universität Würzburg zur simultanen Messung von T1- und T2-Relaxationszeiten vorgestellt und hinsichtlich der Zeiteffizienz weiterentwickelt. In dieser Arbeit wurde ein neuartiger iterativer Rekonstruktionsansatz für die IR TrueFISP-Sequenz entwickelt, der auf einer Hauptkomponentenanalyse (PCA) basiert und sich die glatten Signalverläufe zu Nutze macht. Aufgrund der hohen Zeitauflösung dieser Rekonstruktionstechnik werden dabei auch Gewebekomponenten mit kurzen Relaxationszeiten detektierbar. Weiterhin bewahrt der Rekonstruktionsansatz Informationen mehrerer Gewebekomponenten innerhalb eines Voxels und ermöglicht damit eine relaxographische Untersuchung. Insbesondere beim Menschen führen der Partialvolumeneffekt und die Mikrostruktur des Gewebes zu Signalverläufen, die ein multi-exponentielles Signal liefern. Die MR-Relaxographie, also die Darstellung von Relaxationszeitverteilungen innerhalb eines Voxels, stellt eine Möglichkeit dar, um die beteiligten Gewebekomponenten aus dem überlagerten Signalverlauf zu extrahieren. Insgesamt bilden die optimierte Relaxometrie mit der Möglichkeit der analytischen Korrektur von Magnetfeldinhomogenitäten und die beschleunigte Relaxographie die Hauptteile dieser Dissertation. Die Hauptkapitel werden im Folgenden noch einmal gesondert zusammengefasst. Die simultane Aufnahme der quantitativen T1- und T2-Parameter-Karten kann mit einem Goldenen-Winkel-basiertem radialen IR TrueFISP-Readout in ungefähr 7 Sekunden pro Schicht erreicht werden. Die bisherige Rekonstruktionstechnik mit dem KWIC-Filter ist durch dessen breite Filter-Bandbreite und somit in der zeitlichen Auflösung limitiert. Besonders bei hohen räumlichen Frequenzen wird eine sehr große Anzahl an Projektionen zusammengefasst um ein Bild zu generieren. Dies sorgt dafür, dass Gewebekomponenten mit kurzer T1*-Relaxationszeit (z.B. Fett oder Myelin) nicht akkurat aufgelöst werden können. Um dieses Problem zu umgehen, wurde die T1* shuffling-Rekonstruktion entwickelt, die auf dem T2 Shuffling-Ansatz basiert. Diese Rekonstruktionstechnik macht sich die glatten Signalverläufe der IR TrueFISP-Sequenz zu Nutze und ermöglicht die Anwendung einer PCA. Die iterative Rekonstruktion sorgt dafür, dass mit nur acht kombinierten Projektionen pro generiertem Bild eine merklich verbesserte temporäre Auflösung erzielt werden kann. Ein Nachteil ist jedoch das stärkere Rauschen in den ersten Bildern der Zeitserie bedingt durch die angewandte PCA. Dieses verstärkte Rauschen äußert sich in den leicht erhöhten Standardabweichungen in den berechneten Parameter-Karten. Jedoch ist der Mittelwert näher an den Referenzwerten im Vergleich zu den Ergebnissen mit dem KWIC-Filter. Letztendlich kann man sagen, dass die Ergebnisse leicht verrauschter, aber exakter sind. Mittels zusätzlichen Regularisierungstechniken oder Vorwissen bezüglich des Rauschlevels wäre es zudem noch möglich, das SNR der ersten Bilder zu verbessern, um dadurch den beschriebenen Effekt zu verringern. Grundsätzlich hängt die Genauigkeit von IR TrueFISP vom T1/T2-Verhältnis des betreffenden Gewebes und dem gewählten Flipwinkel ab. In dieser Arbeit wurde der Flipwinkel besonders für weiße und graue Masse im menschlichen Gehirn optimiert. Mit den verwendeten 35° wurde er außerdem etwas kleiner gewählt, um zudem Magnetisierungstransfereffekte zu minimieren. Mit diesen Einstellungen ist die Präzision vor allem für hohe T1- und niedrige T2-Werte sehr gut, wird jedoch insbesondere für höhere T2-Werte schlechter. Dies ist aber ein generelles Problem der IR TrueFISP-Sequenz und hängt nicht mit der entwickelten Rekonstruktionsmethode zusammen. Außerdem wurde im fünften Kapitel eine Akquisitionstechnik vorgestellt, die eine 3D-Abdeckung der quantitativen Messungen des Gehirns in klinisch akzeptabler Zeit von unter 10 Minuten erzielt. Dies wird durch Einsatz der parallelen Bildgebung erreicht, da eine Kombination aus radialer Abtastung in der Schicht und kartesischer Aufnahme in Schichtrichtung (Stack-of-Stars) vorliegt. Ein großes Problem in der Steady-State-Sequenz (und somit auch bei IR TrueFISP) sind Magnetfeldinhomogenitäten, die durch Suszeptibilitätsunterschiede verschiedener Gewebe und/oder Inhomogenitäten des Hauptmagnetfeldes hervorgerufen werden. Diese führen zu Signalauslöschungen und damit verbunden zu den beschriebenen Banding-Artefakten. Mithilfe der analytisch ermittelten Korrekturformeln ist es nun möglich, die berechneten (T1,T2)-Wertepaare unter Berücksichtigung der tatsächlich auftretenden Off- Resonanzfrequenz für einen großen Bereich zu korrigieren. An den kritischen Stellen, an denen die Bandings auftreten, liefert jedoch auch diese Korrektur keine brauchbaren Ergebnisse. Grundsätzlich ist es für die Genauigkeit der Ergebnisse stets zu empfehlen, die Flipwinkel- und B0-Karte zusätzlich mit aufzunehmen, um diese Parameter für die quantitative Auswertung exakt zu kennen. Mit den beschriebenen Methoden aus Kapitel 6 könnte es prinzipiell auch möglich sein, die Off-Resonanzfrequenz aus dem Signalverlauf zu ermitteln und auf die zusätzliche Messung der B0-Karte zu verzichten. B0-Änderungen während der Messung, die von der Erwärmung der passiven Shim-Elemente im MR-System hervorgerufen werden, sind kaum zu korrigieren. Ein stabiler Scanner ohne B0-Drift ist deshalb für quantitative Auswertungen erforderlich. Die erwähnte Messzeit von 7 Sekunden pro Schicht garantiert, dass auch Gewebe mit längeren Relaxationskomponenten annähernd im Steady-State sind, was wiederum für das Umkehren des Signals in den abklingenden Verlauf gegen Null und die anschließende Multikomponentenanalyse (vgl. Kapitel 7) notwendig ist. Mit der inversen Laplace- Transformation ist es innerhalb eines Voxels möglich, Signalverläufe auf mehrere Komponenten hin zu untersuchen. Der ursprünglich angenommene mono-exponentielle Verlauf wird durch ein multi-exponentielles Verhalten abgelöst, was vor allem in biologischem Gewebe eher der Wahrheit entspricht. Gewebe mit kurzen Relaxationskomponenten (T1* < 200 ms) sind klinisch relevant und mit T1* shuffling detektierbar. Vor allem Myelin innerhalb des Gehirns ist bei neurologischen Fragestellungen ein Indikator zur Diagnose im Frühstadium (z.B. für neurodegenerative Erkrankungen) und deshalb von besonderem Interesse. Die Integration über verschiedene T1*-Zeitbereiche im T1*-Spektrum ermöglicht dazu die Erstellung von Gewebekomponenten-Karten, mithilfe derer klinische Auswertungen sinnvoll wären. Die Erstellung dieser Karten ist prinzipiell möglich und funktioniert für mittlere und lange Gewebekomponenten recht gut. Die klinisch relevanten kurzen Gewebekomponenten sind dagegen bei der radialen Aufnahme mit nur einem Schuss noch nicht befriedigend. Deshalb wurde die Aufnahmetechnik in eine quasi-zufällige kartesische Akquisition mit mehreren Schüssen weiterentwickelt. Die Ergebnisse wurden in Kapitel 7 vorgestellt und sind vielversprechend. Einzig die Messzeit sollte mit zusätzlichen Beschleunigungen noch weiter verkürzt und auf eine kartesische 3D-Akquisition erweitert werden. Die Beschränkung auf T1*-Spektren bei der Multikomponentenanalyse und die Tatsache, dass deren Amplitude von einer Kombination von S0 und Sstst abhängen, führen dazu, dass es nicht ohne Weiteres möglich ist für einen einzelnen Gewebetyp an die T1- und T2-Information zu gelangen. In Kapitel 8 wurde gezeigt, dass dies mit einer zusätzlichen Messung gelingen kann. Das finale Ergebnis dieser Messungen ohne und mit Inversion sind zweidimensionale Spektren, bei der für jede Gewebekomponente innerhalb eines Voxels der T1- und T2-Wert abgelesen werden kann. Wichtig hierbei ist die Tatsache, dass der verwendete Ansatz kein Vorwissen über die Anzahl der zu erwartenden Gewebekomponenten (Peaks) im Voxel voraussetzt. Auch bei dieser Methodik ist die Kenntnis über den tatsächlichen Flipwinkel von Bedeutung, da dieser in den Formeln zur Berechnung von T1 und T2 verwendet wird. Die Stabilität des B0-Feldes ist hier ebenso von enormer Bedeutung, da Änderungen zwischen den beiden Messungen zu einem unterschiedlichen Steady-State und somit zu Abweichungen bei den nachfolgenden Berechnungen führen, die auf den selben Steady-State-Wert ausgelegt sind. Zusammenfassend lässt sich sagen, dass mit dieser Arbeit die Grundlagen für genauere und robustere quantitative Messungen mittels Steady-State-Sequenzen gelegt wurden. Es wurde gezeigt, dass sich Relaxationszeitspektren für jedes einzelne Voxel generieren lassen. Dadurch ist eine verbesserte Auswertung möglich, um genauere Aussagen über die Zusammensetzung einer Probe (vor allem beim menschlichen Gewebe) treffen zu können. Zudem wurde die Theorie für ultraschnelle 2D-Relaxographie-Messungen vorgestellt. Erste”Proof of Principle“-Experimente zeigen, dass es möglich ist, 2D-Relaxationszeitspektren in sehr kurzer Zeit zu messen und graphisch darzustellen. Diese Aufnahme- und Datenverarbeitungstechnik ist in dieser Form einmalig und in der Literatur kann bis dato keine schnellere Methode gefunden werden. N2 - The goal of this thesis is to put the quantitative MRI in focus. In recent years, much progress has been made in this area of research and a variety of sequences and methods have been presented, in particular to quantitatively measure relaxation time parameters in a short time. Steady-state sequences are particularly suitable for this topic, since they require short measurement times and, moreover, have a relatively high SNR. Especially the IR TrueFISP sequence offers a lot of potential for parameter quantification. Originally, this sequence was presented at the University of Würzburg for the simultaneous measurement of T1 and T2 relaxation times and further developed in terms of time efficiency. In this work, a novel iterative reconstruction approach has been developed for the IR TrueFISP sequence, which is based on a Principal Component Analysis (PCA) and utilizes the smooth signal courses. Due to the high time resolution of this reconstruction technique also tissue components with short relaxation times are detectable. Furthermore, the reconstruction approach preserves information of several tissue components within a voxel and thus allows for a relaxographic examination. In humans in particular, the partial volume effect and the microstructure of the tissue lead to signal courses that provide a multi-exponential signal. MR relaxography, i.e. the representation of relaxation time distributions within a voxel, offers a possibility to extract the tissue components involved from the superimposed signal course. Overall, the optimized relaxometry with the possibility of analytical correction of magnetic field inhomogeneities and the accelerated relaxography constitute the main parts of this dissertation. The main chapters will be summarized separately below. The simultaneous acquisition of quantitative T1 and T2 parameter maps can be achieved with a golden angle based radial IR TrueFISP readout in approximately 7 seconds per slice. The previous reconstruction technique with the KWIC filter is limited by its broad filter bandwidth and thus in the temporal resolution. Especially at high spatial frequencies, a very large number of projections are combined to generate an image. This ensures that tissue components with a short T1* relaxation time (e.g., fat or myelin) can not be accurately resolved. To circumvent this problem, the T1* shuffling reconstruction was developed based on the T2 Shuffling approach. This reconstruction technique takes advantage of the smooth signal courses of the IR TrueFISP sequence and allows the application of a PCA. The iterative reconstruction ensures that with only eight combined projections per generated image a significantly improved temporary resolution can be achieved. A drawback, however, is the increased noise in the first pictures of the time series due to the applied PCA. This increased noise manifests itself in the slightly increased standard deviations in the calculated parameter maps. However, the mean value is closer to the reference values compared to the results with the KWIC filter. Finally, it can be said that the results are slightly noisier, but more accurate. By means of additional regularization techniques or prior knowledge of the noise level, it would also be possible to improve the SNR of the first images, thereby reducing the described effect. Basically, the accuracy of IR TrueFISP depends on the T1/T2 ratio of the tissue and the selected flip angle. In this work, the flip angle has been optimized for white and gray matter in the human brain. With the 35° used, it was also chosen slightly smaller, in order to minimize magnetization transfer effects. With these settings, the precision is very good, especially for high T1 and low T2 values, but gets worse, especially for higher T2 values. However, this is a general problem of the sequence and is not related to the developed reconstruction method. In addition, the fifth chapter presented an acquisition technique that provides 3D coverage of quantitative brain measurements in a clinically acceptable time of less than 10 minutes. This is achieved through the use of parallel imaging, since there is a combination of radial scanning within one partition and a Cartesian acquisition in the slice direction (stack-of-stars). A major problem in the steady-state sequence (and therefore also in IR TrueFISP) are magnetic field inhomogeneities that are caused by susceptibility differences of various tissues and/or inhomogeneities of the main magnetic field. These lead to signal cancellations and associated with the described banding artifacts. Using the analytically determined correction formulas, it is now possible to correct the calculated (T1,T2) value pairs for a large range taking the actually occurring off-resonance frequency into account. However, even at the critical points where the bandings occur, this correction does not provide useable results. In principle, it is always recommended for the accuracy of the results to additionally acquire the flip angle and B0 map in order to know exactly these parameters for the quantitative evaluation. With the methods described in chapter 6, it could in principle also be possible to determine the off-resonance frequency out of the signal course and to dispense with the additional measurement of the B0 map. B0 changes during the measurement, which are caused by the heating of the passive shim elements in the MR system, are difficult to correct. A stable scanner without B0 drift is therefore required for quantitative evaluations. The mentioned measurement time of 7 seconds per slice guarantees that even tissues with longer relaxation components are approximately in the steady-state, which in turn is necessary for the reversal of the signal towards the exponential decay to zero and the subsequent multi-component analysis (see chapter 7). With the inverse Laplace transformation, it is possible to examine signal courses over several components within a single voxel. The originally assumed mono-exponential signal course is replaced by a multi-exponential behavior, which is more true, especially in biological tissue. Tissues with short relaxation components (T1*< 200 ms) are clinically relevant and detectable by T1* shuffling. In particular, myelin within the brain is an indicator of early diagnosis in neurological problems (e.g., for neurodegenerative diseases) and therefore of particular interest. The integration across different T1* time ranges in the T1* spectrum allows the generation of tissue component maps that would make clinical evaluations useful. The generation of these maps is possible in principle and works quite well for medium and long tissue components. The clinically relevant short tissue components, however, are not yet satisfactory in the radial measurements with a single shot. Therefore, the acquisition technique has evolved into a quasi-random Cartesian multi-shot acquisition. The results were presented in Chapter 7 and are promising. Only the measurement time should be further reduced with additional accelerations and extended to a Cartesian 3D acquisition. The limitation to T1* spectra in multicomponent analysis, and the fact that their amplitude depends on a combination of S0 and Sstst, makes it not readily possible to access the T1 and T2 information for a single tissue type. In chapter 8 it was shown that this can be achieved with an additional measurement. The final result of these measurements, with and without inversion, are two-dimensional spectra in which the T1 and T2 values can be obtained for each tissue component within a voxel. Important here is the fact that the used approach requires no prior knowledge of the number of expected tissue components (peaks) in the voxel. Also in this method, the knowledge about the actual flip angle is important because it is used in the formulas for calculating T1 and T2. The stability of the B0 field is also of enormous importance here, since changes between the two measurements lead to a different steady-state and thus to deviations in the subsequent calculations, which are designed for the same steady-state value. In summary, this work has laid the foundations for more accurate and robust quantitative measurements by means of steady-state sequences. It has been shown that relaxation time spectra can be generated for each individual voxel. As a result, an improved evaluation is possible in order to be able to make more precise statements about the composition of a sample (especially in the case of human tissue). In addition, the theory for ultrafast 2D relaxography measurements was presented. First proof of principle experiments show that it is possible to measure and graph 2D relaxation time spectra in a very short time. This acquisition and data processing technique is unique in this form, and up to now in literature no faster method can be found. KW - Kernspintomographie KW - Relaxometrie KW - Relaxographie KW - Steady-State-Sequenzen KW - balanced SSFP KW - Relaxometry KW - Relaxography KW - Steady-State Sequences KW - balanced SSFP KW - Relaxation Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-181578 ER - TY - THES A1 - Wilfert, Stefan T1 - Rastertunnelmikroskopische und -spektroskopische Untersuchung von Supraleitern und topologischen Supraleitern T1 - Scanning Tunneling Microscopy and Spectroscopy Study of Superconductors and Topological Superconductors N2 - Quantencomputer können manche Probleme deutlich effizienter lösen als klassische Rechner. Bisherige Umsetzungen leiden jedoch an einer zu geringen Dekohärenzzeit, weshalb die Lebenszeit der Quantenzustände einen limitierenden Faktor darstellt. Topologisch geschützte Anregungen, wie Majorana-Fermionen, könnten hingegen dieses Hindernis überwinden. Diese lassen sich beispielsweise in topologischen Supraleitern realisieren. Bis zum jetzigen Zeitpunkt existieren nur wenige Materialien, die dieses Phänomen aufweisen. Daher ist das Verständnis der elektronischen Eigenschaften für solche Verbindungen von großer Bedeutung. In dieser Dissertation wird die Koexistenz von Supraleitung an der Probenoberfläche und topologischem Oberflächenzustand (engl. topological surface state, TSS) auf potentiellen topologischen Supraleitern überprüft. Diese beiden Bedingungen sind essentiell zur Ausbildung von topologischer Supraleitung in zeitumkehrgeschützten Systemen. Hierzu wird mittels Landaulevelspektroskopie und Quasiteilcheninterferenz das Vorhandensein des TSS am Ferminiveau auf Tl$_{x}$Bi$_{2}$Te$_{3}$ und Nb$_{x}$Bi$_{2}$Se$_{3}$ verifiziert, die mittels Transportmessungen als supraleitend identifiziert wurden. Anschließend folgen hochaufgelöste Spektroskopien an der Fermienergie, um die supraleitenden Eigenschaften zu analysieren. Zur Interpretation der analysierten Eigenschaften wird zu Beginn der Ni-haltige Schwere-Fermion-Supraleiter TlNi$_{2}$Se$_{2}$ untersucht, der eine vergleichbare Übergangstemperatur besitzt. Anhand diesem werden die gängigen Messmethoden der Rastertunnelmikroskopie und -spektroskopie für supraleitende Proben vorgestellt und die Leistungsfähigkeit der Messapparatur demonstriert. Im Einklang mit der Literatur zeigt sich ein $s$-Wellencharakter des Paarungsmechanismus sowie die Formation eines für Typ~II-Supraleiter typischen Abrikosov-Gitters in schwachen externen Magnetfeldern. Im folgenden Teil werden die potentiellen topologischen Supraleiter Tl$_{x}$Bi$_{2}$Te$_{3}$ und Nb$_{x}$Bi$_{2}$Se$_{3}$ begutachtet, für die eindeutig ein TSS bestätigt wird. Allerdings weisen beide Materialien keine Oberflächensupraleitung auf, was vermutlich durch eine Entkopplung der Oberfläche vom Volumen durch Bandverbiegung zu erklären ist. Unbeabsichtigte Kollisionen der Spitze mit der Probe führen jedoch zu supraleitenden Spitzen, die wesentlich erhöhte Werte für die kritische Temperatur und das kritische Feld zeigen. Der letzte Abschnitt widmet sich dem supraleitenden Substrat Nb(110), für den der Reinigungsprozess erläutert wird. Hierbei sind kurze Heizschritte bis nahe des Schmelzpunktes nötig, um die bei Umgebungsbedingungen entstehende Sauerstoffrekonstruktion effektiv zu entfernen. Des Weiteren werden die elektronischen Eigenschaften untersucht, die eine Oberflächenresonanz zum Vorschein bringen. Hochaufgelöste Messungen lassen eine durch die BCS-Theorie gut repräsentierte Struktur der supraleitenden Energielücke erkennen. Magnetfeldabhängige Experimente offenbaren zudem eine mit der Kristallstruktur vereinbare Anisotropie des Paarungspotentials. Mit diesen Erkenntnissen kann Nb(110) zukünftig als Ausgang für das Wachstum von topologischen Supraleitern herangezogen werden. N2 - Quantum computers are able to solve certain problems a lot more efficiently than classical processors. However, current realizations lack of a suitable decoherence \mbox{time} resulting in insufficient lifetimes of quantum states as the major limiting factor. Topological protected excitations such as Majorana fermions living in topological superconductors show great potential to overcome this obstacle. Since there exists only a small amount of materials with these characteristics the understanding of the electronic properties of such compounds is very important. In this thesis, the coexistence of a topological surface state (TSS) and superconductivity at the sample's surface of potential topological superconductors is studied. These two conditions must be fulfilled for the formation of topological superconductivity in time reversal invariant systems. For this purpose, Landau level spectroscopy and quasiparticle interference are carried out on Tl$_{x}$Bi$_{2}$Te$_{3}$ und Nb$_{x}$Bi$_{2}$Se$_{3}$ to verify the TSS at the Fermi energy. Transport measurements showed superconductivity in the bulk for both materials. High resolution spectroscopy experiments at the Fermi energy are performed to analyze the superconductivity. For interpretation of these data, we study the Ni-based heavy fermion superconductor TlNi$_{2}$Se$_{2}$ with a comparable transition temperature to the above mentioned compounds. In this context, the common measuring methods of scanning tunneling microscopy and spectroscopy for superconducting samples are presented and the performance capability of our experimental setup is demonstrated. In consistence with the literature, we find an $s$-wave pairing mechanism and the formation of an Abrikosov lattice typical for type~II superconductors in small external fields. The following part of this work is the investigation of the potential topological superconductors Tl$_{x}$Bi$_{2}$Te$_{3}$ und Nb$_{x}$Bi$_{2}$Se$_{3}$ that clearly confirm the presence of a TSS on both materials. No surface superconductivity can be discovered on both compounds presumably caused due to band bending thus leading to a decoupling of the surface from the bulk. However, unintentional collisions between tip and sample lead to the formation of superconducting tips with considerably higher values for the critical temperature and field as compared to the bulk results. In the last paragraph, the superconducting substrate Nb(110) is characterized. Firstly, a cleaning procedure including flashing the sample to temperatures close to the melting point is necessary to remove the oxygen reconstruction that has been formed at ambient conditions. A surface resonance is found upon analyzing the electronic properties. High resolution spectroscopy measurements lead to a superconducting gap in good agreement with the BCS theory. Additionally, magnetic field dependent experiments show an anisotropy of the pair potential accordingly to the crystal symmetry. These findings confirm that Nb(110) shows great potential as a superconducting substrate for growing topological superconductors in the future. KW - Supraleitung KW - Topologischer Isolator KW - Rastertunnelmikroskop KW - Supraleiter 2. Art KW - Topologische Supraleitung KW - Rastertunnelspektroskopie Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-180597 ER - TY - THES A1 - Gutjahr, Fabian Tobias T1 - Neue Methoden der physiologischen Magnet-Resonanz-Tomographie: Modellbasierte T1-Messungen und Darstellung von chemischem Austausch mit positivem Kontrast T1 - Novell Methods for Physiological MRI: Model based T1-Quantification and Positive Contrast Chemical Exchange Measurements N2 - Ziel dieser Arbeit war es, neue quantitative Messmethoden am Kleintier, insbesondere die Perfusionsmessung am Mäuseherz, zu etablieren. Hierfür wurde eine retrospektiv getriggerte T1-Messmethode entwickelt. Da bei retrospektiven Methoden keine vollständige Abtastung garantiert werden kann, wurde ein Verfahren gefunden, das mit Hilfe von Vorwissen über das gemessene Modell sehr effizient die fehlenden Daten interpolieren kann. Mit Hilfe dieser Technik werden dynamische T1-Messungen mit hoher räumlicher und zeitlicher Auflösung möglich. Dank der hohen Genauigkeit der T1-Messmethode lässt sich diese für die nichtinvasive Perfusionsmessung am Mäuseherz mittels der FAIR-ASL-Technik nutzen. Da auf Grund der retrospektiven Triggerung Daten an allen Positionen im Herzzyklus akquiriert werden, konnten T1- und Perfusionskarten nach der Messung zu beliebigen Punkten im Herzzyklus rekonstruiert werden. Es bietet sich an, Techniken, die für die myokardiale Perfusion angewandt werden, auch für die Nierenperfusionsmessung zu verwenden, da die Niere in ihrer Rinde (Cortex) eine ähnlich hohe Perfusion aufweist wie das Myokard. Gleichzeitig führen Nierenerkrankungen oftmals zu schlechter Kontrastmittelverträglichkeit, da diese bei Niereninsuffizienz u.U. zu lange im Körper verweilen und die Niere weiter schädigen. Auch deshalb sind die kontrastmittelfreien Spin-Labeling-Methoden hier interessant. Die FAIR-ASL-Technik ist jedoch an Mäusen in koronaler Ansicht für die Niere schlecht geeignet auf Grund des geringen Unterschieds zwischen dem markierten und dem Vergleichsexperiment. Als Lösung für dieses Problem wurde vorgeschlagen, die Markierungsschicht senkrecht zur Messschicht zu orientieren. Hiermit konnte die Sensitivität gesteigert und gleichzeitig die Variabilität der Methode deutlich verringert werden. Mit Hilfe von kontrastmittelgestützten Messungen konnten auch das regionale Blutvolumen und das Extrazellularvolumen bestimmt werden. In den letzten Jahren hat das Interesse an Extrazellularvolumenmessungen zugenommen, da das Extrazellularvolumen stellvertretend für diffuse Fibrose gemessen werden kann, die bis dahin nichtinvasiven Methoden nicht zugänglich war. Die bisher in der Literatur verwendeten Quantifizierungsmethoden missachten den Einfluss, den das Hämatokrit auf den ECV-Wert hat. Es wurde eine neue Korrektur vorgeschlagen, die allerdings zusätzlich zur ECV-Messung auch eine RBV-Messung benötigt. Durch gleichzeitige Messung beider Volumenanteile konnte auch erstmals das Extrazellulare-Extravaskuläre-Volumen bestimmt werden. Eine gänzlich andere kontrastmittelbasierte Methode in der MRT ist die Messung des chemischen Austauschs. Hierbei wirkt das Kontrastmittel nicht direkt beschleunigend auf die Relaxation, sondern der Effekt des Kontrastmittels wird gezielt durch HF-Pulse an- und ausgeschaltet. Durch den chemischen Austausch kann die Auswirkung der HF-Pulse akkumuliert werden. Bislang wurde bei solchen Messungen ein negativer Kontrast erzeugt, der ohne zusätzliche Vergleichsmessungen schwer detektierbar war. Im letzten Teil dieser Arbeit konnte eine neue Methode zur Messung des chemischen Austauschs gezeigt werden, die entgegen der aus der Literatur bekannten Methoden nicht Sättigung, sondern Anregung überträgt. Diese Änderung erlaubt es, einen echten positiven chemischen Austausch-Kontrast zu erzeugen, der nicht zwingend ein Vergleichsbild benötigt. Gleichzeitig ermöglicht die Technik, dadurch dass Anregung übertragen wird, die Phase der Anregung zu kontrollieren und nutzen. Eine mögliche Anwendung ist die Unterscheidung verschiedener Substanzen in einer Messung. In der Summe wurden im Rahmen dieser Arbeit verschiedene robuste Methoden eta- bliert, die die Möglichkeiten der quantitativen physiologischen MRT erweitern. N2 - The objective of this dissertation was to develop new methods for physiological magnetic resonance imaging. A new retrospectively triggered T1-method was developed. Due to the retrospectivity, full sampling of k-space can not be warranted. Therefore a model- based interpolation method was developed to reconstruct missing data efficiently. Using this technique, dynamic T1-measurements with high temporal and spatial resolution could be acquired. Due to the high precision of the developed T1-method, perfusion could be quantified using Arterial Spin Labeling. In comparison to the method established previously in our laboratory, the resolution could be doubled. Retrospective triggering enables reconstruc- tion of parameter maps on arbitrary positions in the heart cycle, as data are acquired continuously over several heart cycles. The perfusion measurement benefits from recon- struction on the end systole, as partial volume effects are decreased, due to the increased myocardial wall thickness. This serves as an effective increase in resolution. Furthermore, the data distributed over the whole heart cycle could be used to accelerate and stabilize the measurement. Cardiac and renal diseases can be directly related, as deficiency in one of the organs affects the other one. Additionally several diseases like hypertension or diabetes affect both organs. Moreover, kidneys are highly perfused, similar to the myocardium. Renal insufficiency can also lead to contrast agent intolerance, as clearance rates can be redu- ced. Therefore the FAIR-ASL technique lends itself to kidney perfusion measurements. It can, however, be problematic in small animals in coronal view, as the control-experiment inadvertently labels much of the same tissue and blood, as the labeling experiment. A modified FAIR-ASL measurement could be shown to increase sensitivity and reduce in- ter-measurement-variability by repositioning the inversion slice of the control experiment orthogonally to the measurement slice. The T1-method was used in combination with contrast agent based measurements to quantify the regional blood volume and the extracellular volume fraction. There has been an increased interest in extracellular volume fraction measurements as the extracel- lular volume is used as a proxy for the detection of diffuse fibrosis, which has previously been inaccessible to non-invasive methods. Several correction factors are used in volume fraction quantification, but the influence of hematocrit in ECV measurements has been neglected so far. In mice and rats, the regional blood volume is a major constituent of the ECV, leading to a significant influence of hematocrit. A new correction is proposed to account for the volume fraction taken up by hematocrit. For this ECV hematocrit correction, the RBV has to be measured as well. Using both measurements, the ex- tracellular volume fraction can be corrected and the extracellular-extravascular-volume- fraction quantified. A fundamentally different contrast-mechanism can be utilized using the measurement of chemical exchange. Instead of shortening relaxation times, the contrast provided by chemical exchange agents can be turned on and off using frequency selective rf-pulses. Due to the chemical exchange the effect of these pulses can be accumulated. Measure- ments exploiting this accumulation effect in general produce a negative contrast requiring a control-experiment for further evaluation. In the last part of this dissertation, a new technique transferring excitation instead of saturation could be demonstrated. By ge- nerating a real positive contrast, no control experiment is required. Other properties unavailable to previously published chemical exchange transfer methods can be exploi- ted. One example demonstrated in this dissertation is the separation of simultaneously excited compounds by their respective phase information imprinted by the excitation pulses. In summary, several robust methods could be implemented to further the capabilities of quantitative physiological MRI. KW - Kernspintomografie KW - Physioloische MRT KW - Modellbasierte Rekonstruktion KW - FAIR-ASL KW - Chemischer Austausch KW - Regionales Blutvolumen KW - Extrazellularvolumen KW - T1-Quantifizierung KW - Kernspinresonanz KW - Myokardiale Perfusion KW - Niere KW - Perfusionsmessung Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-161061 ER - TY - THES A1 - Klaas, Martin T1 - Spektroskopische Untersuchungen an elektrisch und optisch erzeugten Exziton-Polariton-Kondensaten T1 - Spectroscopic investigations of electrically and optically created exciton polariton condensates N2 - Eine technologisch besonders vielversprechende Art von Mikrokavitäten besteht aus einem optisch aktiven Material zwischen zwei Spiegeln, wobei das Licht auf Größe seiner Wellenlänge eingesperrt wird. Mit diesem einfachen Konzept Licht auf Chipgröße einzufangen entstand die Möglichkeit neue Phänomene der Licht-Materie Wechselwirkung zu studieren. Der Oberflächenemitter (VCSEL), welcher sich das veränderte Strahlungsverhalten aufgrund der schwachen Kopplung und stimulierten Emission zu Nutze macht, ist bereits länger kommerziell sehr erfolgreich. Er umfasst ein erwartetes Marktvolumen von ca. 5.000 Millionen Euro bis 2024, welches sich auf verschiedenste Anwendungen im Bereich von Sensorik und Kommunikationstechnologie bezieht. Dauerhaft hohe Wachstumsraten von 15-20% pro Jahr lassen auf weiteres langfristiges Potential von Mikrokavitäten in der technologischen Gesellschaft der nächsten Generation hoffen. Mit fortschreitender Entwicklung der Epitaxie-Verfahren gelang es Kavitäten solcher Qualität herzustellen, dass zum ersten Mal das Regime der starken Kopplung erreicht wurde. Starke Kopplung bedeutet in diesem Fall die Bildung eines neuen Quasiteilchens zwischen Photon und Exziton, dem Exziton-Polariton (Polariton). Dieses Quasiteilchen zeigt eine Reihe interessanter Eigenschaften, welche sowohl aus der Perspektive der Technologie, als auch aus der Sicht von Grundlagenforschung interessant sind. Bei systemabhängigen Teilchendichten erlaubt das Polariton ebenfalls die Erzeugung von kohärentem Licht über den Exziton-Polariton-Kondensatszustand (Kondensat), den Polariton-Laser. Die Eigenschaften des emittierten Lichtes ähneln denen eines VCSELs, allerdings bei einigen Größenordnungen geringerem Energieverbrauch, bzw. niedrigerer Laserschwelle, bei Wahl geeigneter Verstimmung von Exziton und Photon. Diese innovative Entwicklung kann daher unter anderem neue Möglichkeiten für besonders energiesparende Anwendungen in der Photonik eröffnen. Die vorliegende Doktorarbeit soll zur Erweiterung des Forschungsstandes in diesem Gebiet zwischen Photonik und Festkörperphysik beitragen und untersucht zum einen den anwendungsorientierten Teil des Feldes mit Studien zur elektrischen Injektion, beleuchtet aber auch den interessanten Phasenübergang des Systems über seine Kohärenz- und Spineigenschaften. Es folgt eine knappe überblicksartige Darstellung der Ergebnisse, die in dieser Arbeit genauer ausgearbeitet werden. Rauschanalyse und die optische Manipulation eines bistabilen elektrischen Polariton-Bauelements Aufbauend auf der Realisierung eines elektrischen Polariton-Lasers wurde in dieser Arbeit ein optisches Potential in das elektrisch betriebene Kondensat mit einem externen Laser induziert. Dieses optische Potential ermöglicht die Manipulation der makroskopischen Besetzung der Grundzustandswellenfunktion, welches sich als verändertes Emissionsbild im Realraum darstellt. Der polaritonische Effekt wird über Verschiebung der Emissionslinie zu höheren Energien durch Wechselwirkung des Exzitonanteils nachgewiesen. Diese experimentellen Beobachtungen konnten mit Hilfe eines Gross-Pitaevskii-Differentialgleichungsansatzes erläutert und theoretisch nachgebildet werden. Weiterhin zeigt der elektrische Polariton-Laser eine Bistabilität in seiner Emissionskennlinie an der polaritonischen Kondensationsschwelle. Die Hysterese hat ihren physikalischen Ursprung in der Lebenszeitabhängigkeit der Ladungsträger von der Dichte des Ladungsträgerreservoirs durch die progressive Abschirmung des inneren elektrischen Feldes. In dieser Arbeit wird zum tieferen Verständnis der Hysterese ein elektrisches Rauschen über den Anregungsstrom gelegt. Dieses elektrische Rauschen befindet sich auf der Mikrosekunden-Zeitskala und beeinflusst die Emissionscharakteristik, welche durch die Lebensdauer der Polaritonen im ps-Bereich bestimmt wird. Mit steigendem Rauschen wird ein Zusammenfall der Hysterese beobachtet, bis die Emissionscharakteristik monostabil erscheint. Diese experimentellen Befunde werden mit einem gekoppelten Ratengleichungssystem sowie mit Hilfe einer Gauss-verteilten Zufallsvariable in der Anregung modelliert und erklärt. Die Hysterese ermöglicht außerdem den Nachweis eines optischen Schalteffekts über eine zusätzliche Ladungsträgerinjektion mit einem Laser weit über der Bandkante des Systems, um den positiven Rückkopplungseffekt zu erzeugen. Im Bereich der Hysterese wird das System auf den unteren Zustand elektrisch angeregt und dann mit Hilfe eines nicht-resonanten Laserpulses in den Kondensatszustand gehoben. Polaritonfluss geleitet durch Kontrolle der lithographisch definierten Energielandschaft Polaritonen können durch den photonischen Anteil weiterhin in Wellenleiterstrukturen eingesperrt werden, worin sie bei der Kondensation gerichtet entlang des Kanals mit nahe Lichtgeschwindigkeit fließen. Dies geschieht mit der Besonderheit über ihren Exzitonanteil stark wechselwirken zu können. Die Möglichkeit durch Lithographie solche eindimensionalen Kanäle zu definieren, wurde bereits in verschiedenen Prototypen für Polaritonen benutzt und untersucht. In dieser Arbeit werden zwei verschiedene, neue Ansätze zur Lenkung von gerichtetem Polaritonfluss vorgestellt: zum einen über die sogenannte Josephson-Kopplung zwischen zwei Wellenleitern, realisiert über halbgeätzte Spiegel und zum anderen über eine Mikroscheibe gekoppelt an zwei Wellenleiter. Der Begriff der Josephson-Kopplung ist hier angelehnt an den bekannten Effekt in Supraleitern, welcher phänomenologische Ähnlichkeiten aufweist. Die Verwendung in der Polaritonik ist historisch gewachsen. Die Josephson-Kopplung ermöglicht die Beobachung von Oszillationen des Polariton-Kondensats zwischen den Wellenleitern, in Abhängigkeit der verbleibenden Anzahl Spiegelpaare zwischen den Strukturen, wodurch eine definierte Selektion des Auskopplungsarms ermöglicht wird. Die Mikroscheibe funktioniert ähnlich einer Resonanztunneldiode. Sie ermöglicht eine Energieselektion der transmittierten Moden durch die Diskretisierung der Zustände in den niederdimensionalen Strukturen. Es ergibt sich die Bedingung, dass nur energetisch gleiche Niveaus zwischen Strukturübergängen koppeln können. Gleichzeitig erlaubt die Mikroscheibenanordnung eine Umkehrung der Flussrichtung. Kohärenzeigenschaften und die Photonenstatistik von Polariton-Kondensaten unter photonischen Einschlusspotentialen Die Kohärenzeigenschaften der Emission von Polariton-Kondensaten ist seit längerem ein aktives Forschungsfeld. Die noch ausstehenden Fragen betreffen die Beobachtung hoher Abweichungen von traditionellen, auf Inversion basierenden Lasersystemen (z.B. VCSELs). Diese haben selbst bei schwellenlosen Lasern einen Wert der Autokorrelationsfunktion zweiter Ordnung von Eins. Polariton-Kondensate jedoch zeigen erhöhte Werte in der Autokorrelationsfunktion, welches auf einen Mischzustand zwischen kohärentem und thermischem Licht hinweist. In dieser Arbeit wurde ein systematischer Weg untersucht, die Kohärenzeigenschaften des Polariton-Kondensats denen eines traditionellen Lasers anzunähern. Dies geschieht über den lateralen photonischen Einschluss der Kondensate mittels lithographisch definierter Mikrotürmchen mit verschiedenen Durchmessern. In Kohärenzmessungen wird der Einfluss dieser Veränderung der Energielandschaft der Polariton-Kondensate auf die Autokorrelationseigenschaften zweiter Ordnung untersucht. Es wird ein direkter Zusammenhang zwischen großem Einschlusspotential und guten Korrelationseigenschaften nachgewiesen. Der Effekt wird theoretisch über den veränderten Einfluss der Phononen auf das Polariton-Relaxationsverhalten erklärt. Durch die stärkere Lokalisierung der Polaritonwellenfunktion in kleineren Mikrotürmchen wird die Streuwahrscheinlichkeit erhöht, was eine effizientere Relaxation in den Grundzustand ermöglicht. Dies verhindert zu starke Besetzungsfluktuationen der Grundmode in der Polariton-Lebenszeit, was bisher als Grund für die erhöhte Autokorrelation postuliert wurde. Weiterhin wird eine direkte Messung der Photonenstatistik eines Polaritonkondensats entlang steigender Polaritondichte im Schwellbereich vorgestellt. Die Photonenstatistik eines thermischen Emitters zeigt einen exponentiellen Verlauf, während ein reiner Laser Poisson-verteilt emittiert. Der Zwischenbereich, der für einen Laser am Übergang zwischen thermischer und kohärenter Lichtquelle vorhergesagt wird, kann durch eine Überlagerung der beiden Zustände beschrieben werden. Über eine Anpassungsfunktion der gemessenen Verteilungsfunktionen kann der Phasenübergang des Kondensats mit Hilfe dem Anteil der kohärenten Partikel im System verfolgt werden. Dadurch, dass der gemessene Übergang dem Paradigma der thermisch-kohärenten Zustände folgt, wurde nachgewiesen, dass bei rötlicher Verstimmung die Interaktionen keinen signifikanten Anteil an der Ausbildung von Kohärenz im Polaritonsystem spielen. Polarisationskontrolle von Polariton-Kondensaten Die Polarisationseigenschaften des durch Polaritonenzerfall emittierten Lichts korrespondieren zum Spinzustand der Quasiteilchen. Unterhalb der Kondensationsschwelle ist diese Emission durch Spin-Relaxation der Ladungsträger unpolarisiert und oberhalb der Schwelle bildet sich unter bestimmten Voraussetzungen lineare Polarisation als Ordnungsparameter des Phasenübergangs aus. Der Prozess der stimulierten Streuung kann die (zirkulare) Polarisation des Lasers auch bei Anregung auf höheren Energien auf dem unteren Polaritonast erhalten. Dies resultiert aus sehr schneller Einnahme des Grundzustands, welche eine Spin-Relaxation verhindert. Bisher wurde, nach unserem Kenntnisstand, nur teilweise Erhaltung zirkularer Polarisation unter nicht-resonanter Anregung beobachtet. In dieser Arbeit wird vollständige zirkulare Polarisationserhaltung, energetisch 130 meV vom Kondensatszustand entfernt angeregt, nachgewiesen. Diese Polarisationserhaltung setzt an der Kondensationsschwelle ein, was auf den Erhalt durch stimulierte Streuung hinweist. Unter dieser Voraussetzung der Spinerhaltung erzeugt die linear polarisierte Anregung (als Überlagerung zirkularem Lichts beider Orientierungen) elliptisch polarisiertes Licht. Dies geschieht, weil eine linear polarisierte Anregung durch Fokussierung eines Objektivs leicht elliptisch wird. Der Grad der Elliptizität wird sowohl durch die Verstimmung zwischen Photon und Exziton Mode beeinflusst, als auch durch die Dichte im System. Dies kann erklärt werden über das spezielle Verhalten der Relaxationsprozesse auf dem unteren Polaritonast, welche von der transversal-elektrischen und transversal-magnetischen (TE-TM) energetischen Aufspaltung abhängen. Weiterhin werden elliptische Mikrotürmchen untersucht, um den Einfluss dieses asymmetrischen photonischen Einschlusses auf die Kondensatseigenschaften herauszuarbeiten. Die Ellipse zwingt das Kondensat zu einer linearen Polarisation, welche sich entlang der langen Achse des Türmchens ausrichtet. In asymmetrischen Mikrotürmchen ist die Grundmode aufgespalten in zwei linear polarisierte Moden entlang der beiden orthogonal zueinander liegenden Hauptachsen, wobei die längere Achse das linear polarisierte Energieminimum des Systems bildet. Der Grad der linearen Polarisation nimmt mit geringerem Mikrotürmchendurchmesser und größerer Ellipzität zu. Dies geschieht durch erhöhten energetischen Abstand der beiden Moden. Bei Ellipsen mit einem langen Hauptachsendurchmesser von 2 Mikrometer und einem Achsenverhältnis von 3:2 kann ein nahezu vollständig linear polarisierter Zustand eines Polariton-Kondensats nachgewiesen werden. Damit wurde erforscht, dass auch unter nicht-resonanter Anregung Exziton-Polariton-Kondensate experimentell und theoretisch jeglichen Spinzustand unter entsprechenden Anregungsbedingungen annehmen können. N2 - A technologically especially promising type of microcavities consists of an optical material between two mirrors, whereby light is trapped on the scale of its wavelength. With this simple concept of trapping light on the size of a chip arose the possibility to study new phenomena of light-matter interaction. The VCSEL, which takes advantage of the changed emission behavior due to weak coupling and stimulated emission, has been commercially successful for a long time. The market encompasses a volume of approximately 5000 million euros till 2024, which itself encompasses a plethora of different applications in the areas of sensors to communication technology. Continued high growth rates of up to 15-20% per year give rise to hope for an enduring potential of microcavities in the technological society of the next generation. Continued development of epitaxial methods finally allowed to fabricate cavities of such quality that the regime of strong-coupling was reached. Strong coupling means, in this case, the creation of a new quasi-particle between photon and exciton, the exciton-polariton. This quasi-particle shows a series of interesting properties, which are relevant from both the perspective of technology and basic science. At a system dependant particle density, the polariton allows creation of coherent light via the exciton-polariton condensate state, the polariton-laser. The properties of the emitted light resemble those of a VCSEL, albeit at magnitudes less energy consumption or laser threshold, at an advantageous detuning between exciton and photon. This innovative development has therefore opened up new possibilities for energy saving applications in photonics. This doctorial thesis contributes to science in this research area between photonics and solid-state physics and not only looks at the application relevant part of this field with studies regarding electrical injection, but also illuminates the interesting phase transition of the system via exploration of coherence and spin properties. Now follows a short summary of the results, which are developed in more detail in the main body of the work. Evaluation of noise impact and optical manipulation of a bistable electrical polariton device Building on the realisation of an electrical polariton laser, this work induces an optical potential with an external laser into the electrically driven condensate. This optical potential enables the manipulation of the macroscopic occupation of the groundstate wavefunction, which manifests itself in a changed emission structure in real space. The polaritonic effect is proven via the blueshift of the emission with increased interaction of the exciton part of the polariton. These experimental observations can be theoretically explained with a Gross-Pitaevskii equation approach. Furthermore, the electrical polariton-laser exhibits a bistability behavior at its polaritonic condensation threshold. The hysteresis originates in the lifetime dependance of the carriers on the density of the carrier reservoir by screening of the inner electrical field of the structure. In this work, to get a deeper understanding of the hysteresis, an electrical noise component is superpositioned to the injection current. The electrical noise is on the micrsecond time-scale and affects the emission characteristics which are given by the polariton lifetime on the order of picoseconds. With increased noise, the hysteresis progressively vanishes until the emission appears monostable. These experimental results are modelled with a rate equation approach with a Gaussian random distribution in the excitation. Moreover, the hysteresis allows the observation of an optical switch effect via additional carrier injection with an energetically far off laser to attain the positive feedback effect. In the region of the hystereis, the system is positioned at a lower state with electrical injection and then pushed into the condensate regime with a laser pulse. Polariton flow controlled by a lithographically defined energy landscape Polaritons can be trapped in waveguide structures due to their photonic part, along which they propagte upon condensation with close to the speed of light. This happens with the special property of being able to strongly interact via their exciton content. The possibility to define such channels has been used in a variety of different prototypes for polaritons. This work presents two new approaches to route polariton flow: first via a Josephson-like coupling between two waveguides, realized by partly etched mirrors and second with a microdisk potential coupled to two waveguides. Josephson coupling refers to the known effect in superconducters which shows some resemblance to the observed effect and which use of is historically motivated. Josephson coupling allows observation of oscillations of the polariton condensate between the waveguides, which depends on the remaining mirrorpairs between the structure, which ultimately allows routing into a specific exit arm. The microdisk functions in a similiar way to a resonance tunnel diode. It allows energy selection of the transmitted modes via the discretization of the states in the low-dimensional structures. This results in the condition that only energetically fitting modes are allowed to propagate between the structures. Additionally, the microdisk structure allows counter directional routing of the polariton flow. Coherence properties and the photonstatistics of trapped polariton condensates The coherence properties of the emission of polariton-condensates is a long-standing active research area. The remaining questions regard the observations of high deviations between traditional inversion based systems (e.g. VCSELs). These show, even in thresholdless lasers, a value of the second order autocorrelation function of one. Polariton condensates exhibit increased values, which hint at a mixed state between coherent and thermal light. In this work a systematic way has been investigated, which tries to approach the coherence properties of polariton condensates to those of a traditional laser. This happens via the lateral photonic confinement of the condensates in lithographically defined micropillars with different diameters. The influence of the changes of the energy landscape have been evaluated in coherence measurements of the second order autocorrelation function. A direct link between a high trapping potential and good coherence properties has been proven. The effect is theoretically explained in the changed influence of phonons onto the polariton relaxation mechanisms. Because of the stronger localisation of the polariton wavefunction in smaller micropillars, the probability to scatter is increased, which allows a more efficient relaxation into the ground state. This suppressses strong occupation fluctuations of the ground state in the polariton lifetime, which has been speculated to be the origin of the increased autocorrelation . Additionally, a direct measurement of the photon statistics of the polariton condensate along increased polariton densities is presented. The photon statistics of a thermal emitter shows an exponential relationship, while the emission of a laser is Poisson distributed. The regime in-between, which is proposed for a laser at its threshold, can be described as a mixture of those two states. By fitting a function to the measured distributions, the phase transition can be tracked via the coherent particle fraction present in the system. Because this transition follows the paradigm of the thermal-coherent mixture states, it was proven that interactions do not play a significant role in establishing coherence in a polariton condensate with a photonic detuning. Polarisation control of polariton condensates The polarisation properties of the light originating in decay of polaritons correspond to the spin state of the quasiparticle. Below condensation threshold, this emission is largely unpolarised due to spin relaxation and above threshold, under certain circumstances, linear polarisation can be observed as an order parameter of the phase transition. The process of stimulated scattering can preserve circular polarisation of the laser at excitations positioned on the lower polariton branch. This is due to the fast relaxation to the ground state which prevents spin relaxation. Up until now, up to our knowledge, only partial conservation of circular polarisation in non-resonant excitation has been observed. In this work, complete circular polarisation conservation has been proven, at excitation 130 meV above the condensate state. This polarisation conservation starts at condensation threshold, which hints at conservation due to stimulated scattering. Under these conditions, linear excitation (as a superposition between both circular components) creates elliptically polarised light. This happens due to the fact that linear excitation focused via an objective becomes slightly elliptical. The degree of elliptical polarisation is determined by the detuning between exciton and photon and the particle density present in the condensate system. This can be explained with the relaxation processes on the lower polariton branch, which depend on the energy splitting between TE and TM modes. Additionally, elliptical micropillars have been investigated, to work out the influence of asymetric photonic confinement on the condensation properties. The elliptical confinement forces the condensate into a linear polarisation, which establishes itself along the long axis of the micropillar. In asymmetric micropillars, the ground state is split into two linear polarised modes along both orthogonal main axes, whereby the long axis determines the energy minimum of the system. The degree of linear polarisation increases with decreasing micropillar diameter and increasing ellipticity. This happens due to increased energy difference between the two modes. The ellipses have a long axis diameter of 2 micrometers and an axis relation of 3:2, in which nearly fully linearly polarised condensates have been observed. With this it was investigated that non-resonant excitation of polariton condensates can experimentally and theoretically attain every spin state under fitting excitation conditions. KW - Exziton-Polariton KW - Bose-Einstein-Kondensation KW - Spektroskopie KW - Polariton-Laser Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-176897 ER - TY - THES A1 - Kampf, Thomas T1 - Quantifizierung myokardialer Mikrostruktur und Perfusion mittels longitudinaler NMR Relaxation T1 - Quantification of myocardial micro structure and perfusion exploiting longitudinal NRM relaxation times N2 - Ziel der Arbeit war es die Quantifizierung funktioneller bzw. mikrostruktureller Parameter des Herzmuskels mit Hilfe T1-basierter Methoden zu verbessern. Diese Methoden basieren darauf, die gewünschte Information durch eine geeignete Präparation der Magnetisierung bzw. durch die Gabe von Kontrastmittel in den Zeitverlauf der longitudinalen Relaxation zu kodieren. Aus der Änderung der Relaxationszeit läßt sich dann die gewünschte Information bestimmen. Dafür sollte sowohl der Einfluß der Anatomie als auch derjenige der Meßmethodik auf die Bestimmung der longitudinalen Relaxationszeit und damit auf die Quantifizierung der Funktion bzw. Mikrostrukturparameter untersucht werden. Speziell der Einfluß der Bildgebungssequenz führt dazu, daß nur eine scheinbare Relaxationszeit gemessen wird. Während dies keinen Einfluß auf die T1-basierte Bestimmung der untersuchten Mikrostrukturparameter hatte, ergab sich für die Perfusionsquantifizierung eine deutliche Abhängigkeit von den Parametern der verwendeten IRLL-Sequenz. Um diesen Einfluß gerecht zu werden, wurden an die Meßmethodik angepaßte Gleichungen zur Bestimmung der Perfusion gefunden mit denen die systematischen Abweichungen korrigiert werden können. Zusätzlich reduzieren die angepaßten Gleichungen die Anforderungen bezüglich der Inversionsqualität im schichtselektiven Experiment. Dies wurde in einem weiteren Projekt bei der Bestimmung der Nierenperfusion im Mausmodell ausgenutzt. Neben der Untersuchung der Auswirkungen der Meßmethode wurde auch der Einfluß der anatomischen Besonderheiten des Blutkreislaufs am Herzen auf die Parameterquantifizierung mittels T1-basierter Methoden untersucht. Es konnte gezeigt werden, daß auf Grund der Anatomie des Herzens bei typischen Orientierungen der Bildgebungsschicht, auch bei der schichtselektiven Inversionspräparation der Magnetisierung des Herzmuskels ein Anteil des Blutpools invertiert wird. Daraus folgt, daß die vereinfachende Annahme, nach welcher bei schichtselektiver Präparation in Folge von Perfusion nur Blut mit Gleichgewichtsmagnetisierung den Herzmuskel erreicht, nicht erfüllt ist. Es konnte gezeigt werden, daß dies bei Perfusion zu einer deutlichen Unterschätzung der berechneten Perfusionswertes führt. Um mit diesem Problem umgehen zu können, wurde aufbauend auf einem vereinfachten Modell der zeitlichen Entwicklung der Blutmagnetisierung eine Korrektur für die Bestimmung der Perfusionswerte gefunden welche den Einfluß der anatomischen Besonderheiten berücksichtigt. Das für die Perfusionskorrektur eingeführte Model prognostiziert ebenso, daß auch bei schichtselektiver Inversion die T1-basierte Bestimmung der untersuchten Mikrostrukturparameter von der Perfusion abhängig wird und eine systematische Überschätzung der quantifizierten Werte verursacht. Da die Perfusion im Kleintier deutlich höher ist als im Menschen, ist dieser Einfluß besonders in der präklinischen Forschung zu beachten. So können dort allein durch verminderte Perfusion deutliche Änderungen in den bestimmten Werten der Mikrostrukturparameter erzeugt werden, welche zu einer fehlerhaften Interpretation der Ergebnisse führen und somit ein falsches Bild für die Vorgänge im Herzmuskel suggerieren. Dabei bestätigt der Vergleich mit experimentellen Ergebnissen aus der Literatur die Vorhersagen für das Rattenmodell. Beim Menschen ist der prognostizierte Effekt deutlich kleiner. Der prognostizierte Fehler bspw. im RBV-Wert liegt in diesem Fall bei etwa 10% und wird üblicherweise in der aktuellen Forschung vernachlässigt. Inwieweit dies in er klinischen Forschung gerechtfertigt ist, muß in weiteren Untersuchungen geklärt werden. Den untersuchten Methoden zur Bestimmung von funktionellen und mikrostrukturellen Parametern ist gemein, daß sie eine exakte Quantifizierung der longitudinalen Relaxationszeit T1 benötigen. Dabei ist im Kleintierbereich die klassische IRLL-Methode als zuverlässige Sequenz zur T1-Quantifizierung etabliert. In der klinischen Bildgebung werden auf Grund der unterschiedlichen Zeitskalen und anderer technischer Voraussetzungen andere Anforderungen an die Datenakquisition gestellt. Dabei hat in den letzten Jahren die MOLLI-Sequenz große Verbreitung gefunden. Sie ist eine Abwandlung der IRLL-Sequenz, bei der mit einer bSSFP-Bildgebungssequenz getriggert ganze Bilder während eines Herzschlages aufgenommen werden. Die MOLLI-Sequenz reagiert dabei empfindlich auf die Wartezeiten zwischen den einzelnen Transienten. Um mit diese Problematik in den Griff zu bekommen und gleichzeitig die Meßzeit verkürzen zu können wurde eine neue Methode zum Fitten der Daten entwickelt, welche die Abhängigkeit der scheinbaren Relaxationszeit von der Wartezeit zwischen den einzelnen Transienten, sowie der mittleren Herzrate fast vollständig eliminiert. Diese Methode liefert für das ganze klinisch Spektrum an erwarteten T1-Zeiten, vor und nach Kontrastmittelgabe, stabile Ergebnisse und erlaubte ein deutliche Verkürzung der Meßzeit, ohne die Anzahl der aufgenommenen Meßzeitpunkte zu reduzieren. Dies wurde in einer initialen klinischen Studie genutzt, um ECV-Werte in Patienten zu bestimmen. Ein Nachteil der Verwendung der MOLLI-Sequenz ist, daß nur die scheinbare Relaxationszeit aus den Fit der Meßdaten bestimmt wird. Die standardmäßig genutzte Korrektur benutzt aber dem gefitteten Wert der Gleichgewichtsmagnetisierung um den wahren T1-Wert zu bestimmen. Somit ist es für die Bestimmung des T1-Wertes notwendig, die Qualität der Inversionspräparation zu kennen. Auf Basis der neuen Fitmethode wurde eine Anpassung der MOLLI-Sequenz demonstriert, welche die Bestimmung der Gleichgewichtsmagnetisierung unabhängig von der Qualität der Inversionspräparation erlaubt. Dafür verlängert sich die Meßdauer lediglich um einen Herzschlag um in geeigneter Weise ein zusätzliches Bild aufnehmen zu können. Abschließend wurde in dieser Arbeit der Signal-Zeit-Verlauf der MOLLI-Sequenz eingehend theoretische untersucht um ein besseres Verständnis der getriggerten IRLL-Sequenzen zu entwickeln. In diesem Zusammenhang konnte eine einfache Interpretation der scheinbaren Relaxationszeit gefunden werden. Ebenso konnte erklärt werden, warum die für ungetriggerte IRLL-Sequenzen abgeleitete Korrekturgleichung auch im getriggerten Fall erstaunlich gute Ergebnisse liefert. Weiterhin konnten Fehlerquellen für die verbleibenden Abweichungen identifiziert werden, welche als Ausgangspunkt für die Ableitung verbesserter Korrekturgleichungen genutzt werden können. N2 - The goal of this work was to improve T1-based methods for quantification of functional and microstructural parameters of the heart muscle. These methods encode the desired information in the longitudinal relaxation by a dedicated magnetization preparation or by due to the administration of contrast agents. Hence, the alteration of the longitudinal relaxation time can be used to determine the desired information. To accurately quantify these parameters, the influence of the anatomy as well as the data acquisition on the longitudinal relaxation time and hence the quantification of the functional and micro structural parameters is investigated. It is known, that the choice of imaging sequence may influence the recovery of the magnetization and only an apparent relaxation time can be measured. While this had no effect on the T1-based quantification of the investigated microstructural parameters, the calculated perfusion value showed a strong dependence on the parameters of the used IRLL sequence. To take the influence of the imaging sequence into account, adapted equations for perfusion quantification were found. Hence, it was possible to correct for the systematic deviation by the IRLL sequence. Additionally, it could be shown that these adapted equations relax some of the requirements on the slice selective inversion experiment which could be utilized in the quantification of renal perfusion in a mouse model. Beside the influence of the imaging sequence also the influence of cardiovascular anatomy of the heart on the T1-based quantification methods was investigated. It was shown that for typical orientations of the imaging slice, also for the slice selective preparation a part of the blood pool magnetization is inverted. This violates the assumption that in the slice selective case only magnetization in equilibrium state enters the heart muscle and leads to a drastic underestimation of the quantified perfusion value. Based on a simplified model of the evolution of the blood magnetization the effects of the partial blood pool inversion were derived for perfusion quantification. The same simplified model was used, to investigate the influence of the imperfect slice selective inversion preparation in the T1-based quantification of the investigated micro structural parameters. It was shown, that the inflow of partially inverted blood into the capillary bed results in a perfusion dependent overestimation of the investigated microstructural parameters. As perfusion in small mammals is higher than in humans, the resulting bias has to be considered particularly in pre-clinical studies. In these animal models a reduced perfusion can result in a strong variation of the microstructural parameters which could be misinterpreted and hence may lead to a wrong understanding of the processes in the heart muscle. The predicted bias was compared with residual errors in the literature neglecting the partial inversion and found a good agreement in a rat model. For humans the expected bias is much smaller due to the lower perfusion values. The predicted bias for the RBV value is approximately 10% and hence, the effect is neglected in the current literature. However, if this justified must be investigated in further studies. All investigated methods for parameter quantification require the exact knowledge of the longitudinal relaxation time T1. For small animals the usual choice is an IRLL sequence, which have been established and demonstrated to be reliable and robust. Due to the different timescales and other technical aspects, however, the requirements in clinical imaging are different for data acquisition. In recent years the MOLLI sequence has become popular for T1 quantification. The MOLLI sequence is modification of IRLL sequence with a single shot bSSFP imaging module triggered usually to the end diastolic heart phase. However, the MOLLI sequence shows a strong dependence on the waiting times between the inversion prepared transients. To overcome this problem and provide a robust quantification of the apparent relaxation time with reduced the overall measurement time a new fitting procedure was developed. Thus, it was able to almost completely eliminate the dependence on the waiting time between the transients as well as the mean heart rate. The new method provided robust quantification over the complete range of clinical relevant longitudinal relaxation times (pre and post administration of contrast agents). Additionally, it was possible to reduce the measurement time without reducing the number of acquired data. This method was used in a pilot study to measure ECV in patients. A disadvantage of the MOLLI sequence is that in only provides an apparent relaxation time from the data fit and a correction for the real relaxation time is necessary. To calculate $T_1$, the common correction requires the knowledge of the equilibrium as well as the steady state magnetization. Hence, the quality of the inversion preparation is important and must be determined. Exploiting the properties of the new fitting method an adaption of the MOLLI sequence was proposed which allows the measurement of the equilibrium magnetization independent from quality of the inversion preparation by extending the measurement time for only a single heart beat to acquire a single additional image before the first inversion preparation. The final part of this work was dedicated improve the understanding of triggered IRLL sequences as the MOLLI. Hence, the signal evolution of these triggered sequences was investigated theoretically. Hence, a simple interpretation of the apparent relaxation time could be found from the results. Furthermore, a better understanding was reached for the surprisingly good results of the commonly used correction which was derived from the untriggered continuous case. Additionally, sources of the remaining deviations were identified and can be used for subsequent investigations to find better correction equations which allow for a more accurate quantification of T1. KW - Kernspintomographie KW - Relaxationszeit KW - Perfusion KW - Spin-Gitter-Relaxation KW - T1 Relaxation KW - Herzbildgebung KW - MRT KW - MOLLI KW - Inversion Recovery Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-174261 ER - TY - THES A1 - Winter, Patrick T1 - Neue Methoden zur Quantitativen Kardiovaskulären MR-Bildgebung T1 - New methods for quantitative cardiovascular magnetic resonance imaging N2 - Herzkreislauferkrankungen stellen die häufigsten Todesursachen in den Industrienationen dar. Die Entwicklung nichtinvasiver Bildgebungstechniken mit Hilfe der Magnetresonanz-Tomografie (MRT) ist daher von großer Bedeutung, um diese Erkrankungen frühzeitig zu erkennen und um die Entstehungsmechanismen zu erforschen. In den letzten Jahren erwiesen sich dabei genetisch modifzierte Mausmodelle als sehr wertvoll, da sich durch diese neue Bildgebungsmethoden entwickeln lassen und sich der Krankheitsverlauf im Zeitraffer beobachten lässt. Ein große Herausforderung der murinen MRT-Bildgebung sind die die hohen Herzraten und die schnelle Atmung. Diese erfordern eine Synchronisation der Messung mit dem Herzschlag und der Atmung des Tieres mit Hilfe von Herz- und Atemsignalen. Konventionelle Bildgebungstechniken verwenden zur Synchronisation mit dem Herzschlag EKG Sonden, diese sind jedoch insbesondere bei hohen Feldstärken (>3 T) sehr störanfällig. In dieser Arbeit wurden daher neue Bildgebungsmethoden entwickelt, die keine externen Herz- und Atemsonden benötigen, sondern das MRT-Signal selbst zur Bewegungssynychronisation verwenden. Mit Hilfe dieser Technik gelang die Entwicklung neuer Methoden zur Flussbildgebung und der 3D-Bildgebung, mit denen sich das arterielle System der Maus qualitativ und quantitativ erfassen lässt, sowie einer neuen Methode zur Quantisierung der longitudinalen Relaxationszeit T1 im murinen Herzen. Die in dieser Arbeit entwickelten Methoden ermöglichen robustere Messungen des Herzkreislaufsystems. Im letzten Kapitel konnte darüber hinaus gezeigt werden dass sich die entwickelten Bildgebungstechniken in der Maus auch auf die humane Bildgebung übertragen lassen. N2 - Cardiovascular diseases are one of the main causes of death in western countries. Hence, the development of non-invasive imaging techniques using Magnetic Resonance Imaging (MRI) is very important for early detection of these illnesses and for examination of the biological mechanisms. In the past years genetically modified mouse models have proven to be great assets, since they allow the development of new imaging techniques and to investigate the progress of cardiovascular diseases in time lapse. The main challenge of murine MRI is the high heart rate und the fast respiration. Hence, synchronization of the measurement with cardiac motion and breathing by using cardiac and respiration signals is required. Most imaging techniques use ECG leads for synchronization with the heartbeat, however, these probes are prone to disturbances at high magnetic field strengths (>3 T). In this work new imaging techniques were developed that do not use external cardiac and respiration signals but the MRI signal itself for motion synchronization. With these techniques new methods for flow quantification und 3D imaging could be developed for qualitative and quantitative measurements in the murine arteries. Furthermore, a new method for quantification of the longitudinal relaxation time T1 in the murine heart could be developed. The methods presented in this work enable more robust measurements of the cardiovascular system. In the last chapter it could be shown that the imaging techniques developed in the mouse can also be transferred to human MRI. KW - Kernspintomografie KW - Kardiovaskuläres System KW - Flussbildgebung KW - 3D-Bildgebung KW - Selbstnavigation KW - T1 KW - UTE KW - Maus KW - Aorta KW - Herzmuskel KW - Herzschlag Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-174023 ER - TY - THES A1 - Kolb, Verena T1 - Einfluss metallischer Nanostrukturen auf die optoelektronischen Eigenschaften organischer Halbleiter T1 - Impact of metal nanostructures on the optoelectronic properties of organic semiconductors N2 - Opto-elektronische Bauelemente auf Basis organischer Moleküle haben in den letzten Jahren nicht nur in Nischenbereichen, wie der Kombination organischer Photovoltaik mit gebäudeintegrierten Konzepten, sondern vor allem auch in der Entwicklung von kommerziell verfügbaren OLED (organische lichtemittierende Dioden) Bauteilen, wie 4K TV-Geräten und Handy Displays, an Bedeutung gewonnen. Im Vergleich zu anorganischen Bauteilen weisen jedoch vor allem organische Solarzellen noch weitaus geringere Effizienzen auf, weswegen die Erforschung ihrer Funktionsweise und der Einflüsse der einzelnen Bestandteile auf mikroskopischer Ebene für die Weiterentwicklung und Verbesserung des Leistungspotentials dieser Technologie unabdingbar ist. \\ Um dies zu erreichen, wurde in dieser Arbeit die Wechselwirkung zwischen der lokalisierten Oberflächenplasmonenresonanz (LSPR) metallischer Nanopartikel mit den optischen Anregungen organischer Dünnschichten in dafür eigens präparierten opto-elektronischen Hybrid-Bauteilen aus kleinen Molekülen untersucht. Durch die Implementierung und Kopplung an solche plasmonischen Nanostrukturen kann die Absorption bzw. Emission durch das lokal um die Strukturen erhöhte elektrische Feld gezielt beeinflusst werden. Hierbei ist der spektrale Überlapp zwischen LSPR und den Absorptions- bzw. E\-missions\-spek\-tren der organischen Emitter entscheidend. In dieser Arbeit wurden durch Ausnutzen dieses Mechanismus sowohl die Absorption in organischen photovoltaischen Zellen erhöht, als auch eine verstärkte Emission in nanostrukturierten OLEDs erzeugt. \\ Besonderer Fokus wurde bei diesen Untersuchungen auf mikroskopische Effekte durch neu entstehende Grenzflächen und die sich verändernden Morphologien der aktiven organischen Schichten gelegt, da deren Einflüsse bei optischen Untersuchungen oftmals nur unzureichend berücksichtigt werden. In der Arbeit wurden daher die nicht zu vernachlässigenden Folgen der Einbringung von metallischen Nanostrukturen auf die Morphologie und Grenzflächen zusammen mit den spektralen Veränderungen der Absorptions- und Emissionscharakteristik organischer Moleküle analysiert und in Zusammenhang gebracht, wodurch eine Verbesserung der Effizienzen opto-elektronischer Bauteile erreicht werden soll. N2 - In recent years, opto-electronic devices based on organic molecules have drawn increasing attention, not only in niche markets like building-integrated photovoltaics, but also in the development of organic light emitting diodes (OLEDs) for 4K TV and smartphone displays. Compared to devices based on inorganic semiconductors, especially, organic solar cells lack in efficiency. Therefore, the investigation and understanding of microscopic effects influencing the overall performance are crucial for further efficiency improvements of these technologies.\\ These circumstancs have motivated the topic of this thesis namely the investigation of the electromagnetic interaction between metallic nanostructures and molecular semiconductors, the latter constituting the key unit in organic opto-electronics thin film devices. The unique properties of metal nanostructures and nanoparticles, in particular, their localized surface plasmon resonances (LSPR) and the accompanying enhancement of the local electrical field and the scattering of incoming light are able to enhance both, the absorption and the emission of organic molecules in close proximity. \\ In this thesis, both phenomena were used to enhance the absorption of small molecule organic solar cells, as well as the emission in nanostructured OLEDs. Especially, the effect of artificially generated interfaces and the induced change in morphology due to nanoparticles are investigated with respect to the optical properties of the organic emitters and absorbers. \\ KW - Nanostruktur KW - Organischer Halbleiter KW - Oberflächenplasmonen KW - organische Halbleiter KW - localized surface plasmon KW - organic semiconductor KW - Silber KW - Optoelektronik Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-170279 ER - TY - THES A1 - Weih, Robert T1 - Interbandkaskadenlaser für die Gassensorik im Spektralbereich des mittleren Infrarot T1 - Interband Cascade Lasers for Gas Sensing in the Mid Infrared Spectral Region N2 - Aufgrund der hohen Sensitivität bei der Absorptionsmessung von Gasen im Spektral- bereich des mittleren Infrarot steigt die Nachfrage nach monolithischen, kompakten und energieeffizienten Laserquellen in Wellenlängenfenster zwischen 3 und 6 μm ste- tig. In diesem Bereich liegen zahlreiche Absorptionsbanden von Gasen, welche sowohl in der Industrie als auch in der Medizintechnik von Relevanz sind. Mittels herkömm- licher Diodenlaser konnte dieser Bereich bisher nur unzureichend abgedeckt werden, während Quantenkaskadenlaser infolge ihrer hohen Schwellenleistungen vor allem für portable Anwendungen nur bedingt geeignet sind. Interbandkaskadenlaser kom- binieren die Vorteile des Interbandübergangs von konventionellen Diodenlasern mit der Möglichkeit zur Kaskadierung der Quantenkaskadenlaser und können einen sehr breiten Spektralbereich abdecken. Das übergeordnete Ziel der Arbeit war die Optimierung von molekularstrahlepitak- tisch hergestellten Interbandkaskadenlasern auf GaSb - Basis im Spektralbereich des mittleren Infrarot für den Einsatz in der Gassensorik. Dies impliziert die Ermögli- chung von Dauerstrichbetrieb bei Raumtemperatur, das Erreichen möglichst geringer Schwellenleistungen sowie die Entwicklung eines flexiblen Konzepts zur Selektion von nur einer longitudinalen Mode. Da die Qualität der gewachsenen Schichten die Grundvoraussetzung für die Herstel- lung von performanten Bauteilen darstellt, wurde diese im Rahmen verschiedener Wachstumsserien eingehend untersucht. Nachdem das Flussverhältnis zwischen den Gruppe -V Elementen Sb und As ermittelt werden konnte, bei dem die InAs/AlSb - Übergitter der Mantelschichten verspannungskompensiert hergestellt werden können, wurde die optimale Substrattemperatur beim Wachstum dieser zu 450 ◦C bestimmt. Anhand von PL - sowie HRXRD- Messungen an Testproben konnte auch die opti- male Substrattemperatur beim Wachstum der charakteristischen W- Quantenfilme zu 450 ◦C festgelegt werden. Als weiterer kritischer Parameter konnte der As - Fluss beim Wachstum der darin enthaltenen InAs - Schichten identifiziert werden. Die bes- ten Ergebnisse wurden dabei mit einem As - Fluss von (1.2 ± 0.2) × 10−6 torr erzielt. Darüber hinaus konnte in Kooperation mit der Technischen Universität Breslau eine sehr hohe guteWachstumshomogenität auf den verwendeten 2′′ großen GaSb -Wafern nachgewiesen werden. Im Anschluss an die Optimierung des Wachstums verschiedener funktioneller Be- standteile wurden basierend auf einem in der Literatur veröffentlichten Laserschicht- aufbau diverse Variationen mit dem Ziel der Optimierung der Laserkenndaten unter- sucht. Zum Vergleich wurden 2.0 mm lange und 150 μm breite, durch die aktive Zone geätzte Breitstreifenlaser herangezogen. Eine erhebliche Verbesserung der Kenndaten konnte durch die Anwendung des Kon- zepts des Ladungsträgerausgleichs in der aktiven Zone erreicht werden. Bei einer Si - Dotierkonzentration von 5.0 × 1018 cm−3 in den inneren vier InAs - Filmen des Elektroneninjektors konnte die niedrigste Schwellenleistungsdichte von 491W/cm2 erreicht werden, was einer Verbesserung von 59% gegenüber des Referenzlasers ent- spricht. Mithilfe längenabhängiger Messungen konnte gezeigt werden, dass der Grund für die Verbesserung in der deutlichen Reduzierung der internen Verluste auf nur 11.3 cm−1 liegt. Weiterhin wurde die Abhängigkeit der Laserkenngrößen von der Anzahl der verwendeten Kaskaden in den Grenzen von 1 bis 12 untersucht. Wie das Konzept der Kaskadierung von Quantenfilmen erwarten ließ, wurde eine mo- notone Steigerung des Anstiegs der Strom - Lichtleistungskennlinie sowie eine Pro- portionalität zwischen der Einsatzspannung und der Kaskadenzahl nachgewiesen. Für ICLs mit einer gegebenen Wellenleiterkonfiguration und einer Wellenlänge um 3.6 μm wurde bei einer Temperatur von 20 ◦C mit 326W/cm2 die niedrigste Schwel- lenleistungsdichte bei einem ICL mit vier Kaskaden erreicht. Des Weiteren konnte für einen ICL mit 10 Kaskaden und einer Schwellenstromdichte von unter 100A/cm2 ein Bestwert für Halbleiterlaser in diesem Wellenlängenbereich aufgestellt werden. Eine weitere Reduktion der Schwellenleistungsdichte um 24% konnte anhand von Lasern mit fünf Kaskaden durch die Reduktion der Te - Dotierung von 3 × 1017 cm−3 auf 4 × 1016 cm−3 im inneren Teil der SCLs erreicht werden. Auch hier wurde mit- tels längenabhängiger Messungen eine deutliche Reduktion der internen Verluste nachgewiesen. In einer weiteren Untersuchung wurde der Einfluss der SCL - Dicke auf die spektralen sowie elektro - optischen Eigenschaften untersucht. Darüber hin- aus konnten ICLs realisiert werden, deren Mantelschichten nicht aus kurzperiodigen InAs/AlSb - Übergittern sondern aus quaternärem Al0.85Ga0.15As0.07Sb0.93 bestehen. Für einen derartig hergestellten ICL konnte eine Schwellenstromdichte von 220A/cm2 bei einer Wellenlänge von 3.4 μm gezeigt werden. Mithilfe der durch die verschiedenen Optimierungen gewonnenen Erkenntnisse so- wie Entwurfskriterien aus der Literatur wurden im Rahmen diverser internationaler Kooperationsprojekte ICLs bei verschiedenen Wellenlängen zwischen 2.8 und 5.7 μm hergestellt. Der Vergleich der Kenndaten zeigt einen eindeutigen Trend zu einer stei- genden Schwellenstromdichte mit steigender Wellenlänge. Die charakteristische Tem- peratur der untersuchten Breitstreifenlaser nimmt von circa 65K bei lambda=3.0 μm mit steigender Wellenlänge auf ein Minimum von 35K im Wellenlängenbereich um 4.5 μm ab und steigt mit weiter steigender Wellenlänge wieder auf 45K an. Ein möglicher Grund für dieses Verhalten konnte mithilfe von Simulationen in der Anordnung der Valenzbänder im W-Quantenfilm gefunden werden. Zur Untersuchung der Tauglichkeit der epitaktisch hergestellten Schichten für den in der Anwendung hilfreichen Dauerstrichbetrieb oberhalb von Raumtemperatur wur- den Laser in Stegwellenleitergeometrie mit einer aufgalvanisierten Goldschicht zur verbesserten Wärmeabfuhr hergestellt. Nach dem Aufbau der Laser auf Wärmesen- ken wurde der Einfluss der Kavitätslänge sowie der Stegbreite auf diverse Kennda- ten untersucht. Des Weiteren wurden eine Gleichung verifiziert, welche es erlaubt die maximal erreichbare Betriebstemperatur im Dauerstrichbetrieb aus der auf die Schwellenleistung bezogenen charakteristischen Temperatur sowie dem thermischen Widerstand des Bauteils zu berechnen. Mithilfe von optimierten Bauteilen konn- ten Betriebstemperaturen von mehr als 90 ◦C und Ausgangsleistungen von mehr als 100mW bei einer Betriebstemperatur von 20 ◦C erreicht werden. Im Hinblick auf die Anwendung der Laser in der Absorptionsspektroskopie wurde ab- schließend ein DFB-Konzept, welches zuvor bereits in konventionellen Diodenlasern zur Anwendung kam, erfolgreich auf das ICL - Material übertragen. Dabei kommt ein periodisches Metallgitter zum Einsatz, welches seitlich der geätzten Stege aufge- bracht wird und aufgrund von Verlustkopplung eine longitudinale Mode bevorzugt. Durch den Einsatz von unterschiedlichen Gitterperioden konnten monomodige ICLs basierend auf dem selben Epitaxiematerial in einem spektralen Bereich von mehr als 100nm hergestellt werden. Ein 2.4mm langer DFB- Laser konnte einen Abstimmbe- reich von mehr als 10nm bei Verschiebungsraten von 0.310nm/K und 0.065nm/mA abdecken. Der DFB- ICL zeigte im Dauerstrichbetrieb in einem Temperaturbereich zwischen 10 und 35 ◦C monomodigen Betrieb mit einer Ausgangsleistung von mehre- ren mW. Basierend auf dem in dieser Arbeit gewachsenem Material und dem DFB- Konzept konnte im Rahmen verschiedener Entwicklungsprojekte bereits erfolgreich Absorptionsspektroskopie in einem breiten Spektralbereich des mittleren Infrarot be- trieben werden. N2 - Due to the high sensitivity regarding absorption spectroscopy in the mid infrared spectral range the demand for monolithic, compact and energy efficient laser sourcesin the wavelength window between 3 and 6 μm is steadily increasing. Numerous absorption bands of gases relevant in industrial and medical applications are situated in this window. Utilizing conventional diode lasers this range could not be sufficiently covered, whereas quantum cascade lasers are of limited suitability for portable applications due to their high threshold power. Interband cascade lasers combine the advantage of interband transitions with the possibility of cascading from quantum cascade lasers and can cover a very wide spectral range. The main objective of this work was the optimization of molecular epitaxially grown mid infrared interband cascade lasers based on GaSb substrates for their utilization in gas sensing. This implies the realization of continuous wave operation at room temperature, to achieve as low threshold powers as possible and also the development of a flexible concept that realizes the selection of a single longitudinal mode. Since the quality of epitaxially grown layers is of high importance for the fabrication of high performance devices it was investigated and optimized in various growth series. After the flux ratio between the group -V elements Sb and As, that enables strain compensation in InAs/AlSb superlattices, was found the optimal substrate temperature during growth of these was determined to 450 °C. Using PL - as well as HRXRD- measurements of test samples the optimal substrate temperature during growth of the characteristic W- quantum wells was also set to 450 ◦C. The As - flux during the growth of the InAs layers inside these wells could be identified as a critical parameter as well. The best results could be achieved at an As - flux of (1.2 ± 0.2) × 10−6 torr. Moreover a very high growth homogeneity on the GaSb wafers of 2′′ size could be verified in cooperation with the Wrocław University of Science and Technology. Subsequently to the growth optimizations of the different functional groups of the laser structure various variations based on a published laser design were investigated in order to optimize the laser characteristics. To compare the results 2.0mm long and 150 μm wide broad area lasers were processed and characterized. A significant improvement of the laser characteristics could be achieved due to the implementation of the carrier rebalancing concept inside the active region. A Si -doping concentration of 5.0 × 1018 cm−3 in the inner four InAs - layers of the electron injector lead to a threshold power density as low as 491 W/cm2. This equals a 59% reduction from the value of the reference structure. By conducting cavity length dependent measurements the reason for this improvement could be found in the reduction of the internal losses to a value of only 11.3 cm−1. Furthermore the dependence of different characteristic variables on the number of cascades inside the active region was investigated within the limits of 1 to 12 cascades. As expected from the concept of cascading a monotonic increase of the slope of the current - output power characteristic with the number of cascades and a proportionality between set in voltage and the number of cascades was found. For ICLs with a given waveguide configuration and a wavelength of 3.6 μm the lowest threshold power density of 326 W/cm2 at a temperature of 20 °C was achieved for a four stage ICL. Beyond that a threshold current density of less than 100 A/cm2 could be found for a device with 10 cascades - a record for semiconductor lasers in this wavelength range. Additionally a reduction of the threshold power density in five stage ICLs of 24% could be achieved with the reduction of the doping density in the inner part of the separate confinement layers from 3 × 1017 cm−3 to 4 × 1016 cm−3. The reason for this was also found in a significant reduction of the internal loss. In a further test series the influence of the separate confinement layer - thickness on the spectral and electro - optic properties was investigated. Additionally ICLs were realized with cladding layers made of quaternary Al0.85Ga0.15As0.07Sb0.93 instead of InAs/AlSb - superlattices. For an ICL of this kind a threshold current density of 220 A/cm2 at a wavelength of 3.4 μm could be reached. Based on the before mentioned improvements and design rules from literature several ICLs in the wavelength window between 2.8 and 5.7 μm were fabricated in the framework of different international projects. Comparing these results a clear trend towards an increase in threshold current density with increasing wavelength was found. The characteristic temperature of the processed broad area lasers decreases from 65 K at λ = 3.0 μm to a minimum of 35K in the wavelength region around 4.5 μm and increases again for ICLs with even longer wavelengths. A possible reason for this was found in the arrangement of the valence bands in the W-quantum well. To investigate the capability of continuous wave operation above room temperature, which brings a clear benefit in applications, ridge waveguide lasers with a thick electroplated gold layer for improved heat dissipation were processed. After mounting the lasers on heat sinks the influence of the device length and width on several characteristics was determined. Furthermore an equation was verified which allows predicting the maximum operation temperature in continuous wave operation from the threshold power based characteristic temperature and the thermal resistance of a laser device. Optimized devices could reach a maximum operation temperature in continuous wave mode of more than 90 ◦C and an output power of more than 100 mW at an operation temperature of 20 ◦C. With regard to the application in absorption spectroscopy a DFB concept, which has already been demonstrated in conventional diode lasers, could be successfully adapted for ICLs. The concept is based on a metal grating that is placed on the side of the laser ridge and favours one longitudinal mode due to loss coupling. By utilizing different grating periods single mode ICLs based on the same epitaxial material could be fabricated in a spectral range of more than 100 nm width. A 2.4 mm long DFB - laser could cover a tuning range of more than 10nm with temperature and current tuning rates of 0.310 nm/K and 0.065 nm/mA respectively. The DFB- ICL device showed single mode operation in a temperature range from 10 to 35 °C with an output power of several mW. Based on the epitaxial material grown in this work and the DFB- concept a variety of absorption spectroscopy experiments in the framework of several projects could be carried out in a wide range of the mid infrared spectral region. KW - Halbleiterlaser KW - Interbandkaskadenlaser KW - Infrarotemission Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-169247 ER - TY - THES A1 - Schielein, Richard T1 - Analytische Simulation und Aufnahmeplanung für die industrielle Röntgencomputertomographie T1 - Analytical simulation and acquisition planning for industrial x-ray computed tomography N2 - Röntgencomputertomographie (CT) hat in ihrer industriellen Anwendung ein sehr breites Spektrum möglicher Prüfobjekte. Ziel einer CT-Messung sind dreidimensionale Abbilder der Verteilung des Schwächungskoeffizienten der Objekte mit möglichst großer Genauigkeit. Die Parametrierung eines CT-Systems für ein optimales Messergebnis hängt stark vom zu untersuchenden Objekt ab. Eine Vorhersage der optimalen Parameter muss die physikalischen Wechselwirkungen mit Röntgenstrahlung des Objektes und des CT-Systems berücksichtigen. Die vorliegende Arbeit befasst sich damit, diese Wechselwirkungen zu modellieren und mit der Möglichkeit den Prozess zur Parametrierung anhand von Gütemaßen zu automatisieren. Ziel ist eine simulationsgetriebene, automatische Parameteroptimierungsmethode, welche die Objektabhängigkeit berücksichtigt. Hinsichtlich der Genauigkeit und der Effizienz wird die bestehende Röntgensimulationsmethodik erweitert. Es wird ein Ansatz verfolgt, der es ermöglicht, die Simulation eines CT-Systems auf reale Systeme zu kalibrieren. Darüber hinaus wird ein Modell vorgestellt, welches zur Berechnung der zweiten Ordnung der Streustrahlung im Objekt dient. Wegen des analytischen Ansatzes kann dabei auf eine Monte-Carlo Methode verzichtet werden. Es gibt in der Literatur bisher keine eindeutige Definition für die Güte eines CT-Messergebnisses. Eine solche Definition wird, basierend auf der Informationstheorie von Shannon, entwickelt. Die Verbesserungen der Simulationsmethodik sowie die Anwendung des Gütemaßes zur simulationsgetriebenen Parameteroptimierung werden in Beispielen erfolgreich angewendet beziehungsweise mittels Referenzmethoden validiert. N2 - Industrial X-ray computed tomography (CT) can be applied to a large variety of different specimens. The result of a CT measurement is a three-dimensional image containing the position-dependent attenuation coefficient of the specimen. For an optimal imaging CT-measurement parameters depend on both the properties of the CT-System and the specimen. To predict such an optimal parameterization both the physical interactions with X-rays of the CT-System and the specimen, must be taken into account. This thesis sets out to address the modelling of the interactions as well as the automatization of the parameter finding. The latter is based on a figure of merit for CT-measurements. Aim is a simulation-based, automatic parameter optimization method which includes the object-dependency on distinct specimens. The currently existing X-ray simulation methods are enhanced with respect to accuracy and efficiency. Therefore a method for the calibration of the simulation to a real CT-system is presented. Additionally, a model for second order X-ray scattering is developed in order to calculate the specimen-scattered radiation. This is done using an analytical ansatz and no Monte-Carlo method has to be applied. So far, no universal definition of a figure of merit for CT-results has been given in literature. Using Shannon's information theory such a definition is developed. The improvements of the simulation method and the application of the figure of merit for simulation-based parameter optimization are used in examples or are validated using reference methods. KW - Computertomografie KW - Zerstörungsfreie Werkstoffprüfung KW - Optimierung KW - Aufnahmeplanung KW - Analytische Simulation KW - CT KW - Computersimulation Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-169236 ER - TY - THES A1 - Kreutner, Jakob T1 - Charakterisierung des Knochens und seiner Mikrostruktur mit hochauflösender 3D-MRT T1 - Characterization of Bone and its Microstructure using High-resolution 3D-MRI N2 - Neue Therapieansätze durch Tissue Engineering erfordern gleichzeitig angepasste Diagnosemöglichkeiten und nicht-invasive Erfolgskontrollen. Speziell die 3D-MR-Bildgebung ist ein vielversprechendes Instrument, um Parameter mit hoher räumlicher Präzision zu quantifizieren. Vor diesem Hintergrund wurden im Rahmen dieser Arbeit neue Ansätze für die hochauflösende 3D-MRT in vivo entwickelt und deren Eignung im Bereich des Tissue Engineerings gezeigt. Welchen Vorteil die Quantifizierung von Parametern bietet, konnte im Rahmen einer prä-klinischen Studie an einem Modell der Hüftkopfnekrose gezeigt werden. Der Therapieverlauf wurde zu verschiedenen Zeitpunkten kontrolliert. Trotz der niedrigen räumlichen Auflösung, konnten durch eine systematische Auswertung der Signalintensitäten von T1- und T2-FS-gewichteten Aufnahmen Rückschlüsse über Veränderungen in der Mikrostruktur gezogen werden, die darüber hinaus in guter Übereinstimmung mit Ergebnissen von ex vivo µCT-Aufnahmen waren. Dort konnte eine Verdickung der Trabekelstruktur nachgewiesen werden, welche sehr gut mit einer Signalabnahme in den T1-gewichteten Aufnahmen korrelierte. Die radiale Auswertung der Daten erlaubte dabei eine komprimierte Darstellung der Ergebnisse. Dadurch wurde eine effiziente Auswertung der umfangreichen Daten (verschiedene Tiere an mehreren Zeitpunkten mit einer Vielzahl an Einzelaufnahmen) ermöglicht und eine unabhängige Bewertung erreicht. Um die Limitationen der begrenzten Auflösung von 2D-Multi-Schichtaufnahmen aufzuheben, wurden neue Ansätze für eine hochaufgelöste 3D-Aufnahme entwickelt. Hierfür wurden Spin-Echo-basierte Sequenzen gewählt, da diese eine genauere Abbildung der Knochenmikrostruktur erlauben als Gradienten-Echo-basierte Methoden. Zum einen wurde eine eigene 3D-FLASE-Sequenz entwickelt und zum anderen eine modifizierte 3D-TSE-Sequenz. Damit an Patienten Aufnahmen bei klinischer Feldstärke von 1,5 T mit einer hohen räumlichen Auflösung innerhalb einer vertretbaren Zeit erzielt werden können, muss eine schnelle und signalstarke Sequenz verwendet werden. Eine theoretische Betrachtung bescheinigte der TSE-Sequenz eine um 25 % höhere Signaleffizienz verglichen mit einer FLASE-Sequenz mit identischer Messzeit. Dieser Unterschied konnte auch im Experiment nachgewiesen werden. Ein in vivo Vergleich der beiden Sequenzen am Schienbein zeigte eine vergleichbare Darstellung der Spongiosa mit einer Auflösung von 160 × 160 × 400 µm. Für die Bildgebung des Hüftkopfs mit der neuen Sequenz waren jedoch aufgrund der unterschiedlichen Anatomie weitere Modifikationen notwendig. Um längere Messzeiten durch ein unnötig großes Field-of-View zu vermeiden, mussten Einfaltungsartefakte unterdrückt werden. Dies wurde durch die orthogonale Anwendung der Anregungs- und Refokussierungspulse in der TSE-Sequenz effizient gelöst. Technisch bedingt konnte jedoch nicht eine vergleichbare Auflösung wie am Schienbein realisiert werden. Der Vorteil der 3D-Bildgebung, dass Schichtdicken von deutlich weniger als 1 mm erreicht werden können, konnte jedoch erfolgreich auf den Unterkiefer übertragen werden. Der dort verlaufende Nervus Mandibularis ist dabei eine wichtige Struktur, deren Verlauf im Vorfeld von verschiedenen operativen Eingriffen bekannt sein muss. Er ist durch eine dünne knöcherne Wand vom umgebenden Gewebe getrennt. Im Vergleich mit einer 3D-VIBE-Sequenz zeigte die entwickelte 3D-TSE-Sequenz mit integrierter Unterdrückung von Einfaltungsartefakten eine ähnlich gute Lokalisierung des Nervenkanals über die gesamte Länge der Struktur. Dies konnte in einer Studie an gesunden Probanden mit verschiedenen Beobachtern nachgewiesen werden. Durch die neue Aufnahmetechnik konnte darüber hinaus die Auflösung im Vergleich zu bisherigen Studien deutlich erhöht werden, was insgesamt eine präzisere Lokalisierung des Nervenkanals erlaubt. Ein Baustein des Tissue Engineerings sind bio-resorbierbare Materialien, deren Abbau- und Einwachsverhalten noch untersucht werden muss, bevor diese für die klinische Anwendung zugelassen werden. Die durchgeführten in vitro µMR-Untersuchungen an Polymerscaffolds zeigten die reproduzierbare Quantifizierung der Porengröße und Wandstärke. Darüber hinaus wurde eine inhomogene Verteilung der Strukturparameter beobachtet. Die Ergebnisse waren in guter Übereinstimmung mit µCT-Aufnahmen als Goldstandard. Unterschiedliche Varianten der Scaffolds konnten identifiziert werden. Dabei bewies sich die MR-Bildgebung als zuverlässige Alternative. Insgesamt zeigen die Ergebnisse dieser Arbeit, welche Vorteile und Anwendungsmöglichkeiten die 3D-MRT-Bildgebung bietet, und dass auch mit klinischer Feldstärke in vivo Voxelgrößen im Submillimeterbereich für alle Raumrichtungen erreichbar sind. Die erzielten Verbesserungen in der räumlichen Auflösung erhöhen die Genauigkeit der verschiedenen Anwendungen und ermöglichen eine bessere Identifikation von kleinen Abweichungen, was eine frühere und zuverlässigere Diagnose für Patienten verspricht. N2 - New tissue engineering based therapies require adjusted diagnostic methods as well as non-invasive therapy monitoring. Especially 3D MR imaging is a promising tool for parameter quantification at high spatial precision. To serve that need new approaches for high resolution in vivo 3D MRI were developed and their applications in combination with tissue engineering have been demonstrated. The advantages of parameter quantification have been demonstrated in a preclinical study of a femoral heck necrosis model in a large animal. Therapy progress has been monitored at different time points. Despite a commonly used 2D imaging protocol a systematic evaluation of signal intensities from T1 and T2-FS weighted images allowed to draw conclusions about changes in bone microstructure. These results were in good agreement with ex vivo µCT images. The observed increase of trabecular thickness were highly correlated with a signal decrease in the T1 weighted images. The radial evaluation of the data allowed a compressed representation of the results. This lead to an efficient evaluation of numerous data (different animals at various time points with huge number of images each) and allowed an observer independent evaluation. To overcome the limitations from the limited spatial resolution in 2D multi slice images, new approaches for a high-resolution 3D imaging were developed. The focus was on spin echo based sequences due to their better representation of bone microstructure compared to gradient echo based sequences. On one hand a 3D FLASE sequence was developed and on the other hand a modified 3D TSE sequence. To achieve a high resolution in vivo at clinical field strength of 1.5 T within a reasonable scan time, a fast and signal intense sequence is strongly required. A theoretical evaluation of signal equations attributed an increase of 25 % to the TSE sequence compared to the FLASE sequence at identical scan time and resolution. This difference was also observed in experimental results. An in vivo comparison of both sequences at the distal tibia showed a comparable depiction of bone microstructure at a resolution of 160 × 160 × 400 µm. To apply this sequence for high resolution imaging of the femoral head, further modifications were necessary due to the different anatomy. A large field of view had to be avoided to reduce the overall scan time, thus aliasing artifacts had to be suppressed. This was achieved by orthogonal application of excitation and refocusing pulses in the TSE sequence. However, due to technical limitations the achievable resolution was lower than at the distal tibia. A slice thickness much smaller than 1 mm is one of the biggest advantages of 3D MRI and this sequence was successfully applied to imaging of the mandible. The course of the mandibular canal must be known before many surgeries, in order to avoid damaging this structure. The canal is separated from the surrounding only by a small bony wall. In comparison to a 3D VIBE sequence the developed 3D TSE sequence with incorporated aliasing suppression showed a comparable good localization of the canal across the full length of the structure. This was demonstrated in a study with various healthy volunteers and different observers. In comparison to previous results the new imaging technique allowed an increase of spatial resolution to a isotropic voxel size of 0.5 mm, which in total provides a higher precision for localizing the nerve canal. One important element in tissue engineering are bio resorbable materials. Their degradation and ingrowth process must be evaluated before they can be approved for clinical application. The performed in vitro µMRstudies at polymer scaffolds showed a reproducible quantification of pore size and wall thickness for different samples. Additionally, an inhomogeneous distribution of parameters in some samples was observed. The results were in good agreement with data based on µCT images, which are considered to be gold standard for this evaluation and showed significant differences between different groups of scaffolds. The results of this work demonstrate the advantages and possible applications of 3D MRI in clinical applications. Even at clinical field strength it is possible to achieve submillimeter resolution for all three spatial dimension within reasonable scan time. The achieved improvements in spatial resolution allow for an improved precision of the different applications as well as a better identification of small local deviations, which promises an earlier and more reliable diagnosis for patients. KW - Kernspintomografie KW - Mikrostruktur KW - Knochen KW - hochauflösende Bildgebung KW - 3D-Bildgebung KW - Knochenstruktur KW - Spin-Echo KW - Trabekel KW - Hüftkopfnekrose KW - Tissue Engineering Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-168858 ER - TY - THES A1 - Maier, Patrick T1 - Memristanz und Memkapazität von Quantenpunkt-Speichertransistoren: Realisierung neuromorpher und arithmetischer Operationen T1 - Memristance and memcapacitance of quantum dot floating gate transistors: realization of neuromorphic and arithmetic operations N2 - In dieser Arbeit werden Quantenpunkt-Speichertransistoren basierend auf modulationsdotierten GaAs/AlGaAs Heterostrukturen mit vorpositionierten InAs Quantenpunkten vorgestellt, welche in Abhängigkeit der Ladung auf den Quantenpunkten unterschiedliche Widerstände und Kapazitäten aufweisen. Diese Ladungsabhängigkeiten führen beim Anlegen von periodischen Spannungen zu charakteristischen, durch den Ursprung gehenden Hysteresen in der Strom-Spannungs- und der Ladungs-Spannungs-Kennlinie. Die ladungsabhängigen Widerstände und Kapazitäten ermöglichen die Realisierung von neuromorphen Operationen durch Nachahmung von synaptischen Funktionalitäten und arithmetischen Operationen durch Integration von Spannungs- und Lichtpulsen. N2 - In this thesis, state-dependent resistances and capacitances in quantum dot floating gate transistors based on modulation doped GaAs/AlGaAs heterostructures with site-controlled InAs quantum dots are presented. The accumulation of electrons in the quantum dots simultaneously increases the resistance and decreases the capacitance, which leads to characteristic pinched hysteresis loops in the current-voltage- and the charge-voltage-characteristics when applying periodic input signals. The concurrent resistance and capacitance switching enables the realization of neuromorphic operations via mimicking of synaptic functionalities and arithmetic operations via the integration of voltage and light pulses. KW - Nichtflüchtiger Speicher KW - Memristor KW - Neuroinformatik KW - Quantenpunkt KW - Transportspektroskopie KW - Künstliche Synapsen KW - Speichertransistor KW - GaAs/AlGaAs Heterostruktur KW - transport spectroscopy KW - artificial synapse KW - floating gate transistor KW - GaAs/AlGaAs heterostructure KW - Elektronengas KW - Halbleiterphysik Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-164234 ER - TY - THES A1 - Treisch, Florian T1 - Die Entwicklung der Professionellen Unterrichtswahrnehmung im Lehr-Lern-Labor Seminar T1 - Assessing the professional vision of pre-service teachers in the Student-Lab N2 - Der Übergang vom der ersten Phase der Lehramtsausbildung ins Referendariat wird häufig mit dem Begriff „Praxisschock“ verbunden. Viele Studierende und Referendare fühlen sich unzureichend auf den Unterricht in der Schule vorbereitet. Sie fordern deshalb eine stärkere Verzahnung von Theorie und Praxis, also eine Anwendung der erlernten Theorien in „echten“ Praxisphasen auch schon in der ersten Phase der Lehramtsausbildung. Das Lehr-Lern-Labor Seminar der Universität Würzburg kann dazu beitragen, diese Verbindung von Theorie und Praxis herzustellen. Grundlegend sollen die Studierenden in diesem Seminar ihr fachliches, didaktisches und pädagogisches (Vor-)Wissen aufgreifen und in komplexitätsreduzierten Handlungsumgebungen anwenden. Dabei sollen sie im Rahmen des Lehr-Lern-Labor Seminars zunächst Experimentierstationen zu vorgegebenen Themengebieten aus dem bayerischen Lehrplan konzipieren, um anschließend mehrmals Schülerinnen und Schüler an diesen Stationen zu betreuen. Im Sinne einer iterativen Praxis werden die Betreuungen mehrmals von den Studierenden zusammen mit zwei Dozenten reflektiert. Letztlich wiederholen sich die Betreuungen, die Reflexionsphasen und mögliche Verbesserungen der Stationen viermal in einem zyklischen Prozess. Für die Verknüpfung von theoretischem Wissen in konkreten Handlungssituationen sind Wahrnehmungsprozesse von Bedeutung. Die sogenannte Professionelle Unterrichts-wahrnehmung beschreibt die Fähigkeit, relevante Unterrichtssituationen zu erkennen und theoriebezogen zu bewerten. Sie verknüpft das zugrunde liegende Wissen mit konkreten Handlungssituationen und dient somit als Bindeglied zwischen dem Wissen und dem Handeln, welches speziell in Reflexionsphasen gefördert werden kann. Durch die mehrmaligen Reflexionsprozesse der eigenen Betreuungen und die der Kommilitonen im Lehr-Lern-Labor Seminar könnte es eine vielversprechende Grundlage zur Förderung der Professionellen Unterrichtswahrnehmung darstellen. Die grundlegende Fragestellung der vorliegenden Arbeit ist es daher zu untersuchen, ob sich die Professionelle Unterrichtswahrnehmung im Rahmen des Lehr-Lern-Labor Seminars fördern lässt und inwieweit neu integrierte Videoanalysen der eigenen Betreuungen und die der Kommilitonen die Professionelle Unterrichtswahrnehmung der Studierenden zusätzlich fördern. Weiterhin interessiert, ob personenspezifische Merkmale einen zusätzlichen Einfluss auf die Entwicklung der Professionellen Unterrichtswahrnehmung ausüben. Ergänzend wird untersucht, ob zwischen dem Fachwissen, dem didaktischen Wissen und der Professionellen Unterrichtswahrnehmung Zusammenhänge bestehen. Dies könnte Aufschluss darauf geben, inwieweit Fachwissen und didaktisches Wissen die Entwicklung der Professionellen Unterrichtswahrnehmung im Seminar bedingen. Diese Arbeit leistet somit einen wichtigen Beitrag zur Untersuchung der Wirksamkeit eines Lehr-Lern-Labor Seminars, welches in die Ausbildung von Physiklehrkräften integriert wurde und zeigt auf, wie das Seminar bezüglich der Förderung der Professionellen Unterrichtswahrnehmung effektiver gestaltet werden kann. N2 - The transition from the first phase of the teacher education at the university to the two-year teacher training at school is often associated with the term “reality shock”. Many pre-service and in-service teachers feel inadequately prepared for teaching in schools. Therefore, there is an increasing call for a stronger connection of theory and practice. More precisely, pre-service teachers and educators demand an application of the theoretical knowledge in real practice situations already during education at the university. The Student-Lab seminar at the University of Würzburg can contribute to the connection of theory and practice. In this seminar, the participating pre-service teachers should use their content, didactical and pedagogical knowledge to create experimental stations for students on a given topic based on the Bavarian curriculum. Following, the pre-service teachers teach students on microteaching settings at the experimental stations. After every run, the pre-service teachers will reflect their teaching peer to peer and with the instructors. According to an iterative practice, there is an ongoing change of practice, reflection and improvement of the stations and the teaching. The connection of theory and practice is strongly related to professional vision. Professional vision describes the ability of a teacher to notice relevant teaching situations and to provide proper reasoning based on theoretical background. It links theoretical knowledge to specific teaching situations and serves as a connection between dispositions and performance, which can be learned during reflection. Due to the iterative reflections of their own teaching and the teaching of fellow students, the Student-Lab seminar could be a promising learning environment for the development of pre-service teachers’ professional vision. Therefore, the fundamental research questions are as follows: Is it possible to foster the pre-service teachers’ professional vision in the Student-Lab seminar? Furthermore, is there an additional effect due to newly integrated video analysis of their own and their fellows’ teaching in the Student-Lab? There is also an interest in the influence of individual characteristics on the development of professional vision. Another interest concerns the relation between the pre-service teachers’ content knowledge, didactical knowledge and their professional vision. This provides a hint to what extent the content knowledge and the didactical knowledge determine the development of professional vision. This work provides an important contribution to the investigation of the effectiveness of a Student-Lab integrated in the education of physics teachers. It gives indications for the organization and the learning contents of a Student-Lab seminar. KW - Lehramtsstudium KW - Lehr-Lern-Forschung KW - Schülerversuch KW - Lehr-Lern-Labor KW - Student-Lab KW - Professionelle Unterrichtswahrnehmung KW - professional vision KW - Videoanalyse KW - video analysis KW - Lehramt KW - Lehranalyse Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-164170 ER - TY - THES A1 - Finkenberg, Frank T1 - Flipped Classroom im Physikunterricht T1 - Flipped Classroom in Physics Education N2 - In der Unterrichtsmethode Flipped Classroom sind schulische und häusliche Aktivitäten vertauscht. Instruktionale Elemente werden in online verfügbare Lernvideos ausgelagert, welche die Schüler als häusliche Vorbereitung ansehen. Im Unterricht stehen dann schülerzentrierte Tätigkeiten im Vordergrund, in denen die Schüler ihr Wissen anwenden und vertiefen können. Durch die Auslagerung von Inputphasen wandelt sich die Rolle des Lehrers vom Instructor zum Lernbegleiter. Die vorliegende quasi-experimentelle Studie im Pre-/Postdesign mit Kontrollgruppe untersuchte die Wirkungen des Flipped Classroom in Physikkursen der Oberstufe (Grundkursniveau) an zwei deutschen Gymnasien mit N = 151 Schülerinnen und Schülern. Acht Physikkurse der 11. Jahrgangsstufe nahmen an der Studie teil, die sich über einen Zeitraum von zwei Schuljahren erstreckte (2015/16 und 2016/17). Vier der fünf teilnehmenden Lehrkräfte unterrichteten sowohl einen Kontroll- als auch einen Treatmentkurs. Sämtliche Lernvideos wurden von den Lehrkräften selbst erstellt. Dabei integrierten sie reale Experimente, um dem Anspruch physikauthentischen Unterrichts gerecht zu werden. Die Forschungsfragen richteten sich sowohl auf die Leistung in einem Fachwissenstest als auch auf affektive Lernmerkmale wie die Motivation, das Interesse und das Selbstkonzept. Zusätzlich wurden die wahrgenommene Lehrerunterstützung und das Hausaufgabenverhalten untersucht. Die Anwendung von Flipped Classroom im Physikunterricht zeigte größtenteils positive Effekte. Die Schülerinnen und Schüler im Flipped Classroom hatten einen höheren kognitiven Lernzuwachs und ein besseres Selbstkonzept als ihre Mitschüler, die traditionell unterrichtet wurden. Das Leistungsniveau und das Geschlecht der Schülerinnen und Schüler hatten dabei keinen Einfluss auf diese Effekte. Während die Motivation, sich mit Physik zu beschäftigen, in der Kontrollgruppe sank, blieb sie in der Treatmentgruppe auf konstantem Niveau. Bei genauerem Blick zeigte sich, dass die Motivation bei Schülerinnen im Flipped Classroom anstieg, bei Schülerinnen im traditionellen Unterricht jedoch abnahm. Das Interesse am Unterrichtsfach Physik wurde in beiden Gruppen geringer. Sowohl die wahrgenommene Lehrerunterstützung als auch die Hausaufgabendauer blieben in beiden Gruppen zwischen Pre- und Posttest unverändert. Die Hausaufgabendisziplin war im Flipped Classroom jedoch deutlich höher, was zeigt, dass die Schülerinnen und Schüler eher bereit waren, sich instruktionale Lernvideos anzusehen als klassische Hausaufgaben zu bearbeiten. N2 - Flipped Classroom inverts traditional teaching methods by delivering direct instruction in online learning videos. The students watch the videos at home so that class time is freed up for student centered and collaborative activities that allow a deeper exploration of the con-tent. By outsourcing lectures, the role of the teacher shifts from instructing to coaching the students. The quasi-experimental pre/post-study with control group examined the effects of flipped classroom applied to basic physics courses at two German secondary schools with N = 151 students in a three-months-treatment. Eight 11th grade physics courses took part in the study that was conducted in the school years 2015/16 and 2016/17. Four of five teachers in-volved in the study taught both control and treatment courses. All videos were produced by the teachers and incorporated real experiments to ensure an authentic physics education experience. The research questions focused on the performance in a content knowledge test as well as non-cognitive attitudes such as motivation, interest and self-concept. In addition, perceived teacher support and homework habits were also evaluated. Applying flipped classroom in physics school education showed largely positive results. The students in flipped classroom had a higher gain in cognitive learning and a better self-concept than those in a traditional classroom setting. Physics aptitude as well as gender did not moderate these effects. Whereas the motivation to engage in physics declined in the control group, it remained unchanged in the treatment group. In particular, female students in flipped classroom developed a higher motivation to engage in physics than their female peers who lost motivation in the traditional classroom. The interest in physics as a school subject decreased in both groups. The perceived teacher support and the average length of homework stayed the same in both groups between pre- and post-test. However, the homework discipline was considerably higher in flipped classroom which showed that stu-dents were more likely to watch instructional videos than do traditional homework. KW - Physikunterricht KW - Lernvideos KW - active learning KW - Integriertes Lernen KW - Vergleichsstudie KW - Schüleraktivierung KW - explanatory videos KW - comparative study KW - performance KW - motivation KW - Lernerfolg KW - Kooperatives Lernen KW - E-Learning KW - Aktivierung KW - Motivation KW - Interesse Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-164146 ER - TY - THES A1 - Pfenning, Andreas Theo T1 - Optoelektronische Transportspektroskopie an Resonanztunneldioden-Fotodetektoren T1 - Optoelectronic Transport Spectroscopy on Resonant Tunneling Diode Photodetectors N2 - Die vorliegende Arbeit beschäftigt sich mit optoelektronischer Transportspektroskopie verschiedener Resonanztunneldioden (RTDs). Die Arbeit ist thematisch in zwei Schwerpunktee untergliedert. Im ersten Schwerpunkt werden anhand GaAs-basierter RTD-Fotosensoren für den Telekommunikationswellenlängenbereich um 1,3 µm die Akkumulationsdynamiken photogenerierter Minoritätsladungsträger und deren Wirkung auf den RTD-Tunnelstrom untersucht. Im zweiten Schwerpunkt werden GaSb-basierte Al(As)Sb/GaSb-Doppelbarrieren-Quantentrog-RTDs in Hinblick auf ihren Raumtemperaturbetrieb entwickelt und erforscht. Diese legen den Grundstein für die spätere Realisation von RTD-Fotodetektoren im mittleren infraroten (MIR) Spektralbereich. Im Folgenden ist eine kurze inhaltliche Zusammenfassung der einzelnen Kapitel gegeben. Kapitel 1 leitet vor dem Hintergrund eines stark steigenden Bedarfs an verlässlichen und sensitiven Fotodetektoren für Telekommunikationsanwendungen sowie für die optische Molekül- und Gasspektroskopie in das übergeordnete Thema der RTD-Fotodetektoren ein. Kapitel 2 erläutert ausgewählte physikalische und technische Grundlagen zu RTD-Fotodetektoren. Ausgehend von einem kurzem Überblick zu RTDs, werden aktuelle Anwendungsgebiete aufgezeigt und die physikalischen Grundlagen elektrischen Transports in RTDs diskutiert. Anschließend werden Grundlagen, Definitionen und charakteristische Kenngrößen optischer Detektoren und Sensoren definiert. Abschließend werden die physikalischen Grundlagen zum Fotostrom in RTDs beschrieben. In Kapitel 3 RTD-Fotosensor zur Lichtdetektion bei 1,3 µm werden AlGaAs/GaAs-Doppelbarrieren-Quantentrog-Resonanztunneldioden (DBQW-RTDs) mit gitterangepasster, quaternärer GaInNAs-Absorptionsschicht als Raumtemperatur-Fotodetektoren für den nahen infraroten (NIR) Spektralbereich bei der Telekommunikationswellenlänge von λ=1,3 µm untersucht. RTDs sind photosensitive Halbleiterbauteile, die innerhalb der vergangenen Jahre aufgrund ihrer hohen Fotosensitivität und Fähigkeit selbst einzelne Photonen zu detektieren, ein beachtliches Interesse geweckt haben. Die RTD-Fotosensitivität basiert auf einer Coulomb-Wechselwirkung photogenerierter und akkumulierter Ladungsträger. Diese verändern das lokale elektrostatische Potential und steuern so einen empfindlichen Resonanztunnelstrom. Die Kenntnis der zugrundeliegenden physikalischen Parameter und deren Spannungsabhängigkeit ist essentiell, um optimale Arbeitspunkte und Bauelementdesigns zu identifizieren. Unterkapitel 3.1 gibt einen Überblick über das Probendesign der untersuchten RTD-Fotodetektoren, deren Fabrikationsprozess sowie eine Erläuterung des Fotodetektionsmechanismus. Über Tieftemperatur-Elektrolumineszenz-Spektroskopie wird die effektive RTD-Quantentrog-Breite zu d_DBQW≃3,4 nm bestimmt. Die Quantisierungsenergien der Elektron- und Schwerloch-Grundzustände ergeben sich zu E_Γ1≈144 meV und E_hh1≈39 meV. Abschließend wird der in der Arbeit verwendeten Messaufbau skizziert. In Unterkapitel 3.2 werden die physikalischen Parameter, die die RTD-Fotosensitivität bestimmen, auf ihre Spannungsabhängigkeit untersucht. Die Fotostrom-Spannungs-Kennlinie des RTD-Fotodetektors ist nichtlinear und über drei spannungsabhängige Parametern gegeben: der RTD-Quanteneffizienz η(V), der mittleren Lebensdauer photogenerierter und akkumulierter Minoritätsladungsträger (Löcher) τ(V) und der RTD-I(V)-Kennlinie im Dunkeln I_dark (V). Die RTD Quanteneffizienz η(V) kann über eine Gaußsche-Fehlerfunktion modelliert werden, welche beschreibt, dass Lochakkumulation erst nach Überschreiten einer Schwellspannung stattfindet. Die mittlere Lebensdauer τ(V) fällt exponentiell mit zunehmender Spannung V ab. Über einen Vergleich mit thermisch limitierten Lebensdauern in Quantentrögen können Leitungsband- und Valenzband-Offset zu Q_C \≈0,55 und Q_V≈0,45 abgeschätzt werden. Basierend auf diesen Ergebnissen wird ein Modell für die Fotostrom-Spannungs-Kennlinie erstellt, das eine elementare Grundlage für die Charakterisierung von RTD-Photodetektoren bildet. In Unterkapitel 3.3 werden die physikalischen Parameter, die die RTD-Fotosensitivität beschränken, detailliert auf ihre Abhängigkeit gegenüber der einfallenden Lichtleistung untersucht. Nur für kleine Lichtleistungen wird eine konstante Sensitivität von S_I=5,82×〖10〗^3 A W-1 beobachtet, was einem Multiplikationsfaktor von M=3,30×〖10〗^5 entspricht. Für steigende Lichtleistungen fällt die Sensitivität um mehrere Größenordnungen ab. Die abfallende, nichtkonstante Sensitivität ist maßgeblich einer Reduktion der mittleren Lebensdauer τ zuzuschreiben, die mit steigender Lochpopulation exponentiell abfällt. In Kombination mit den Ergebnissen aus Unterkapitel 3.2 wird ein Modell der RTD-Fotosensitivität vorgestellt, das die Grundlage einer Charakterisierung von RTD-Fotodetektoren bildet. Die Ergebnisse können genutzt werden, um die kritische Lichtleistung zu bestimmen, bis zu der der RTD-Fotodetektor mit konstanter Sensitivität betrieben werden kann, oder um den idealen Arbeitspunkt für eine minimale rauschäquivalente Leistung (NEP) zu identifizieren. Dieser liegt für eine durch theoretisches Schrotrauschen limitierte RTD bei einem Wert von NEP=1,41×〖10〗^(-16) W Hz-1/2 bei V=1,5 V. In Kapitel 4 GaSb-basierte Doppelbarrieren-RTDs werden unterschiedliche Al(As)Sb/GaSb-DBQW-RTDs auf ihre elektrische Transporteigenschaften untersucht und erstmalig resonantes Tunneln von Elektronen bei Raumtemperatur in solchen Resonanztunnelstrukturen demonstriert. Unterkapitel 4.1 beschreibt den Wachstums- und der Fabrikationsprozess der untersuchten AlAsSb/GaSb-DBQW-RTDs. In Unterkapitel 4.2 wird Elektronentransport durch eine AlSb/GaSb-DBQW-Resonanztunnelstruktur untersucht. Bei einer Temperatur von T=4,2 K konnte resonantes Tunneln mit bisher unerreicht hohen Resonanz-zu-Talstrom-Verhältnisse von PVCR=20,4 beobachtet werden. Dies wird auf die exzellente Qualität des Halbleiterkristallwachstums und des Fabrikationsprozesses zurückgeführt. Resonantes Tunneln bei Raumtemperatur konnte hingegen nicht beobachtet werden. Dies wird einer Besonderheit des Halbleiters GaSb zugeschrieben, welche dafür sorgt, dass bei Raumtemperatur die Mehrheit der Elektronen Zustände am L-Punkt anstelle des Γ Punktes besetzt. Resonantes Tunneln über den klassischen Γ Γ Γ-Tunnelpfad ist so unterbunden. In Unterkapitel 4.3 werden die elektrischen Transporteigenschaften von AlAsSb/GaSb DBQW RTDs mit pseudomorph gewachsenen ternären Vorquantentopfemittern untersucht. Der primäre Zweck der Vorquantentopfstrukturen liegt in der Erhöhung der Energieseparation zwischen Γ- und L-Punkt. So kann Elektronentransport über L- Kanäle unterdrückt und Elektronenzustände am Γ-Punkt wiederbevölkert werden. Zudem ist bei genügend tiefen Vorquantentopfstrukturen aufgrund von Quantisierungseffekten eine Verbesserung der RTD-Transporteigenschaften möglich. Strukturen ohne Vorquantentopf-Emitter zeigen ein Tieftemperatur- (T=77 K) Resonanz-zu-Talstrom-Verhältnis von PVCR=8,2, während bei Raumtemperatur kein resonantes Tunneln beobachtet werden kann. Die Integration von Ga0,84In0,16Sb- beziehungsweise GaAs0,05Sb0,95-Vorquantentopfstrukturen führt zu resonantem Tunneln bei Raumtemperatur mit Resonanz-zu-Talstrom-Verhältnissen von PVCR=1,45 und 1,36. In Unterkapitel 4.4 wird die Abhängigkeit der elektrischen Transporteigenschaften von AlAsSb/GaSb RTDs vom As-Stoffmengenanteil des GaAsSb-Emitter-Vorquantentopfs und der AlAsSb-Tunnelbarriere untersucht. Eine Erhöhung der As-Stoffmengenkonzentration führt zu einem erhöhten Raumtemperatur-PVCR mit Werten von bis zu 2,36 bei gleichzeitig reduziertem Tieftemperatur-PVCR. Das reduzierte Tieftemperatur-Transportvermögen wird auf eine mit steigendem As-Stoffmengenanteil zunehmend degradierende Kristallqualität zurückgeführt. In Kapitel 5 AlAsSb/GaSb-RTD-Fotosensoren zur MIR-Lichtdetektion werden erstmalig RTD-Fotodetektoren für den MIR-Spektralbereich vorgestellt und auf ihre optoelektronischen Transporteigenschaften hin untersucht. Zudem wird erstmalig ein p-dotierter RTD-Fotodetektor demonstriert. In Unterkapitel 5.1 wird das Probendesign GaSb-basierter RTD-Fotodetektoren für den mittleren infraroten Spektralbereich vorgestellt. Im Speziellen werden Strukturen mit umgekehrter Ladungsträgerpolarität (p- statt n-Dotierung, Löcher als Majoritätsladungsträger) vorgestellt. In Unterkapitel 5.2 werden die optischen Eigenschaften der gitterangepassten quaternären GaInAsSb-Absorptionsschicht mittels Fourier-Transformations-Infrarot-Spektroskopie untersucht. Über das Photolumineszenz-Spektrum wird die Bandlückenenergie zu E_Gap≅(447±5) meV bestimmt. Das entspricht einer Grenzwellenlänge von λ_G≅(2,77±0,04) µm. Aus dem niederenergetischen monoexponentiellem Abfall der Linienform wird eine Urbach-Energie von E_U=10 meV bestimmt. Der hochenergetische Abfall folgt der Boltzmann-Verteilungsfunktion mit einem Abfall von k_B T=25 meV. In Unterkapitel 5.3 werden die elektrischen Transporteigenschaften der RTD-Fotodetektoren untersucht und mit denen einer n-dotierten Referenzprobe verglichen. Erstmalig wird resonantes Tunneln von Löchern in AlAsSb/GaSb-DBQW-RTDs bei Raumtemperatur demonstriert. Dabei ist PVCR=1,58. Bei T=4,2 K zeigen resonantes Loch- und Elektrontunneln vergleichbare Kenngrößen mit PVCR=10,1 und PVCR=11,4. Die symmetrische I(V)-Kennlinie der p-dotierten RTD-Fotodetektoren deutet auf eine geringe Valenzbanddiskontinuität zwischen GaSb und der GaInAsSb-Absorptionsschicht hin. Zudem sind die p-dotierten RTDs besonders geeignet für eine spätere Integration mit Typ-II-Übergittern. In Unterkapitel 5.4 werden die optoelektronischen Transporteigenschaften p-dotierter RTD-Fotodetektoren untersucht. Das vorgestellte neuartige RTD-Fotodetektorkonzept, welches auf resonanten Lochtransport als Majoritätsladungsträger setzt, bietet speziell im für den MIR-Spektralbereich verwendeten GaSb-Materialsystem Vorteile, lässt sich aber auch auf das InP- oder GaAs- Materialsystem übertragen. Die untersuchten p-dotierten Fotodetektoren zeigen eine ausgeprägte Fotosensitivität im MIR-Spektralbereich. Fotostromuntersuchungen werden für optische Anregung mittels eines Halbleiterlasers der Wellenlänge λ=2,61 µm durchgeführt. Bei dieser Wellenlänge liegen fundamentale Absorptionslinien atmosphärischen Wasserdampfs. Die Fotostrom-Spannungs-Charakteristik bestätigt, dass die Fotosensitivität auf einer Modulation des resonanten Lochstroms über Coulomb-Wechselwirkung akkumulierter photogenerierter Minoritätsladungsträger (Elektronen) beruht. Es werden Sensitivitäten von S_I=0,13 A W-1 ermittelt. Durch eine verbesserte RTD-Quanteneffizienz aufgrund eines optimierten Dotierprofils der Absorptionsschicht lässt sich die Sensitivität auf S_I=2,71 A W-1 erhöhen, was einem Multiplikationsfaktor von in etwa M\≈8,6 entspricht. Gleichzeitig wird jedoch der RTD-Hebelfaktor verringert, sodass n_(RTD p2)=0,42⋅n_(RTD p1). Erstmalig wurde damit erfolgreich Gas-Absorptionsspektroskopie anhand von H2O-Dampf mittels MIR-RTD-Fotodetektor an drei beieinanderliegenden Absorptionslinien demonstriert. N2 - The present thesis addresses the optoelectronic transport spectroscopy of different resonant tunneling diodes (RTDs). The thesis comprises two main topics. Firstly, the accumulation dynamics of photogenerated minority charge carriers and their impact on the RTD tunneling current is investigated for GaAs based RTD photosensors for the telecommunication wavelength region at 1.3 µm. Secondly, Al(As)Sb/GaSb double barrier quantum well RTDs are proposed and investigated with regard to their room temperature functionality. These works finally lead to the realization of RTD photodetectors in the mid infrared (MIR) spectral region. A brief summary of the content of the individual chapters is given below. Chapter 1 introduces the topic of RTD photodetectors in the context of a rapidly increasing demand for reliable and sensitive photodetectors for telecommunication applications as well as for optical molecular and gas spectroscopy. Chapter 2 explains some selected physical and technological basics of RTD photodetectors. Starting from a short overview depicting the development of RTDs, current areas of application are presented, and a concise introduction into electronic transport of RTDs is given. Subsequently, basic principles, definitions and characteristic parameters of optical detectors and sensors are defined. Finally, the physical fundamentals of light-induced effects on electronic transport in RTDs are described. In Chapter 3 an investigation on AlGaAs/GaAs double barrier quantum well resonant tunneling diodes (DBQW-RTDs) with a lattice-matched quaternary absorption layer as room temperature photodetectors for the near-infrared (NIR) spectral region at the telecommunication wavelength of λ=1.3 µm is presented. RTDs are photosensitive semiconductor devices that have inspired considerable interest in recent years due to their remarkable photosensitivity and ability to detect even individual photons. The RTD photosensitivity is based on Coulomb-interaction of photogenerated and accumulated charge carriers. These modulate the local electrostatic potential, and thus control a resonant tunneling current. Knowledge of the underlying physical parameters and their voltage dependence is essential to identify optimal operating points and device-design. In Subchapter 3.1 an overview of the sample design of the investigated RTD photodetectors, their fabrication process and a description of the photodetection mechanism is given. Low-temperature electroluminescence spectroscopy is used to determine the effective RTD quantum well width to d_DBQW⋍3.4 nm. The quantization energies of the electron and heavy hole ground states are found to be E_Γ1≈144 meV and E_hh1≈39 meV. Finally, the experimental setup used in this work is presented. In Subchapter 3.2 the physical parameters that limit the RTD photosensitivity are investigated with regard to their voltage dependence. The photocurrent-voltage characteristics of the RTD photodetector is nonlinear and determined by three voltage-dependent parameters: the RTD quantum efficiency η(V), the mean lifetime of photogenerated and accumulated minority charge carriers (holes) τ(V), and the RTD I(V)-characteristics in the dark I_dark (V). The RTD quantum efficiency η(V) can be modeled by a Gaussian error function, which describes that hole accumulation can only occur after surpassing a critical threshold voltage. The mean lifetime τ(V) decreases exponentially with increasing bias voltage V. Through a comparison with thermionically limited lifetimes in quantum wells, conduction and valence band offsets can be estimated to be Q_C≈0.55 and Q_V≈0.45, respectively. Based on these results, a model for the photocurrent-voltage characteristics is developed, which provides a framework for the characterization of RTD photodetectors. In Subchapter 3.3 the physical parameters limiting the RTD photosensitivity are investigated with regard to their dependence on the incident light power. Only for low light powers P<50 pW, a constant sensitivity S_I= 5.82×〖10〗^3 A W 1 is observed, which corresponds to a multiplication factor of M=3.30×〖10〗^5. For increasing light powers, the sensitivity decreases by several orders of magnitude. The decreasing, non-constant sensitivity is mainly due to a reduction of the average lifetime τ, which decreases exponentially with increasing hole population. In combination with the results from Subchapter 3.2, a model of the RTD photosensitivity is provided, which gives the basis for the complete characterization of RTD photodetectors. The results can be used to determine the critical light power up to which the RTD photodetector can be operated with constant sensitivity, or to identify the ideal operation point in terms of a minimum noise equivalent power (NEP). For an RTD limited by (theoretical) shot noise, the optimal working point is located at V=1.5 V with a noise-equivalent power of NEP=1.41×〖10〗^(-16) W Hz-1/2. In Chapter 4 different Al(As)Sb/GaSb DBQW RTDs are described via their electronic transport properties and for the first time resonant tunneling of electrons at room temperature is demonstrated in such structures. Subchapter 4.1 describes the growth and manufacturing process of the studied Al(As)Sb/GaSb-DBQW-RTDs. In Subchapter 4.2 electron transport through an AlSb/GaSb DBQW resonance tunneling structure is investigated. At low temperatures of T=4.2 K, resonant tunneling with unprecedented high peak-to-valley current ratios (PVCRs) of up to PVCR=20.4 can be observed. This is ascribed to the excellent quality of the semiconductor crystal growth and manufacturing process. Resonant tunneling at room temperature cannot be observed. This is attributed to a characteristic material property of the semiconductor GaSb, which results in the majority of electrons occupying states at the L-point instead of the Γ-point, at room temperature. Resonant tunneling via the typical Γ- Γ- Γ tunneling path is suppressed. In Subchapter 4.3 the electronic transport properties of AlAsSb/GaSb DBQW-RTDs with pseudomorphically grown ternary prewell emitters are investigated. The primary purpose of the prewell structures is to increase the energy separation between Γ- and L-point. Thus, electron transport via L-channels can be depopulated, which in turn leads to a repopulation of electron states at the Γ-point. In addition, an improvement of the RTD transport properties is possible with sufficiently deep prewell structures due to quantization effects. Structures without prewell emitters show a low-temperature (T=77 K) peak-to-valley current ratio of PVCR=8.2, while at room temperature, no resonant tunneling can be observed. The integration of Ga0.84In0.16Sb and GaAs0.05Sb0.95 prewell structures, leads to resonant tunneling at room temperature with peak-to-valley current ratios of PVCR=1.45 and 1.36, respectively. In Subchapter 4.4 the dependence of the electronic transport properties of Al(As)Sb/GaSb RTDs on the As mole fraction of the GaAsSb emitter prewell and the AlAsSb tunneling barriers is investigated. An increase in the As mole fraction leads to an increased room temperature PVCR with values of up to PVCR=2.36 with a simultaneously reduced PVCR at cryogenic temperatures. The reduced low-temperature transport properties are attributed to a decreasing semiconductor crystal quality with an increasing As concentration. In Chapter 5 RTD photodetectors for the MIR spectral region are presented for the first time and their optoelectronic transport properties are studied. In addition, a p-type doped RTD photodetector is demonstrated for the first time. In Subchapter 5.1 the sample design of the studied GaSb-based RTD photodetectors for the MIR spectral region are provided. In particular, structures with inverted charge carrier polarity (p-type instead of n-type doping, holes as majority charge carriers) are presented. In Subchapter 5.2 the optical properties of the lattice-matched quaternary GaInAsSb absorption layer are investigated by Fourier transform infrared spectroscopy. From the spectrum a bandgap energy of E_Gap≅(447±5) meV is determined. This corresponds to a cut-off wavelength of λ_G≅(2.77±0.04) µm. An Urbach energy of E_U=10 meV is extracted from the mono-exponential decline of the line shape at the low-energy side. At the high-energy side, the exponential decline follows the Boltzmann distribution function with k_B T=25 meV. In Subchapter 5.3, the electronic transport properties of the studied RTD photodetectors are presented and compared with an n-type doped reference sample. For the first time, room temperature resonant tunneling of holes in Al(As)Sb/GaSb DBQW-RTDs is demonstrated, with PVCR=1.58. At T=4.2 K, resonant tunneling of holes and electrons show comparable peak-to-valley current ratios of PVCR=10.1 and PVCR=11.4, respectively. The symmetrical I(V)-characteristics of the p-doped RTD photodetectors indicate a low valence band discontinuity between GaSb and the GaInAsSb absorption layer. In addition, they are particularly suitable for later integration with Type II superlattices. In Subchapter 5.4, the optoelectronic transport properties of p-type doped RTD photodetectors are described. The presented RTD photodetector concept, which relies on resonant tunneling transport of holes as majority charge carriers, offers advantages in particular for the GaSb material system that is used to cover the MIR spectral region. The concept of p-type doping may also be applied to the InP or GaAs material system. The examined RTD photodetectors show a pronounced photosensitivity in the MIR spectral range. Photocurrent investigations are performed under optical excitation with a semiconductor laser with wavelength λ=2.61 µm. Fundamental absorption lines of atmospheric water vapor are located at this wavelength. The photocurrent-voltage characteristics confirms that the photosensitivity is based on a modulation of the resonant hole current via the Coulomb interaction of accumulated photogenerated minority charge carriers (electrons). Sensitivities of S_I=0.13 A W-1 are determined. An improved RTD quantum efficiency due to an optimized doping profile of the absorption layer increases the sensitivity up to S_I=2.71 A W-1, which corresponds to a multiplication factor M≈8.6. At the same time, however, the RTD leverage factor is reduced so that n_(RTD p2)=0.42⋅n_(RTD p1). For the first time, gas absorption spectroscopy by an MIR RTD photodetector is demonstrated by means of H2O vapor on three adjacent absorption lines. KW - Resonanz-Tunneldiode KW - Photodetektor KW - AlGaAs KW - Elektronischer Transport KW - RTD KW - Resonanztunneldiode KW - GaAs KW - GaSb KW - Fotodetektor KW - Transportspektroskopie KW - Antimonide KW - Optoelektronik Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-163205 ER - TY - THES A1 - Graus, Martin T1 - Anwendung und Weiterentwicklung der Orbitaltomographie T1 - Application and Advancement of Orbital Tomography N2 - Als Orbitaltomographie wird eine junge Methode innerhalb der Photoelektronenspektrokopie bezeichnet, welche es ermöglicht, Molekülorbitale mit hoher Ortsauflösung abzubilden. Hierfür werden die zu untersuchenden Moleküle durch elektromagnetische Strahlung angeregt und die mittels Photoeffekt emittierten Elektronen hinsichtlich ihres Impulses und ihrer kinetischen Energie charakterisiert. Moderne Photoemissionsexperimente erlauben die simultane Vermessung des gesamten Impulshalbraumes oberhalb der Probe. Die detektierte Intensitätsverteilung stellt dann unter bestimmten Bedingungen das Betragsquadrat eines hemisphärischen Schnittes durch den Fourierraum des spektroskopierten Orbitals dar, wobei der Radius der Hemisphäre von der Energie der anregenden Strahlung abhängt. Bei den in dieser Arbeit untersuchten Systemen handelt es sich um adsorbierte Moleküle, die hochgeordnete Schichten auf kristallinen Edelmetalloberflächen bilden. Im Fall eindomänigen Wachstums liefern die parallel orientierten Moleküle identische Photoemissionssignale. Kommt es hingegen zur Ausbildung von Rotations- und Spiegeldomänen, stellt die gemessene Impulsverteilung eine Superposition der unterschiedlichen Einzelbeiträge dar. Somit lassen sich Rückschlüsse auf die Orientierungen der Moleküle auf den Substraten ziehen. Diese Charakterisierung molekularer Adsorptionsgeometrien wird anhand verschiedener Modellsysteme vorgestellt. Variiert man die Energie der anregenden Strahlung und somit den Radius der hemisphärischen Schnitte durch den Impulsraum, ist es möglich den Fourierraum des untersuchten Molekülorbitals dreidimensional abzubilden. Kombiniert man die gemessenen Intensitäten mit Informationen über die Phase der Wellenfunktion im Impulsraum, die durch zusätzliche Experimente oder rechnerisch gewonnen werden können, lässt sich durch eine Fouriertransformation ein dreidimensionales Bild des Orbitals generieren, wie Schritt für Schritt gezeigt wird. Im Zuge eines Photoemissionsprozesses kann das Molekül in einen angeregten vibronischen Zustand übergehen. Mittels Photoemissionsexperimenten mit hoher Energieauflösung lassen sich Unterschiede zwischen den Impulsverteilungen der schwingenden Moleküle und denen im vibronischen Grundzustand feststellen. Ein Vergleich der Messdaten mit Simulationen kann die Identifikation der angeregten Schwingungsmode ermöglichen, was eine neue Methode darstellt, Erkenntnisse über die Elektron-Phonon-Kopplung in molekularen Materialien zu gewinnen. N2 - Orbital tomography is a relatively young method within the field of photoelectron spectroscopy, which allows for imaging of molecular orbitals with high spatial resolution. After excitation of the specimen by electromagnetic radiation, electrons are emitted via the photoelectric effect and characterised regarding their momenta and kinetic energies by a photoelectron detector system. State-of-the-art photoemission experiments are capable of simultaneous mapping of the full emission hemisphere above the sample. Under certain conditions, measured intensity distributions are then proportional to the square of the absolute value of a hemispherical section through the investigated orbital's Fourier space. The radius of the hemisphere is dependent on the excitation energy. In this study, the systems under investigation constitute adsorbed molecules which form highly ordered layers on surfaces of noble metal crystals. If the growth process leads to a single domain in which all molecules are aligned parallel, the molecules send out identical photoemission signals. If rotational or mirror domains are however formed, the measured momentum distribution is a superposition of the individual contributions. As a consequence, conclusions on the orientation of the molecules on the substrate can be drawn. This characterization of molecular adsorption geometries is presented by means of various modell systems. Variation of the excitation energy associated with a change in the radius of the hemispherical section allows for a three-dimensional imaging of the investigated orbital's Fourier space. A combination of measured intensities with information on the phase of the wave function in momentum space, which can be derived experimentally or numerically, renders a three-dimensional reconstruction of the orbital possible via a Fourier transform, as shown step by step. As part of the photoemission process, the molecule can be transfered into an excited vibronic state. Employing photoemission experiments with high energy resolution, one can detect differences between the momentum distributions of vibrant molecules and those in the vibronic ground state. A comparison of experimental data with simulations can enable identification of the relevant vibronic mode, showcasing a new method to gain information on electron-phonon coupling in molecular materials. KW - ARPES KW - Molekülorbital KW - Photoelektronenspektroskopie KW - Orbitaltomographie KW - Impulsmikroskopie KW - Molekülspektroskopie KW - Molekülspektroskopie Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-163194 ER - TY - THES A1 - Strauß, Micha Johannes T1 - Molekularstrahlepitaxie von niederdimensionalen GaInAs(N) Systemen für AlGaAs Mikroresonatoren T1 - Molecular beam epitaxy of GaInAs(N) low dimensional Systems for AlGaAs micro resonators N2 - Die Erforschung von Quantenpunkten mit ihren quantisierten, atomähnlichen Zuständen, bietet eine Vielzahl von Möglichkeiten auf dem Weg zum Quantencomputer und für Anwendungen wie Einzelphotonenquellen und Quantenpunktlasern. Vorangegangene Studien haben grundlegend gezeigt, wie Quantenpunkte in Halbleiterresonatoren integriert und mit diesen gekoppelt werden können. Dazu war es zum einen notwendig, die Quantenpunkte und ihr epitaktisches Wachstum besser zu verstehen und zu optimieren. Zum anderen mussten die Bragg-Resonatoren optimiert werden, sodass Güten von bis zu 165.000 realisiert werden konnten. Eingehende Studien dieser Proben zeigten im Anschluss einen komplexeren Zusammenhang von Q-Faktor und Türmchendurchmesser. Man beobachtet eine quasi periodische Oszillation des Q-Faktors mit dem Pillar Durchmesser. Ein Faktor für diese Oszillation ist die Beschaffenheit der Seitenflanken des Resonatortürmchens, bedingt durch die unterschiedlichen Eigenschaften von AlAs und GaAs bei der Prozessierung der Türmchen. Darüber hinaus wurden in der Folge auf den Grundlagen dieser Strukturen sowohl optisch als auch elektrisch gepumpte Einzelphotonenquellen realisiert. Da in diesen Bauteilen auch die Lage des Quantenpunkts innerhalb des Resonatortürmchens einen erheblichen Einfluss auf die Effizienz der Kopplung zwischen Resonator und Quantenpunkt hat, war das weitere Ziel, die Quantenpunkte kontrolliert zu positionieren. Mit einer gezielten Positionierung sollte es möglich sein, ein Resonatortürmchen direkt über dem Quantenpunkt zu plazieren und den Quantenpunkt somit in das Maximum der optischen Mode zu legen. Besondere Herausforderung für die Aufgabenstellung war, Quantenpunkte in einem Abstand von mind. der Hälfte des angestrebten Türmchendurchmessers, d.h 0,5 μm bis 2 μm, zu positionieren. Die Positionierung musste so erfolgen, dass nach dem Wachstum eines AlAs/GaAs DBR Spiegel über den Quantenpunkten, Resonatortürmchen zielgenau auf die Quantenpunkte prozessiert werden können. Es wurden geeignete Prozesse zur Strukturierung eines Lochgitters in die epitaktisch gewaschene Probe mittels Elektronenstrahllithographie entwickelt. Für ein weiteres Wachstum mittels Molekularstrahlepitaxie, mussten die nasschemischen Reinigungsschritte sowie eine Reinigung mit aktivem Wasserstoff im Ultrahochvakuum optimiert werden, sodass die Probe möglichst defektfrei überwachsen werden konnte, die Struktur des Lochgitters aber nicht zerstört wurde. Es wurden erfolgreich InAs-Quantenpunkte auf die vorgegebene Struktur positioniert, erstmals in einem Abstand von mehreren Mikrometern zum nächsten Nachbarn. Eine besondere Herausforderung war die Vorbereitung für eine weitere Prozessierung der Proben nach Quantenpunktwachstum. Eine Analyse mittels prozessierten Goldkreuzen, dass 30 % der Quantenpunkte innerhalb von 50 nm und 60 % innerhalb von 100 nm prozessiert wurden. In der Folge wurde mit der hier erarbeiteten Methode Quantenpunkte erfolgreich in DBR-Resonatoren sowie photonische Kristalle eingebaut Die gute Abstimmbarkeit von Quantenpunkten und die bereits gezeigte Möglichkeit, diese in Halbleiterresonatoren einbinden zu können, machen sie auch interessant für die Anwendung im Telekommunikationsbereich. Um für Glasfasernetze Anwendung zu finden, muss jedoch die Wellenlänge auf den Bereich von 1300 nm oder 1550 nm übertragen werden. Vorangegangene Ergebnisse kamen allerdings nur knapp an die Wellenlänge von 1300nm. Eine fu ̈r andere Bauteile sowie für Laserdioden bereits häufig eingesetzte Methode, InAs-Quantenpunkte in den Bereich von Telekommunikationswellenla ̈ngen zu verschieben, ist die Verwendung von Stickstoff als weiteres Gruppe-V-Element. Bisherige Untersuchungen fokussierten sich auf Anwendungen in Laserdioden, mit hoher Quantenpunktdichte und Stickstoff sowohl in den Quantenpunkten als in den umgebenen Strukturen. Da InAsN-Quantenpunkte in ihren optischen Eigenschaften durch verschiedene Verlustmechanismen leiden, wurde das Modell eines Quantenpunktes in einem Wall (Dot-in-Well) unter der Verwendung von Stickstoff weiterentwickelt. Durch gezielte Separierung der Quantenpunkte von den stickstoffhaltigen Schichten, konnte e eine Emission von einzelnen, MBE-gewachsenen InAs Quantenpunkten von über 1300 nm gezeigt werden. Anstatt den Stickstoff direkt in die Quantenpunkte oder unmittelbar danach in die Deckschicht ein zu binden, wurde eine Pufferschicht ohne Stickstoff so angepasst, dass die Quantenpunkte gezielt mit Wellenlängen größer 1300 nm emittieren. So ist es nun möglich, die Emission von einzelnen InAs Quantenpunkten jenseits dieser Wellenlänge zu realisieren. Es ist nun daran, diese Quantenpunkte mit den beschriebenen Mikroresonatoren zu koppeln, um gezielt optisch und elektrisch gepumpte Einzelphotonenquellen für 1300nm zu realisieren. N2 - The research of quantum dots with their quantized, atom-like states provides many possibilities for quantum computing and for application in technologies like single photon sources and quantum dot lazers. Previous studies have demonstrated how quantum dots can be integrated with and linked to semiconductor resonator. For this reason, it is necessary to better understand and optimize the epitaxial growth of quantum dots. Within the context of this work, the Bragg-Resonators must be optimized so that Q factors of up to 165.000 can be realized. Extensive studies of these samplings indicate a complex dependency between Q factors and diameter of the micropillar. This is how a quasi-periodic Q factor oscillation looks. One factor for these oscillations is the composition of the side flanks of the resonator micropillars, caused by the various properties of AIAs and GaAs during processing the micropillar. In addition, both optically and electrically pumped single photon sources have been realized on the basis of this structure. Due to the fact that the position of the quantum dot within the resonator micropillar has a significant effect on the efficiency of the coupling between the resonator and the quantum dot, a further goal was to control the position of the quantum dot. With a precise positioning, it should be possible to place a micropillar directly over a quantum dot, thus the quantum dot is located in the center of the pillar mode. A particular challenge in the scope of work was to position the quantum dots with a distance of at least half of the target micropillar diameter,in other words, between 0,5μm and 2μm. The positioning must be done in such a way so that a AIAs/GaAs DBR micropillar can be processed over the quantum dot. Therefore processes were developed to place a lattice of holes on an MBE grown sample via Electron Beam Lithography. The lithographical process was optimized by additional steps of wet chemical cleaning, and cleaning with hydrogen under ultra high vacuum, to avoid defects during MBE overgrowth. InAs quantum dots have positions on a given structure in a distance of several micrometers to each other. It could be proved by processing gold pattern, that 30% of the quantum dots are placed within 50 nm precision and 60% within 100 nm . In the following work quantum dots have been placed in DBR micro pillars and photonic crystals. Because quantum dots have a wide spectral range and because they can be integrated in micropillars, they are also of interest for applications within telecommunication systems. Therefore the spectral range around 1300 nm and 1550 nm has to be re- ached to link them to fiber cable. Former studies have shown results tight under 1300nm. Nitrogen is an additional way to get InAs quantum emitting at 1300nm at 8 K. Until now research for InAs quantum dots containing nitrogen was focused on high density dots for laser application. The Dot- In-A-Well design was transferred, in this work, to this problem by using nitrogen in a well above the quantum dots. With this development, single quantum dots, emitting above 1300nm at 8 K, have been grown for the first time. The next step would be to integrated this InAs Quantum dots with the nitrogen well, within the micro pillar to achieve single photon sources at 1300nm. KW - Quantenpunkt KW - Molekularstrahlepitaxie KW - Mikroresonator KW - Drei-Fünf-Halbleiter KW - Optischer Resonator Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-159024 ER - TY - THES A1 - Zimmermann, Christian T1 - Halbleiterlaser mit lateralem Rückkopplungsgitter für metrologische Anwendungen T1 - Semiconductor lasers with lateral feedback for metrological applications N2 - In der vorliegenden Arbeit wurde angestrebt, die Eigenschaften komplexgekoppelter DFB-Laser bezüglich ihrer Nutzung für metrologische Untersuchungen zu analysieren und zu verbessern. Hierfür wurden die räumlichen Emissionseigenschaften der lateral komplexgekoppelten DFB-Laser in ausgiebigen Studien diskutiert. Für kommerziell erhältliche Laser wurde daraufhin das Fernfeld sowohl in lateraler als auch vertikaler Richtung berechnet. Die entsprechenden Fernfeldmessungen konnten die Theorie bestätigen und wie erwartet, waren die Divergenzwinkel mit 52° FWHM in der Wachstumsrichtung und 12° FWHM in lateraler Richtung (vgl. Abb. 6.4 und 6.5) sehr unterschiedlich und zeugen von einer großen Differenz in den Fernfeldwinkeln. Mit Überlegungen zu dem optischen bzw. elektrischen Einschlusspotential im Hinblick auf die veränderte Fernfeldsituation wurde zunächst die reine Halbleiterlaserschichtfolge optimiert. Der Divergenzwinkel in Wachstumsrichtung wurde um mehr als 50% auf 25° FWHM gesenkt. Damit konnte die Asymmetrie des Fernfeldes um einen Faktor von mehr als 4 reduziert werden. Strahlgüteuntersuchungen zeigten ein nahezu beugungsbegrenztes Gaußsches Strahlprofil in der langsamen Achse mit einem M2-Wert von 1,13 (Abb. 6.3). Eine weitere Untersuchung betraf die Linienbreitenabhängigkeit solcher Laser von ihrer Ausgangsleistung, der Resonatorlänge, der Facettenvergütung und der Gitterkopplung. Die erste Beobachtung betraf die Verschmälerung der Linienbreite mit ansteigender Ausgangsleistung bis hin zu einer erneuten Verbreiterung (Rebroadening) der Linienbreite (siehe Abb. 7.3). Der Einfluss auf die Linienbreite durch eine Veränderung der Resonatorlänge ließ sich sehr gut mit der Theorie vergleichen und so erbrachte eine Verdopplung der Resonatorlänge eine Verschmälerung der Linienbreite um mehr als einen Faktor 3. Die Verlängerung der Kavität begünstigte den negativen Effekt des sog. Rebroadenings nicht, da bei der verwendeten Technologie der lateral komplexen Kopplung der Index-Beitrag an der Rückkopplung sehr klein ist. Im Falle reiner Indexkopplung wäre dies durch die veränderte κ · L-Lage deutlich zu spüren. Ein weiterer, oben auch angesprochener Vorteil der komplexen Kopplung ist, dass die Facettenreflektivitäten einen wesentlich kleineren Einfluss auf die DFB-Ausbeute und auf deren Eigenschaften haben als bei der reinen Indexkopplung. Dies lässt sich ausnutzen, um die Photonenlebensdauer in der Kavität zu erhöhen ohne negativ die DFB-Ausbeute zu beeinflussen. In dieser Arbeit wurde bei verschiedenen Längen die reine gebrochene Facette mit einer vergüteten verglichen und der Einfluss auf die Linienbreite analysiert. Die Frontfacette wurde durch eine Passivierung bei ca. 30% gehalten und die Rückfacette durch einen doppelten Reflektor auf ca. 85% gesetzt. Daraus resultierte eine Reduktion der Linienbreite um mehr als die Hälfte. Neben diesen Ergebnissen wurde auch der Einfluss der komplexen Kopplung untersucht. Da die durch das Gitter zusätzlich eingebrachten Verluste zu einer Vergrößerung der Linienbreiten beitragen, wird bei einem größeren geometrischen Gitterüberlapp das Frequenzrauschen auch entsprechend steigen. Dies ließ sich auch im Experiment bestätigen. Zudem wurde eine Längenabhängigkeit dieses Effektes festgestellt. Die Reduzierung der Linienbreite bei längeren Bauteilen ist deutlich ausgeprägter als bei kürzeren. So ist bei ähnlicher Verringerung des Gitterüberlappes bei einem 900 μm langen Bauteil eine Linienbreitenreduzierung um einen Faktor von „nur“ 1,85 beobachtbar, aber bei der doppelten Kavitätslänge ist dieser Faktor schon auf 3,60 angestiegen. Im Rahmen dieser Arbeit wurden DFB-Laser hergestellt, die eine Linienbreite von bis zu 198 kHz aufwiesen. Dies stellt für lateral komplexgekoppelte Laser einen absoluten Rekordwert dar. Im Vergleich zu Index-DFB-Lasern ist dieser Wert bzgl. der Linienbreite mit den aktuellsten Ergebnissen aus der Forschung zu vergleichen [CTR+11], bei welchen eine Linienbreite zu 200 kHz bestimmt wurde. In dem letzten Abschnitt dieser Arbeit wurde der Einfluss einer veränderten Phasenlage von Gitter und Facette untersucht. Dabei wurden spezielle Bauteile hergestellt (3-Segment-DFB-Laser) und verschiedene Gitterlängen untersucht. Die Phasenlage kann reversibel über den eingestellten Strom in den gitterfreien Segmenten geregelt werden. Wie vorhergesagt, bestätigen die Experimente, dass diese Phasenbeziehung einen signifikanten Einfluss auf die Ausgangsleistung, die Wellenlänge mit ihrer zugehörigen Seitenmodenunterdrückung und auch auf die Linien-breite hat. Bei der Analyse der Linienbreite konnte eindeutig beobachtet werden, dass für die verschiedenen Längen die inverse Linienbreite sehr gut mit der relativen Seitenmodenunterdrückung gekoppelt ist. Dies stellt eine deutliche Erleichterung der zukünftigen Optimierung der komplexgekoppelten DFB-Laser dar, da eine Linienbreitenuntersuchung meist deutlich zeitaufwendiger ist als eine Analyse mit einem optischen Spektrometer. N2 - The goal of this thesis was to analyze and improve the characteristics of complex-coupled DFB-lasers due to their use for metrological investigations. For this purpose, the spatial properties of the laterally complex-coupled DFB-lasers were discussed in extensive studies. It has been explained why the asymmetry of the far field for this special type of laser diode is typically quite high due to the required coupling strength. For commercially available lasers, the far field was calculated in both lateral and vertical direction. The corresponding far field measurements proofed the theory, and as expected, the divergence angles of 52° FWHM in the epitaxial direction and 12° FWHM in lateral direction (see fig. 6.4 and 6.5) showed very huge differences and confirmed the predicted high far field asymmetry. The layer stack was optimized first with regard to the optical and electrical confinement potential to change the far field situation. The far field in the epitaxial direction has been reduced by more than 50% to a value of 25° FWHM. As a result, the asymmetry of the far field could be reduced by a factor of more than 4. Beam profile measurements showed a nearly diffraction limited Gaussian beam profile in the slow axis with a M2-value of 1.13 (fig. 6.3). Additional investigations were done to determine the dependency between the linewidth of such lasers and their optical output power, resonator length, facet reflectivity and grating coupling strength. The first study was related to the narrowing of the linewidth due to the increased optical output power ending up in a rebroadening (compare fig. 7.3). The influence of the resonator length to the linewidth was very close to theory and thus a doubling of the resonator length led to a linewidth narrowing of more than factor 3. Increasing the cavity length did not favour the negative effect of the so-called rebroadening since the portion of index coupling within the used lateral complex-coupling technology is very small. In case of pure index coupling the influence due to the changed κ·L-condition would be increased. A further advantage of the complex-coupling mentioned above is the fact that the influence of the facet reflectivities on the DFB yield and laser characteristics is significantly smaller compared to pure index coupling. This can be used to increase the photon lifetime in the cavity without decreasing the DFB yield. The influence on the linewidth of as-cleaved facets was compared to coated ones with lasers of different length. The front facet was passivated to hold the as-cleaved reflectivity of about 30%, and the rear facet was coated with a layer stack to end up at about 85% reflectivity. The linewidth was more than halved. In addition to these results, the influence of complex-coupling was also investigated. As extra losses are introduced by the grating itself, the frequency noise, produced by a higher geometric overlap of the grating with the lasing mode will rise. This could also be confirmed in the experiment. It was also observed that this effect has a length driven component. Narrowing the linewidth by reducing the grating overlap has a higher influence on a longer device compared to shorter laser diodes. A factor of 1.85 on a 900 μm long device has been observed, but diodes with doubled length showed a factor of 3.60. Within the scope of this thesis, DFB-lasers were produced showing linewidths down to 198 kHz. Regarding complex-coupled laser diodes, this value for the linewidth is an absolute record. Compared to index-coupled DFB-lasers, this value matches to latest research findings [CTR+11]. In the last chapter of this work the influence of the phasing of grating and facet was discussed. Special laser diodes (3-segment DFB-lasers) with different grating lengths were produced. The phasing was determined by the injection current of the grating-free segments. As predicted, the experimental results proved the significant influence of the phasing to output power, wavelength including SMSR and the linewidth. It was also observed that for different lengths the inverse linewidth is proportional to the SMSR. This relationship could be used for improved and faster optimization of complex-coupled DFB-lasers as an investigation of the linewidth is typically more complex than a simple analysis on an optical spectrometer. KW - DFB-Laser KW - Metrologie KW - komplexe Gitterkopplung KW - Linienbreite KW - Atomuhr Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-159618 ER - TY - THES A1 - Brendel, Harald T1 - Wärmetransport in keramischen Faserisolationen bei hohen Temperaturen T1 - Heat-transfer in ceramic fibre-insulation-materials at high temperatures N2 - Das Ziel dieser Arbeit ist eine umfassende numerische und experimentelle Charakterisierung des Wärmetransports in oxidkeramischen Faserisolationen im Hochtemperaturbereich. Zugleich sollen neue Konzepte für eine optimierte technische Auslegung von Faserisolationen erarbeitet werden. Oxidkeramiken zeigen im Infrarotbereich ein semitransparentes Verhalten. Das bedeutet, ein Teil der Strahlung gelangt durch die Probe, ohne gestreut oder absorbiert zu werden. Durch die Ausgestaltung als disperses Medium mit Abmessungen der Fasern im $\mu m$ Bereich wird jedoch eine starke Wechselwirkung mit infraroter Lichtstrahlung erzeugt. Man befindet sich im optischen Resonanzbereich. Technisch relevante Faserisolationen besitzen eine Rohdichte zwischen $50 \mathrm{kg/m^3}$ und $700 \mathrm{kg/m^3}$ und können als optisch dichtes Medium betrachtet werden. Eine Optimierung hinsichtlich der Dämmwirkung gegen Wärmestrahlung bedeutet eine massenspezifische Maximierung des Lichtstreuvermögens im relevanten Wellenlängenbereich. Hierzu werden in einer numerischen Studie keramische Hohlfaserisolationen mit konventionellen Fasern verglichen. Diese Abhandlung unter Berücksichtigung anwendungsnaher Aspekte gelangt zu der Schlussfolgerung, dass die Strahlungswärmestromdichte in Hohlfaserisolationen, im Vergleich zu konventionellen Isolationen, signifikant erniedrigt wird. Hinsichtlich der Gesamtwärmeleitfähigkeit ist eine Reduzierung um den Faktor zwei zu erwarten. \\ Trotz moderner Rechner ist die Anwendung der vollen Maxwellschen Streutheorie, insbesondere im Rahmen von Optimierungsaufgaben mehrschichtiger Streukörper, ein zeitaufwendiges Unterfangen. Um sinnvolle Parameterkonfigurationen bereichsweise eingrenzen zu können, wird eine Näherungsmethode für die Lichtstreuung an mehrschichtigen Zylindern weiterentwickelt und mit der vollständigen Maxwellschen Streutheorie verglichen. Es zeigt sich, dass das Modell für kleine bis moderate Brechungsindizes sehr gute Vorhersagekraft besitzt und auch zur näherungsweisen Berechnung der Streueffizienzen für räumlich isotrop angeordnete Zylinder herangezogen werden kann. \\ Neben den numerischen Studien wird im experimentellen Teil dieser Arbeit eine kommerzielle Faserisolierung aus Aluminiumoxid hinsichtlich ihrer Wärmetransporteigenschaften charakterisiert. Die optischen Transportparameter Albedo und Extinktion werden mittels etablierter Messmethoden bestimmt. Bei bekannter Faserdurchmesserverteilung können diese Messwerte dann mit den theoretischen Vorhersagen der Maxwellschen Streutheorie verglichen werden.\\ Um technische Optimierungsmaßnahmen experimentell zu verifizieren, besteht die Notwendigkeit, die Temperaturleitfähigkeit bzw. die Wärmeleitfähigkeit auch bei hohen Temperaturen oberhalb von $1000^\mathrm{o}\mathrm{C}$ zuverlässig bestimmen zu können. Zu diesem Zweck wird ein Versuchsaufbau realisiert, um in diesem Temperaturbereich erstmals die sogenannte Thermal-Wave-Analyse anzuwenden. Durch Abgleich mit einem gekoppelten Wärmetransportmodell und einem etablierten Messverfahren wird die besondere Eignung der Thermal-Wave-Analyse für berührungsfreie Hochtemperaturmessungen gezeigt. N2 - The objective of the present thesis is a comprehensive numerical and experimental characterization of the heat transfer properties in thermal insulation materials made of ceramic fibers at high temperatures. At the same time, new concepts for further improvement of fibrous insulation materials are developed. In general, ceramic oxides appear semitransparent in the infrared range, meaning that a part of the thermal radiation is transmitted through a sample without being scattered or absorbed. However, in a dispersed medium containing fibers with diameters in the micrometer range a strong interaction with infrared radiation occurs. Since typical fibrous insulation materials of technical relevance show raw densities between $50 \mathrm{kg/m^3}$ and $700 \mathrm{kg/m^3}$ they could be considered as optically dense. The optimization of the insulation effect involves the maximization of the mass specific scattering coefficient in the wavelength range of substantial thermal radiation. Therefore, the heat transfer properties of hollow-fiber insulation materials are compared to conventional insulations made of solid fibers by means of a numerical study. This treatise concludes that thermal insulations made of hollow fibers can provide a significant reduction of heat losses in wide ranges of practical interest. In particular, by application of hollow fiber insulations the effective thermal conductivity could be lowered by a factor of two.\\ However, in connection with optimization problems of stratified scattering objects the application of the full Maxwell-scattering theory is a time consuming task. In order to locate reasonable parameter configurations in layered cylindrical media an enhanced version of the so-called anomalous diffraction approximation is presented. By comparison with the results of the exact Maxwell-scattering formulas it is shown that within the limit of moderate refractive indices the simplified theory delivers good agreement in a broad size parameter range. Even the extinction efficiency of randomly oriented stratified cylinders is reproduced astonishingly well.\\ Apart from numerical investigations the heat transfer properties of a commercial fibrous insulation material are characterized experimentally. Therefore, the optical transport parameters extinction and albedo are determined by established methods. With knowledge of the fiber diameter distribution the experimental results could be compared to the theoretical predictions of light scattering at infinite fibers. The verification of optimization measures, requires also an adequate experimental determination of thermal diffusivity or thermal conductivity, respectively. For this purpose the potential of measuring thermal diffusivity of heterogeneous materials in a temperature range above $1000^\mathrm{o}C$ by thermal wave analysis is investigated for the first time. By comparison with a coupled numerical heat transfer model and an established measurement method the feasibility of measuring thermal diffusivity at high temperatures by thermal wave analysis is demonstrated KW - Wärmeübertragung KW - Hochtemperatur-Wärmeisolation KW - high temperature thermal insulation materials KW - partizipierende Medien KW - Wärmetransport KW - keramische Fasern KW - light scattering and absorption KW - heat transfer KW - ceramic fibers KW - Keramikfaser KW - Faser KW - Hohlfaser KW - Hochtemperatur Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-157917 ER - TY - THES A1 - Dremel, Kilian T1 - Modellbildung des Messprozesses und Umsetzung eines modellbasierten iterativen Lösungsverfahrens der Schnittbild-Rekonstruktion für die Röntgen-Computertomographie T1 - Modeling of the process of measurement and development of a model-based iterative reconstruction for X-ray computed tomography N2 - In der computertomographischen Schnittbildgebung treten Artefakte, also Anteile des Ergebnisses auf, die nicht Teil des gemessenen Objekts sind und die somit die Auswertbarkeit der Ergebnisse beeinflussen. Viele dieser Artefakte sind auf die Inkonsistenz des Modells der Rekonstruktion zur Messung zurückzuführen. Gerade im Hinblick auf Artefakte durch die Energieabhängigkeit der rekonstruierten Schwächungskoeffizienten und Abweichungen der Geometrieinformation des Rekonstruktionsmodells wird häufig der Weg einer Nachbearbeitung der Messdaten beschritten, um Rekonstruktionsartefakte zu vermeiden. Im Zuge dieser Arbeit wird ein Modell der computertomographischen Aufnahme mit Konzentration auf industrielle und materialwissenschaftliche Systeme erstellt, das nicht genutzt wird um die Messdaten zu verändern, sondern um das Rekonstruktionsmodell der Aufnahmerealität anzupassen. Zunächst werden iterative Rekonstruktionsverfahren verglichen und ein passender Algorithmus ausgewählt, der die gewünschten Modifikationen des Aufnahmemodells erlaubt. Für diese Modifikationen werden bestehende Methoden erweitert und neue modellbasierte Ansätze entwickelt, die in den Rekonstruktionsablauf integriert werden können. Im verwendeten Modell werden die Abhängigkeiten der rekonstruierten Werte vom polychromatischen Röntgenspektrum in das Simulationsmodell des Rekonstruktionsprozesses eingebracht und die Geometrie von Brennfleck und Detektorelementen integriert. Es wird gezeigt, dass sich durch die verwendeten Methoden Artefakte vermeiden lassen, die auf der Energieabhängigkeit der Schwächungskoeffizienten beruhen und die Auflösung des Rekonstruktionsbildes durch Geometrieannahmen gesteigert werden kann. Neben diesen Ansätzen werden auch neue Erweiterungen der Modellierung umgesetzt und getestet. Das zur Modellierung verwendete Röntgenspektrum der Aufnahme wird im Rekonstruktionsprozess angepasst. Damit kann die benötigte Genauigkeit dieses Eingangsparameters gesenkt werden. Durch die neu geschaffene Möglichkeit zur Rekonstruktion der Kombination von Datensätzen die mit unterschiedlichen Röntgenspektren aufgenommen wurden wird es möglich neben dem Schwächungskoeffizienten die Anteile der Comptonabsorption und der photoelektrischen Absorption getrennt zu bestimmen. Um Abweichungen vom verwendeten Geometriemodell zu berücksichtigen wird eine Methode auf der Basis von Bildkorrelation implementiert und getestet, mit deren Hilfe die angenommene Aufnahmegeometrie automatisch korrigiert wird. Zudem wird in einem neuartigen Ansatz zusätzlich zur detektorinternen Streustrahlung die Objektstreustrahlung während des Rekonstruktionsprozesses deterministisch simuliert und so das Modell der Realität der Messdatenaufnahme angepasst. Die Umsetzung des daraus zusammengesetzten Rekonstruktionsmodells wird an Simulationsdatensätzen getestet und abschließend auf Messdaten angewandt, die das Potential der Methode aufzeigen. N2 - In computed tomography, parts of the result which are not features of the measured object -- so called artifacts -- occur and thus impair the evaluability of the results. Reconstruction methods require a model of the measurement. Many artifacts are induced by the inconsistency between the model of reconstruction and the measurement. Especially with regard to artifacts due to the energy dependence of the reconstructed attenuation coefficients and deviations of the geometry information of the reconstruction model, a frequently used method is the postprocessing of the measurement data to avoid reconstruction artifacts. In this thesis a model of computed tomography measurements with focus on systems used for industrial and material science purposes is developed that is not used to change the measured data, but to adapt the reconstruction model to the reality of measurement. Firstly, iterative reconstruction methods are compared and a suitable algorithm is selected that allows the desired modifications of the model. Therefore existing methods are extended and new model-based approaches are developed that can be integrated in the reconstruction process. The dependencies of the reconstructed values ??from the polychromatic X-ray spectrum are incorporated into the simulation model of the reconstruction process and the geometry of the focal spot and detector elements are integrated. Thereby artefacts caused by the energy-dependency of the attenuation coefficients are shown to be reduced and the resolution of the resulting data is shown to be increased by geometric modelling. Alongside these approaches of modeling new methods are developed and implemented. The X-ray spectrum used for the modeling is adapted during the reconstruction. Thereby the accuracy needed for this input parameter is lowered. Due to possibility of the combination of data sets scanned using different spectra the reconstruction of the Compton- and photoelectric parts of the attenuation coefficient becomes possible. To consider deviations of the geometry model used in the reconstruction a correlation-based method is implemented and tested to automatically correct these aberrations. In addition to radiation scattered within the detector, a new method is developed to simulate the object scattering during the reconstruction process and the model is therefore adapted to the reality of the measurement. The implementation of the reconstruction model composed therefrom is tested on simulation data sets and finally applied to measurement data which show the potential of the method. KW - Dreidimensionale Rekonstruktion KW - Computertomografie KW - Modellbasierte Rekonstruktion Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-157718 ER - TY - THES A1 - Fiedler, Sebastian T1 - Strukturelle und elektronische Zusammenhänge von inversionsasymmetrischen Halbleitern mit starker Spin-Bahn-Kopplung; BiTeX (X =I, Br, Cl) T1 - Structural and electronic dependencies of non-centrosymmetric semiconductors with strong spin-orbit-coupling; BiTeX (X = I, Br, Cl) N2 - Diese Arbeit befasst sich mit der Untersuchung und Manipulation von Halbleitern, bei denen die Spin-Bahn-Kopplung (SBK) in Kombination mit einem Bruch der strukturellen Inversionssymmetrie zu einer impulsabhängigen Spinaufspaltung der Bandstruktur führt. Von besonderem Interesse ist hierbei der Zusammenhang zwischen der spinabhängigen elektronischen Struktur und der strukturellen Geometrie. Dieser wird durch eine Kombination komplementärer, oberflächensensitiver Messmethoden - insbesondere Rastertunnelmikroskopie (STM) und Photoelektronenspektroskopie (PES) - an geeigneten Modellsystemen untersucht. Der experimentelle Fokus liegt dabei auf den polaren Halbleitern BiTeX (X =I, Br, Cl). Zusätzliche Experimente werden an dünnen Schichten der topologischen Isolatoren (TI) Bi1,1-xSb0;9+xSe3 (x = 0. . . 1,1) und Bi2Te2Se durchgeführt. Die inversionsasymmetrische Kristallstruktur in BiTeX führt zur Existenz zweier nicht-äquivalenter Oberflächen mit unterschiedlicher Terminierung (Te oder X) und invertierter atomarer Stapelfolge. STM-Aufnahmen der Oberflächen gespaltener Einkristalle belegen für BiTeI(0001) eine Koexistenz beider Terminierungen auf einer Längenskala von etwa 100 nm, die sich auf Stapelfehler im Kristallvolumen zurückführen lassen. Diese Domänen sind groß genug, um eine vollständig entwickelte Banddispersion auszubilden und erzeugen daher eine Kombination der Bandstrukturen beider Terminierungen bei räumlich integrierenden Messmethoden. BiTeBr(0001) und BiTeCl(0001) hingegen zeichnen sich durch homogene Terminierungen auf einer makroskopischen Längenskala aus. Atomar aufgelöste STM-Messungen zeigen für die drei Systeme unterschiedliche Defektdichten der einzelnen Lagen sowie verschiedene strukturelle Beeinflussungen durch die Halogene. PES-Messungen belegen einen starken Einfluss der Terminierung auf verschiedene Eigenschaften der Oberflächen, insbesondere auf die elektronische Bandstruktur, die Austrittsarbeit sowie auf die Wechselwirkung mit Adsorbaten. Die unterschiedliche Elektronegativität der Halogene resultiert in verschieden starken Ladungsübergängen innerhalb der kovalent-ionisch gebundenen BiTe+ X- Einheitszelle. Eine erweiterte Analyse der Oberflächeneigenschaften ist durch die Bedampfung mit Cs möglich, wobei eine Änderung der elektronischen Struktur durch die Wechselwirkung mit dem Alkalimetall studiert wird. Modifiziert man die Kristallstruktur sowie die chemische Zusammensetzung von BiTeI(0001) nahe der Oberfläche durch Heizen im Vakuum, bewirkt dies eine Veränderung der Bandstruktur in zwei Schritten. So führt zunächst der Verlust von Iod zum Verlust der Rashba-Aufspaltung, was vermutlich durch eine Aufhebung der Inversionsasymmetrie in der Einheitszelle verursacht wird. Anschließend bildet sich eine neue Kristallstruktur, die topologisch nichttriviale Oberflächenzustände hervorbringt. Der Umordnungsprozess betrifft allerdings nur die Kristalloberfläche - im Volumen bleibt die inversionsasymmetrische Einheitszelle erhalten. Einem derartigen Hybridsystem werden bislang unbekannte elektronische Eigenschaften vorausgesagt. Eine systematische Untersuchung von Dünnschicht-TIs, die mittels Molekularstrahlepitaxie (MBE) erzeugt wurden, zeigt eine Veränderung der Morphologie und elektronischen Struktur in Abhängigkeit von Stöchiometrie und Substrat. Der Vergleich zwischen MBE und gewachsenen Einkristallen offenbart deutliche Unterschiede. Bei einem der Dünnschichtsysteme tritt sogar eine lokal inhomogene Zustandsdichte im Bindungsenergiebereich des topologischen Oberflächenzustands auf. N2 - This thesis is about the analysis and manipulation of semiconductor surfaces, for which Spin-Orbit-Coupling (SOC) in combination with a break of structural symmetry leads to a k-dependent spin separation in the electronic structure. Therefore, the relation between the spin-dependent electronic structure and the atomic geometry is of particular interest. Suitable model systems have been investigated by a combination of complementary surface-sensitive measuring methods, e.g. Scanning Tunneling Microscopy (STM) and Photoelectron Spectroscopy (PES). In this work, the main experimental focus is on the BiTeX (X =I, Br, Cl) polar semiconductors. Additional experiments have been carried out on thin films of topological insulators (TI) Bi1,1-xSb0,9+xSe3 (X = 0. . . 1.1) and Bi2Te2Se. The non-centrosymmetric crystal structure of BiTeX results in two non-equivalent surfaces with different terminations (Te or X) and inverted layer structure. STM measurements of the surface of cleaved single crystals show a coexistence of both terminations for BiTeI(0001) on a length scale of around 100 nm, which is caused by bulk stacking faults. These domains are large enough to show a fully developed band dispersion and therefore yield a combined band structure of both terminations when investigated with spatially integrating methods. By contrast, BiTeBr(0001) and BiTeCl(0001) show homogeneous terminations on a macroscopic scale. Atomically resolved STM measurements on each of the three systems reveal different defect densities for each of the atomic layers as well as different structural influences of the halogens. PES measurements show a strong influence of the termination on several surface properties, e.g. electronic band structure, work function and absorbate interaction. The different electronegativities of the halogens result in a varying degree of charge transfer within the covalently-ionically bonded BiTe+ X- unit cell. A more detailed study of the surface properties has been facilitated by Cs deposition and the subsequent investigation of alterations of the electronic structure resulting from interactions with the alkali metal. A surface modification of the crystal structure and chemical properties of BiTeI(0001) by vacuum annealing results in a variation of the band structure in two steps. At first, the loss of I causes a disappearance of the Rashba-splitting, which might be caused by the loss of non-centrosymmetry of the unit cell. In a second step, a new unit cell forms at the surface, which generates non-trivial topological surface states. This reordering only affects the surface while the unit cells of the crystal bulk remain non-centrosymmetric. Hybrid systems like this are expected to exhibit novel electronic properties. A systematic analysis of thin _lm TIs grown by molecular beam epitaxy (MBE) shows changes in morphology and electronic structure as a function of stoichiometry and substrate. The comparison of MBE and grown single crystals reveals a considerable difference between sample properties. One particular system even shows a locally inhomogeneous density of states within the binding energy regime of the topological surface state. KW - Rashba-Effekt KW - Inversionsasymmetrische Halbleiter KW - Polarer Halbleiter KW - Spin-Bahn-Wechselwirkung KW - Rastertunnelmikroskopie KW - Photoelektronenspektroskopie KW - BiTeI KW - BiTeBr KW - BiTeCl KW - Spin-Bahn-Kopplung Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-155624 ER - TY - THES A1 - Swimm, Katrin T1 - Experimentelle und theoretische Untersuchungen zur gasdruckabhängigen Wärmeleitfähigkeit von porösen Materialien T1 - Experimental and theoretical investigations on the gas-pressure dependent thermal conductivity of porous materials N2 - Als Wärmedämmstoffe werden üblicherweise makroporöse Stoffsysteme wie Schäume, Pul-verschüttungen, Faservliese und – wolle eingesetzt. Zusätzlich finden mikro- und mesoporöse Dämmstoffe wie Aerogele Anwendung. Um effiziente Wärmedämmstoffe entwickeln zu können, muss der Gesamtwärmetransport in porösen Materialien verstanden werden. Die ein-zelnen Wärmetransport-Mechanismen Festkörperwärmeleitung, Gaswärmeleitung und Wärme-strahlung können zuverlässig analytisch beschrieben werden. Bei manchen porösen Materialien liefert jedoch auch eine Wechselwirkung zwischen den verschiedenen Wärmetransport-Mechanismen, d.h. die Kopplung von Festkörper- und Gaswärmeleitung, einen hohen Beitrag zur Gesamtwärmeleitfähigkeit. Wie hoch dieser Kopplungseffekt bei einer bestimmten Probe ausfällt, kann bisher schwer abgeschätzt werden. Um den Kopplungseffekt von Festkörper- und Gaswärmeleitung besser zu verstehen, sind sowohl experimentelle als auch theoretische Untersuchungen an verschiedenen porösen Stoffsystemen erforderlich. Zusätzlich kann ein zuverlässiges theoretisches Modell dazu beitragen, die mittlere Porengröße von porösen Mate-rialien zerstörungsfrei anhand von gasdruckabhängigen Wärmeleitfähigkeitsmessungen zu bestimmen. Als Modellsystem für die experimentellen Untersuchungen wurde der hochporöse Feststoff Aerogel verwendet, da seine strukturellen Eigenschaften wie Porengröße und Dichte während der Synthese gut eingestellt werden können. Es wurden Resorcin-Formaldehyd-Aerogele mit mittleren Porengrößen von etwa 600 nm, 1 µm und 8 µm sowie daraus mittels Pyrolyse abge-leitete Kohlenstoff-Aerogele synthetisiert und jeweils hinsichtlich ihrer Struktur und Wärme-leitfähigkeiten experimentell charakterisiert. Die Gesamtwärmeleitfähigkeiten dieser Aerogele wurden für verschiedene Gasatmosphären (Kohlenstoffdioxid, Argon, Stickstoff und Helium) in Abhängigkeit vom Gasdruck durch das Hitzdraht-Verfahren bestimmt. Hierfür wurde der Messbereich der Hitzdraht-Apparatur des ZAE Bayern mittels einer Druckzelle auf 10 MPa erweitert. Die Messergebnisse zeigen, dass bei allen Aerogel-Proben Festkörper- und Gaswär-meleitung einen deutlichen Kopplungsbeitrag liefern: Die gemessenen gasdruckabhängigen Wärmeleitfähigkeiten sind um Faktor 1,3 bis 3,3 höher als die entsprechenden reinen Gas-wärmeleitfähigkeiten. Die jeweilige Höhe hängt sowohl vom verwendeten Gas (Gaswärmeleitfähigkeit) als auch vom Aerogeltyp (Festkörperwärmeleitfähigkeit und Festkörperstruktur) ab. Ein stark vernetzter Festkörper verursacht beispielsweise einen niedrigeren Kopplungsbei-trag als ein weniger stark vernetzter Festkörper. Andererseits wurde die gasdruckabhängige Wärmeleitfähigkeit von Melaminharzschaum – einem flexiblen, offenporigen und hochporösen Material – in einer evakuierbaren Zwei-Plattenapparatur unter Stickstoff-Atmosphäre bestimmt. Das Material zeichnet sich dadurch aus, dass die Addition der Einzelwärmeleitfähigkeiten gut erfüllt ist, d.h. kein Kopplungsef-fekt auftritt. Allerdings konnte gezeigt werden, dass die gestauchte und damit unregelmäßige Struktur von Melaminharzschaum die Kopplung von Festkörper- und Gaswärmeleitung deut-lich begünstigt. Je stärker die Melaminharzschaumprobe komprimiert wird, umso stärker fällt der Kopplungseffekt aus. Bei einer Kompression um 84 % ist beispielsweise die gemessene gasdruckabhängige Wärmeleitfähigkeit bei 0,1 MPa um ca. 17 % gegenüber der effektiven Wärmeleitfähigkeit von freiem Stickstoff erhöht. Die experimentellen Untersuchungen wurden durch theoretische Betrachtungen ergänzt. Zum einen wurde die Kopplung von Festkörper- und Gaswärmeleitung anhand einer Serienschal-tung der thermischen Widerstände von Festkörper- und Gasphase dargestellt, um die Abhän-gigkeit von verschiedenen Parametern zu untersuchen. Dadurch konnte gezeigt werden, dass der Kopplungsterm stets von den Verhältnissen aus Festkörper- und Gaswärmeleitfähigkeit sowie aus den geometrischen Parametern beider Phasen abhängt. Des Weiteren wurden mit dem Computerprogramm HEAT2 Finite-Differenzen-Simulationen an Modellstrukturen durchgeführt, die für poröse Stoffsysteme, insbesondere Aerogel, charakteristisch sind (Stege, Hälse, Windungen und tote Enden). Die simulierten gasdruckabhängigen Wärmeleitfähigkeiten zeigen deutlich, dass die Festkörperstruktur mit der geringsten Vernetzung, d.h. das tote Ende, am meisten zur Kopplung von Festkörper- und Gaswärmeleitung beiträgt. Dies korre-liert mit den experimentellen Ergebnissen. Darüber hinaus kann man erkennen, dass die Ge-samtwärmeleitfähigkeit eines schlecht vernetzten porösen Systems, wo also ein hoher Kopp-lungseffekt (Serienschaltung) auftritt, niemals größer wird als die eines gut vernetzten Sys-tems mit gleicher Porosität, wo hauptsächlich paralleler Wärmetransport durch beide Phasen stattfindet. Schließlich wurden drei Modelle entwickelt bzw. modifiziert, um die gasdruckabhängige Wärmeleitfähigkeit von porösen Stoffsystemen theoretisch beschreiben zu können. Zunächst wurde ein für Kugelschüttungen entwickeltes Modell für Aerogel angepasst, d.h. Kopplung von Festkörper- und Gaswärmeleitung wurde nur in den Lücken zwischen zwei benachbarten Partikeln berücksichtigt. Ein Vergleich mit den Messkurven zeigt, dass der ermittelte Kopplungsterm zu gering ausfällt. Daher wurde ein bereits existierendes Aerogelmodell mit kubischer Einheitszelle, welches zusätzlich Kopplung zwischen den einzelnen Partikelsträngen beinhaltet, verbessert. Auch dieses Modell liefert keine zufriedenstellende Übereinstimmung mit den Messwerten, denn der Kopplungsbeitrag wird immer noch unterschätzt. Das liegt daran, dass die gewählte regelmäßige kubische Struktur für Aerogel zu ungenau ist. So geht bei der Berechnung des Kopplungsterms der bereits erwähnte hohe Beitrag durch tote Enden (und auch Windungen) verloren. Erfahrungsgemäß können jedoch alle für Aerogel erhaltenen gasdruckabhängigen Messkurven mit dem sogenannten Skalierungsmodell relativ gut beschrieben werden. Das entspricht dem Knudsen-Modell für reine Gaswärmeleitung, welches mit einem konstanten Faktor skaliert wird. Die Anwendung dieses einfachen Modells auf die Messdaten hat gezeigt, dass die Akkommodationskoeffizienten von Helium in Aerogel deut-lich höher sind als die Literaturwerte (ca. 0,3 auf Metalloberflächen): In den vermessenen RF- und Kohlenstoff-Aerogelen lassen sich Akkommodationskoeffizienten nahe 1 für Helium ab-leiten. Darüber hinaus ist das Skalierungsmodell gut geeignet, die mittleren Porengrößen poröser Materialien zuverlässig aus gasdruckabhängig gemessenen Wärmeleitfähigkeitskurven zu bestimmen. Dies stellt somit eine unkomplizierte und zerstörungsfreie Charakterisierungsmethode dar. N2 - Common thermal insulation materials are macro porous material systems such as foams, powders, fleeces and fibers. Additionally, micro and meso porous thermal insulations such as aerogels are employed. In order to further optimize thermal insulation materials, the total heat transfer in porous materials has to be quantified. The individual heat transfer mechanisms solid thermal conduction, gaseous thermal conduction and thermal radiation can be described reliably by analytic models. But for some porous materials an interaction of the different heat transfer mechanisms, i.e. coupling of solid and gaseous thermal conduction, occurs and can contribute significantly to the total effective thermal conductivity. So far, it is hard to predict the amount of this coupling contribution for a certain sample. For a better understanding of the coupling effect of solid and gaesous thermal conduction, both experimental and theoretical investigations on different porous material systems are required. Additionally, a reliable theoretical model can help to determine the mean pore size of porous materials in a nonde-structive way from gas-pressure dependent thermal conductivity measurements. Highly porous aerogel was used as model system for the experimental investigations, because its structural properties such as pore size and density can be adapted relatively well during synthesis. Resorcinol formaldehyde aerogels with mean pore sizes of about 600 nm, 1 µm and 8 µm as well as corresponding carbon aerogels obtained by pyrolysis were synthesized and experimentally characterized regarding their structural and thermal properties. Their total ef-fective thermal conductivities were determined by means of hot-wire measurements in different gas atmospheres (carbon dioxide, argon, nitrogen and helium) as a function of gas pressure. For this purpose, the measurement range of the hot-wire apparatus at ZAE Bayern was extended up to 10 MPa using a pressure chamber. The measurement results show that in all aerogel samples an obvious amount of coupling between solid and gaseous thermal conduction occurs: The gas-pressure dependent thermal contributions measured are by a factor of 1.3 to 3.3 higher than the corresponding pure gaseous thermal conductivities, depending on the pore gas (gaseous thermal conductivity) and the kind of aerogel (solid thermal conductivity and solid backbone structure). For example, a strongly connected solid phase causes a lower cou-pling contribution than a loosely connected one. On the other hand, the gas-pressure dependent thermal conductivity of melamine resin foam – a flexible and highly porous material with open pores – was determined with an evacuable guarded hot-plate apparatus in a nitrogen atmosphere. For this kind of material the simple ad-dition of the individual thermal conductivities is observed, i.e. no coupling occurs for standard conditions. However, if compressed, the structure of melamine resin foam becomes irregular and coupling of solid and gaseous thermal conduction occurs. The more the melamine resin foam sample is compressed, the stronger is the coupling effect. For example, the measured gas-pressure dependent thermal coductivity belonging to a compression by 84 % exceeds the effective thermal conductivity of free nitrogen by about 17 % at 0.1 MPa. The experimental investigations were supplemented by theoretical considerations. First of all, coupling of solid and gaseous thermal conduction was described by means of a series connec-tion of the thermal resistances of the solid and the gas phase, in order to examine the depend-ence on different parameters. This investigation shows, that the coupling term depends on the ratios of solid and gaseous thermal conductivity as well as of the geometrical parameters in both phases. Furthermore, with the computer program HEAT2, finite difference calculations were performed for model structures that are characteristic of porous material systems, espe-cially aerogel (struts, necks, torsions and dead ends). The simulated gas-pressure dependent thermal conductivity data show clearly, that the solid backbone structure with the weakest connectivity, i.e. the dead end, causes the highest amount of coupling between solid and gas-eous thermal conduction. This agrees with the experimental results. Moreover, it was found that the total effective thermal conductivity of a weakly connected porous system, where a high coupling effect (serial connection) occurs, never becomes larger than that of a well-connected system with the same porosity, where the heat transfer in both phases happens mostly in parallel. Finally, three models were developed or rather modified, in order to be able to describe the gas-pressure dependent thermal conductivity of porous material systems theoretically. At first, a model originally developed for packed beds of spherical particles was adapted to aerogel, i.e. coupling of solid and gaseous thermal conduction was only taken into account for the gaps between two adjacent particles. Comparison with the experimental curves shows that the coupling term calculated is too low. Therefore, an already existing aerogel model with a cubic unit cell, which includes additional coupling between the individual particle strings, was improved. The agreement of this model with the measurement curves is also very poor, because the cou-pling contribution is still underrated. This is due to the chosen regular cubic structure being too imprecise for irregularly formed aerogel backbones. Thus, when calculating the coupling term, the above-mentioned high contribution due to dead ends (and also torsions) gets lost. Empiri-cally however, all gas-pressure dependent measurement curves received for aerogel, can be described relatively well by the so-called scaling model. This is Knudsen’s model for pure gaseous thermal conduction scaled with a constant factor. The application of this simple model to the experimental data shows that the accommodation coefficients of helium in aerogel are significantly higher than the literature values (around 0.3 on metal surfaces): Within the RF and carbon aerogels investigated accommodation coefficients close to 1 can be derived for helium. Moreover, the scaling model is suitable for a reliable determination of the mean pore sizes of porous materials from gas-pressure dependent thermal conductivity data. Therefore, a straightforward and nondestructive characterization method was found. KW - Wärmeleitfähigkeit KW - Gasdruck KW - Poröser Stoff KW - Kopplung von Festkörper- und Gaswärmeleitung KW - Porengröße KW - coupling of gaseous and solid thermal conduction KW - pore size KW - Aerogel KW - Hitzdrahtverfahren Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-153887 ER - TY - THES A1 - Maier, Sebastian T1 - Quantenpunktbasierte Einzelphotonenquellen und Licht-Materie-Schnittstellen T1 - Quantum dot based single photon sources and light-matter-interfaces N2 - Die Quanteninformationstechnologie ist ein Schwerpunkt intensiver weltweiter Forschungsarbeit, da sie Lösungen für aktuelle globale Probleme verspricht. So bietet die Quantenkommunikation (QKD, engl. quantum key distribution) absolut abhörsichere Kommunikationsprotokolle und könnte, mit der Realisierung von Quantenrepeatern, auch über große Distanzen zum Einsatz kommen. Quantencomputer (engl. quantum computing) könnten von Nutzen sein, um sehr schwierige und komplexe mathematische Probleme schneller zu lösen. Ein grundlegender kritischer Baustein der gesamten halbleiterbasierten Quanteninformationsverarbeitung (QIP, engl. quantum information processing) ist die Bereitstellung von Proben, die einerseits die geforderten physikalischen Eigenschaften aufweisen und andererseits den Anforderungen der komplexen Messtechnik genügen, um die Quanteneigenschaften nachzuweisen und technologisch nutzbar machen zu können. In halbleiterbasierten Ansätzen haben sich Quantenpunkte als sehr vielversprechende Kandidaten für diese Experimente etabliert. Halbleiterquantenpunkte weisen große Ähnlichkeiten zu einzelnen Atomen auf, die sich durch diskrete Energieniveaus und diskrete Spektrallinien im Emissionsspektrum manifestieren, und zeichnen sich überdies als exzellente Emitter für einzelne und ununterscheidbare Photonen aus. Außerdem können mit Quantenpunkten zwei kritische Bausteine in der Quanteninformationstechnologie abgedeckt werden. So können stationäre Quantenbits (Qubits) in Form von Elektronenspinzuständen gespeichert werden und mittels Spin-Photon-Verschränkung weit entfernte stationäre Qubits über fliegende photonische Qubits verschränkt werden. Die Herstellung und Charakterisierung von quantenpunktbasierten Halbleiterproben, die sich durch definierte Eigenschaften für Experimente in der QIP auszeichnen, steht im Mittelpunkt der vorliegenden Arbeit. Die Basis für das Probenwachstum bildet dabei das Materialsystem von selbstorganisierten In(Ga)As-Quantenpunkten auf GaAs-Substraten. Die Herstellung der Quantenpunktproben mittels Molekularstrahlepitaxie ermöglicht höchste kristalline Qualitäten und bietet die Möglichkeit, die Quantenemitter in photonische Resonatoren zu integrieren. Dadurch kann die Lichtauskoppeleffizienz stark erhöht und die Emission durch Effekte der Licht-Materie-Wechselwirkung verstärkt werden. Vor diesem Hintergrund wurden in der vorliegenden Arbeit verschiedene In(Ga)As-Quantenpunktproben mit definierten Anforderungen mittels Molekularstrahlepitaxie hergestellt und deren morphologische und optische Eigenschaften untersucht. Für die Charakterisierung der Morphologie kamen Rasterelektronen- und Rasterkraftmikroskopie zum Einsatz. Die optischen Eigenschaften wurden mit Hilfe der Reflektions-, Photolumineszenz- und Resonanzfluoreszenz-Spektroskopie sowie Autokorrelationsmessungen zweiter Ordnung ermittelt. Der Experimentalteil der Arbeit ist in drei Kapitel unterteilt, deren Kerninhalte im Folgenden kurz wiedergegeben werden. Quasi-Planare Einzelphotonenquelle mit hoher Extraktionseffizienz: Planare quantenpunktbasierte Einzelphotonenquellen mit hoher Extraktionseffizienz sind für Experimente zur Spinmanipulation von herausragender Bedeutung. Elektronen- und Lochspins haben sich als gute Kandidaten erwiesen, um gezielt einzelne Elektronenspins zu initialisieren, manipulieren und zu messen. Ein einzelner Quantenpunkt muss einfach geladen sein, damit er im Voigt-Magnetfeld ein λ-System bilden kann, welches die grundlegende Konfiguration für Experimente dieser Art darstellt. Wichtig sind hier einerseits eine stabile Spinkonfiguration mit langer Kohärenzzeit und andererseits hohe Lichtauskoppeleffizienzen. Quantenpunkte in planaren Mikrokavitäten weisen größere Werte für die Spindephasierungszeit auf als Mikro- und Nanotürmchenresonatoren, dagegen ist bei planaren Proben die Lichtauskoppeleffizienz geringer. In diesem Kapitel wird eine quasi-planare quantenpunktbasierte Quelle für einzelne (g(2)(0)=0,023) und ununterscheidbare Photonen (g(2)indist (0)=0,17) mit hoher Reinheit vorgestellt. Die Quantenpunktemission weist eine sehr hohe Intensität und optische Qualität mit Halbwertsbreiten nahe der natürlichen Linienbreite auf. Die Auskoppeleffizienz wurde zu 42% für reine Einzelphotonenemission bestimmt und übersteigt damit die, für eine planare Resonatorstruktur erwartete, Extraktionseffizienz (33%) deutlich. Als Grund hierfür konnte die Kopplung der Photonenemission an Gallium-induzierte, Gauß-artige Defektstrukturen ausgemacht werden. Mithilfe morphologischer Untersuchungen und Simulationen wurde gezeigt, dass diese Defektkavitäten einerseits als Nukleationszentren für das Quantenpunktwachstum dienen und andererseits die Extraktion des emittierten Lichts der darunterliegenden Quantenpunkte durch Lichtbündelung verbessern. In weiterführenden Arbeiten konnte an dieser spezifischen Probe der fundamentale Effekt der Verschränkung von Elektronenspin und Photon nachgewiesen werden, der einen kritischen Baustein für halbleiterbasierte Quantenrepeater darstellt. Im Rahmen dieses Experiments war es möglich, die komplette Tomographie eines verschränkten Spin-Photon-Paares an einer halbleiterbasierten Spin-Photon Schnittstelle zu messen. Überdies konnte Zweiphotoneninterferenz und Ununterscheidbarkeit von Photonen aus zwei räumlich getrennten Quantenpunkten auf diesem Wafer gemessen werden, was ebenfalls einen kritischen Baustein für Quantenrepeater darstellt. Gekoppeltes Quantenfilm-Quantenpunkt System: Weitere Herausforderungen für optisch kontrollierte halbleiterbasierte Spin-Qubit-Systeme sind das schnelle und zerstörungsfreie Auslesen der Spin-Information sowie die Implementierung eines skalierbaren Ein-Qubit- und Zwei-Qubit-Gatters. Ein kürzlich veröffentlichtes theoretisches Konzept könnte hierzu einen eleganten Weg eröffnen: Hierbei wird die spinabhängige Austauschwechselwirkung zwischen einem Elektron-Spin in einem Quantenpunkt und einem Exziton-Polariton-Gas, welches in einem nahegelegenen Quantenfilm eingebettet ist, ausgenützt. So könnte die Spin-Information zerstörungsfrei ausgelesen werden und eine skalierbare Wechselwirkung zwischen zwei Qubits über größere Distanzen ermöglicht werden, da sich die Wellenfunktion von Exziton-Polaritonen, abhängig von der Güte des Mikroresonators, über mehrere μm ausdehnen kann. Dies und weitere mögliche Anwendungen machen das gekoppelte Quantenfilm-Quantenpunkt System sehr interessant, weshalb eine grundlegende experimentelle Untersuchung dieses Systems wünschenswert ist. In Zusammenarbeit mit der Arbeitsgruppe um Yoshihisa Yamamoto an der Universität Stanford, wurde hierzu ein konkretes Probendesign entwickelt und im Rahmen dieser Arbeit technologisch verwirklicht. Durch systematische epitaktische Optimierung ist es gelungen, ein gekoppeltes Quantenfilm-Quantenpunkt System erfolgreich in einen Mikroresonator zu implementierten. Das Exziton-Polariton-Gas konnte mittels eines Quantenfilms in starker Kopplung in einer Mikrokavität mit einer Rabi-Aufspaltung von VR=2,5 meV verwirklicht werden. Zudem konnten einfach geladene Quantenpunkte mit hoher optischer Qualität und klarem Einzelphotonencharakter (g(2)(0)=0,24) in unmittelbarer Nähe zum Quantenfilm gemessen werden. Positionierte Quantenpunkte: Für die Herstellung quantenpunktbasierter Einzelphotonenquellen mit hoher optischer Qualität ist eine skalierbare technologische Produktionsplattform wünschenswert. Dazu müssen einzelne Quantenpunkte positionierbar und somit deterministisch und skalierbar in Bauteile integriert werden können. Basierend auf zweidimensionalen, regelmäßig angeordneten und dadurch adressierbaren Quantenpunkten gibt es zudem ein Konzept, um ein skalierbares, optisch kontrolliertes Zwei-Qubit-Gatter zu realisieren. Das hier verfolgte Prinzip für die Positionierung von Quantenpunkten beruht auf der Verwendung von vorstrukturierten Substraten mit geätzten Nanolöchern, welche als Nukleationszentren für das Quantenpunktwachstum dienen. Durch eine optimierte Schichtstruktur und eine erhöhte Lichtauskopplung unter Verwendung eines dielektrischen Spiegels konnte erstmals Resonanzfluoreszenz an einem positionierten Quantenpunkt gemessen werden. In einem weiteren Optimierungsansatz konnte außerdem Emission von positionierten InGaAs Quantenpunkten auf GaAs Substrat bei 1,3 μm Telekommunikationswellenlänge erreicht werden. N2 - Quantum information technology is in the focus of worldwide intensive research, because of its promising solutions for current global problems. With tap-proofed communication protocols, the field of quantum key distribution (QKD) could revolutionize the broadcast of sensitive data and would be also available for large distance communication with the realization of quantum repeater systems. Quantum computing could be used to dramatically fasten the solution of difficult and complex mathematical problems. A critical building block of solid state based quantum information processing (QIP) is the allocation of semiconductor samples, which on the one side provide the desired quantum mechanical features and on the other side satisfy the requirements of the complex non-demolition measurement techniques. Semiconductor quantum dots are very promising candidates in solid state based approaches as they act like artificial atoms manifesting in discrete emission lines. They are excellent emitters of single and indistinguishable photons. Moreover they can save quantum information in stationary quantum bits (qubits) as electron spins and emit flying photonic qubits to entangle remote qubits via spin-photon entanglement. The fabrication and characterization of quantum dot based semiconductor samples, which serve as a basic building block for experiments in the field of QIP with pre-defined physical features, are in focus of the present thesis. The basic material system consists of In(Ga)As quantum dots on GaAs substrates. The growth of quantum dot based semiconductor samples via molecular beam epitaxy offers highest crystal quality and the possibility to integrate the quantum emitters in photonic resonators, which improve the light outcoupling efficiency and enhance the emission by light-matter-coupling effects. Against this background this thesis focusses on the preparation and characterization of different In(Ga)As based quantum dot samples. Morphologic properties were characterized via scannnig electron microscopy or atomic force microscopy. The characterization of optical properties was performed by spectroscopy of the reflectance, photoluminescence and resonance fluorescence signal as well as measurements of the second order correlation function. The main part is divided in three chapters which are briefly summarized below. Quasi-planar single photon source with high extraction efficiency: Planar quantum dot based highly efficient single photon sources are of great importance, as quantum dot electron and hole spins turned out to be promising candidates for spin manipulation experiments. To be able to intialize, manipulate and measure single electron spins, the quantum dots have to be charged with a single electron and build up a λ-system in a magnetic field in Voigt geometry. It is important that on the one side the spin configuration is stable, comprising a long spin coherence time and on the other side that the photon outcoupling efficiency is high enough for measurements. Quantum dots in planar microcavities have large spin coherence times but rather weak outcoupling efficiencies compared to micro- or nanopillar resonators. In this chapter a quasi-planar quantum dot based source for single (g(2)(0)=0,023) and indistinguishable photons (g(2)indist (0)=0,17) with a high purity is presented. This planar asymmetric microcavity doesn`t have any open surfaces in close proximity to the active layer, so that the spin dephasing is minimalized. The optical quality of the quantum dots is very high with emission linewidths near the natural linewidth of a quantum dot. Additionally the single photon source shows a high outcoupling efficiency of 42% which exceeds the outcoupling of a regular planar resonator (33%). This high extraction efficiency can be attributed to the coupling of the photon emission to Gallium-induced, Gaussian-shaped nanohill defects. Morphologic investigations and simulations show, that these defect cavity structures serve as nucleation centers during quantum dot growth and increase the outcoupling efficiency by lensing effects. In further experiments on this specific sample, entanglement of an electron spin and a photon was demonstrated, which is a critical building block for semiconductor based quantum repeaters. In this context also the full tomography of a polarization-entangled spin-photon-pair was measured with a surprisingly high fidelity. Moreover two photon interference and indistinguishability of two photons from remote quantum dots of this wafer was measured, which also constitutes a critical building block for quantum repeaters. Coupled quantum well - quantum dot system: Further challenges for optical controlled spin-qubit systems are fast readout of the quantum information with high fidelity and the implementation of a scalable one- and two-qubit gate. Therefore a proposal was adapted which is based on the coupling of an electron spin in a quantum dot to a gas of exciton-polaritons, formed in a quantum well in close proximity of the quantum dot. In cooperation with Yoshihisa Yamamoto's group from the Stanford University, a sample structure was designed and technologically realized as part of this thesis, to study the fundamental physical properties of this coupled system. By systematic epitactical improvement, a coupled quantum well-quantum dot system could successfully be implemented in a microresonator. The exciton-polariton gas was realized in a quantum well which is strongly coupled to a microcavity with a Rabi splitting of VR=2,5 meV. Although the distance to the quantum well is only a few nm, charged quantum dots with high optical quality and clear single photon emission character (g(2)(0)=0,24) could be measured. Site-controlled quantum dots: A scalable technological platform for bright sources of quantum light is highly desirable. Site-controlled quantum dots with high optical quality are very promising candidates to realize such a system. This concept offers the possibility to integrate single quantum dots in devices in a deterministic and scalable way and furthermore provides sample structures with a regular two dimensional array of site-controlled quantum dots to realize concepts for optically controlled two-qubits gates. The method to position the quantum dots used in this thesis is based on etched nanoholes in pre-patterned substrates, which serve as nucleation centers during the quantum dot growth process. An optimized layer structure and an increased light outcoupling efficiency using a dielectric mirror allowed the first measurement of resonance fluorescence on site-controlled quantum dots. In a further optimized design, emission of positioned quantum dots at 1,3 μm telecommunication wavelength was demonstrated for the first time for InGaAs quantum dots on GaAs substrates. KW - Quantenpunkt KW - Drei-Fünf-Halbleiter KW - Molekularstrahlepitaxie KW - Einzelphotonenemission KW - Photolumineszenzspektroskopie KW - InAs/GaAs Quantenpunkte KW - Positionierte Quantenpunkte KW - InAs/GaAs quantum dots KW - site-controlled quantum dots Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-152972 ER - TY - THES A1 - Stender, Benedikt T1 - Einzelphotonenemitter und ihre Wechselwirkung mit Ladungsträgern in organischen Leuchtdioden T1 - Single Photon Emitters and their Interaction with Charge Carriers inside Organic Light Emitting Eiodes N2 - In dieser Arbeit wird die Photophysik von Einzelphotonenemittern unterschiedlicher Materialklassen, wie Fehlstellen in Diamant und Siliziumcarbid sowie organischer Moleküle bei Raumtemperatur untersucht. Zu diesem Zweck wurde ein hochauflösendes konfokales Mikroskop konzipiert und konstruiert, welches die optische Detektion einzelner Quantensysteme ermöglicht. Zusätzlich werden verschiedene Methoden wie die Rotationsbeschichtung, das Inkjet-Printing und das Inkjet-Etching in Bezug auf die Reproduzierbarkeit und Strukturierbarkeit von organischen Leuchtdioden (OLEDs) verglichen. Im weiteren Verlauf werden die optoelektronischen Prozesse in dotierten OLEDs untersucht, ausgehend von hohen Dotierkonzentrationen bis hin zur Dotierung mit einzelnen Molekülen. Dadurch kann die Exzitonen-Ladungsträger Wechselwirkung auf und in der Umgebung von räumlich isolierten Molekülen analysiert werden. N2 - In this work the room-temperature photophysics of single-photon sources of different material systems such as NV-centers, vacancies in silicon carbide and organic molecules are investigated. A high resolution home-built confocal microscope is used to detect and analyse the isolated single quantum emitters. Additionally, different methods and techniques for production of organic light emitting diodes (OLEDs) such as spin-coating, inkjet-printing and inkjet-etching are compared concerning their reproducibility and feasibility for structured OLED preparation. Subsequently, the opto-electronic processes in dye-doped polymeric OLEDs are examined for various doping concentrations ranging from high concentrations down to the doping by single molecules. This provides access to the investigation of the exciton-charge carrier interaction of single organic molecules in organic matrices. KW - Einzelphotonenquelle KW - Konfokale Mikroskopie KW - OLED KW - Single Photon Sources KW - confocal microscopy KW - Einzelphotonenemission KW - Konfokale Mikroskopie KW - OLED KW - Ladungsträger Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-150913 ER - TY - THES A1 - Breuer [geb. Hemberger], Kathrin R. F. T1 - Effiziente 3D Magnetresonanzbildgebung schnell abfallender Signale T1 - Efficient 3D Magnetic Resonance Imaging of fast decaying signals N2 - In der vorliegenden Arbeit wird die Rotated-Cone-UTE-Sequenz (RC-UTE), eine 3D k-Raum-Auslesetechnik mit homogener Verteilung der Abtastdichte, vorgestellt. Diese 3D MR-Messtechnik ermöglicht die für die Detektion von schnell abfallenden Signalen notwendigen kurzen Echozeiten und weist eine höhere SNR-Effizienz als konventionelle radiale Pulssequenzen auf. Die Abtastdichte ist dabei in radialer und azimutaler Richtung angepasst. Simulationen und Messungen in vivo zeigen, dass die radiale Anpassung das T2-Blurring reduziert und die SNR-Effizienz erhöht. Die Drehung der Trajektorie in azimutale Richtung ermöglicht die Reduzierung der Unterabtastung bei gleicher Messzeit bzw. eine Reduzierung der Messzeit ohne Auflösungsverlust. Die RC-UTE-Sequenz wurde erfolgreich für die Bildgebung des Signals des kortikalen Knochens und der Lunge in vivo angewendet. Im Vergleich mit der grundlegenden UTE-Sequenz wurden die Vorteile von RC-UTE in allen Anwendungsbeispielen aufgezeigt. Die transversalen Relaxationszeit T2* des kortikalen Knochen bei einer Feldstärke von 3.0T und der Lunge bei 1.5T und 3.0T wurde in 3D isotroper Auflösung gemessen. Außerdem wurde die Kombination von RC-UTE-Sequenz mit Methoden der Magnetisierungspräparation zur besseren Kontrasterzeugung gezeigt. Dabei wurden die Doppel-Echo-Methode, die Unterdrückung von Komponenten mit langer Relaxationszeit T2 durch Inversionspulse und der Magnetisierungstransfer-Kontrast angewendet. Die Verwendung der RC-UTE-Sequenz für die 3D funktionelle Lungenbildgebung wird ebenfalls vorgestellt. Mit dem Ziel der umfassenden Charakterisierung der Lungenfunktion in 3D wurde die simultane Messung T1-gewichteter Bilder und quantitativer T2*-Karten für verschiedene Atemzustände an sechs Probanden durchgeführt. Mit der hier vorgestellten Methode kann die Lungenfunktion in 3D über T1-Wichtung, quantitative T2*-Messung und Rekonstruktion verschiedener Atemzustände durch Darstellung von Ventilation, Sauerstofftransport und Volumenänderung beurteilt werden. N2 - In this thesis the Rotated-Cone-UTE-sequence (RC-UTE), a 3D k- space sampling scheme with uniform sampling density, is presented. 3D RC-UTE provides short echo times enabling the detection of fast decaying signals with higher SNR-efficiency than conventional UTE sequences. In RC-UTE the sampling density is adapted in radial and azimuthal direction. It is shown in simulations and measurements that the density adaption along the radial dimension reduces T2-blurring. By twisting the trajectory along the azimuthal direction fewer projections are needed to fulfill the Nyquist criterion. Thereby, undersampling artefacts or the measurement time is reduced without loss of resolution. RC-UTE has been successfully applied in vivo in cortical bone and the lung. It was shown that the RC-UTE sequence outperforms the standard UTE sequence in all presented applications. In addition, the transversal relaxation time T2* of cortical bone at field strength of 3.0T and the human lung at 1.5T und 3.0T was measured in 3D isotropic resolution. Moreover, the combination of RC-UTE with magnetization preparation techniques for improved image contrast was shown. To this end strategies such as double-echo readout, long T2 suppression by inversion pulses and magnetization transfer contrast imaging were employed. Furthermore, the application of RC-UTE for 3D functional lung imaging is presented. In order to provide broad information about pulmonary function T1-weighted images and quantitative T2*-maps in different breathing states were simultaneously measured in six healthy volunteers. The presented methodology enables the assessment of pulmonary function in 3D by indicating ventilation, oxygen transfer and lung volume changes during free breathing. KW - Kernspintomografie KW - Relaxationszeit KW - Dreidimensionale Bildverarbeitung KW - T2* KW - Ulrakurze Echozeit KW - T1-Wichtung KW - dichteangepasste k-Raum Abtastung KW - Lunge KW - Relaxation KW - Lungenfunktion Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-150750 ER -