TY - INPR A1 - Huber, Bernhard A1 - Pres, Sebastian A1 - Wittmann, Emanuel A1 - Dietrich, Lysanne A1 - Lüttig, Julian A1 - Fersch, Daniel A1 - Krauss, Enno A1 - Friedrich, Daniel A1 - Kern, Johannes A1 - Lisinetskii, Victor A1 - Hensen, Matthias A1 - Hecht, Bert A1 - Bratschitsch, Rudolf A1 - Riedle, Eberhard A1 - Brixner, Tobias T1 - Space- and time-resolved UV-to-NIR surface spectroscopy and 2D nanoscopy at 1 MHz repetition rate N2 - We describe a setup for time-resolved photoemission electron microscopy (TRPEEM) with aberration correction enabling 3 nm spatial resolution and sub-20 fs temporal resolution. The latter is realized by our development of a widely tunable (215–970 nm) noncollinear optical parametric amplifier (NOPA) at 1 MHz repetition rate. We discuss several exemplary applications. Efficient photoemission from plasmonic Au nanoresonators is investigated with phase-coherent pulse pairs from an actively stabilized interferometer. More complex excitation fields are created with a liquid-crystal-based pulse shaper enabling amplitude and phase shaping of NOPA pulses with spectral components from 600 to 800 nm. With this system we demonstrate spectroscopy within a single plasmonic nanoslit resonator by spectral amplitude shaping and investigate the local field dynamics with coherent two-dimensional (2D) spectroscopy at the nanometer length scale (“2D nanoscopy”). We show that the local response varies across a distance as small as 33 nm in our sample. Further, we report two-color pump–probe experiments using two independent NOPA beamlines. We extract local variations of the excited-state dynamics of a monolayered 2D material (WSe2) that we correlate with low-energy electron microscopy (LEEM) and reflectivity (LEER) measurements. Finally, we demonstrate the in-situ sample preparation capabilities for organic thin films and their characterization via spatially resolved electron diffraction and dark-field LEEM. KW - Photoemission electron microscopy PEEM KW - Low energy electron microscopy LEEM KW - Spatially resolved 2D spectroscopy KW - Two-color pump-probe spectroscopy KW - Time-resolved photoemission electron microscopy Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-191906 SN - 0034-6748 N1 - This article may be downloaded for personal use only. Any other use requires prior permission of the author and AIP Publishing. This article appeared in Review of Scientific Instruments 90, 113103 (2019); https://doi.org/10.1063/1.5115322 and may be found at https://doi.org/10.1063/1.5115322. ER - TY - INPR A1 - Stennett, Tom E. A1 - Bissinger, Philipp A1 - Griesbeck, Stefanie A1 - Ullrich, Stefan A1 - Krummenacher, Ivo A1 - Auth, Michael A1 - Sperlich, Andreas A1 - Stolte, Matthias A1 - Radacki, Krzysztof A1 - Yao, Chang-Jiang A1 - Würthner, Frank A1 - Steffen, Andreas A1 - Marder, Todd B. A1 - Braunschweig, Holger T1 - Near-Infrared Quadrupolar Chromophores Combining Three-Coordinate Boron-Based Superdonor and Superacceptor Units T2 - Angewandte Chemie, International Edition N2 - In this work, two new quadrupolar A-π-D-π-A chromophores have been prepared featuring a strongly electron- donating diborene core and strongly electron-accepting dimesitylboryl F(BMes2) and bis(2,4,6-tris(trifluoromethyl)phenyl)boryl (BMes2) end groups. Analysis of the compounds by NMR spectroscopy, X-ray crystallography, cyclic voltammetry and UV-vis-NIR absorption and emission spectroscopy indicated that the compounds possess extended conjugated π-systems spanning their B4C8 cores. The combination of exceptionally potent π-donor (diborene) and π- acceptor (diarylboryl) groups, both based on trigonal boron, leads to very small HOMO-LUMO gaps, resulting in strong absorption in the near-IR region with maxima in THF at 840 and 1092 nm, respectively, and very high extinction coefficients of ca. 120,000 M-1cm-1. Both molecules also display weak near-IR fluorescence with small Stokes shifts. KW - boron KW - near-IR chromophores KW - conjugation KW - low-valent compounds KW - synthesis Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-180391 N1 - This is the pre-peer reviewed version of the following article: T. E. Stennett, P. Bissinger, S. Griesbeck, S. Ullrich, I. Krummenacher, M. Auth, A. Sperlich, M. Stolte, K. Radacki, C.-J. Yao, F. Wuerthner, A. Steffen, T. B. Marder, H. Braunschweig, Angew. Chem. Int. Ed. 2019, 58, 6449. , which has been published in final form at https://doi.org/10.1002/anie.201900889. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Use of Self-Archived Versions. ER - TY - INPR A1 - Reiss, Harald T1 - Time scales and existence of time holes in non-transparent media N2 - The analysis presented in this paper applies to experimental situations where observers or objects to be studied, all at stationary positions, are located in environments the optical thickness of which is strongly different. Non-transparent media comprise thin metallic films, packed or fluidised beds, superconductors, the Earth’s crust, and even dark clouds and other cosmological objects. The analysis applies mapping functions that correlate physical events, e, in non-transparent media, with their images, f(e), tentatively located on standard physical time scale. The analysis demonstrates, however, that physical time, in its rigorous sense, does not exist under non-transparency conditions. A proof of this conclusion is attempted in three steps: i) the theorem “there is no time without space and events” is accepted, (ii) images f[e(s,t)] do not constitute a dense, uncountably infinite set, and (iii) sets of images that are not uncountably infinite do not create physical time but only time-like sequences. As a consequence, mapping f[e(s,t)] in non-transparent space does not create physical analogues to the mathematical structure of the ordered, dense half-set R+ of real numbers, and reverse mapping, f-1f[e(s,t)], the mathematical inverse problem, would not allow unique identification and reconstruction of original events from their images. In these cases, causality as well as invariance of physical processes under time reversal, might be violated. An interesting problem is whether temporal cloaking (a time hole) in a transparent medium, as very recently reported in the literature, can be explained by the present analysis. Existence of time holes could perhaps be possible, not in transparent but in non-transparent media, as follows from the sequence of images, f[e(s,t)], that is not uncountably infinite, in contrast to R+. Impacts are expected for understanding physical diffusion-like, radiative transfer processes and stability models to protect superconductors against quenchs. There might be impacts also in relativity, quantum mechanics, nuclear decay, or in systems close to their phase transitions. The analysis is not restricted to objects of laboratory dimensions. KW - Zeitrichtung KW - Strahlungstransport KW - Supraleiter KW - Nicht-Transparente Medien KW - Physikalische Zeit KW - Inverse Probleme KW - Time hole KW - mapping function KW - Monte Carlo simulation Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-73554 N1 - Überarbeitung des Artikels urn:nbn:de:bvb:20-opus-67268 ER - TY - INPR A1 - Reiss, Harald T1 - Physical time and existence of time holes in non-transparent media N2 - The analysis presented in this paper applies to experimental situations where observers or objects to be studied (both stationary, with respect to each other) are located in environments the optical thickness of which is strongly different. By their large optical thickness, non-transparent media are clearly distinguished from their transparent counterparts. Non-transparent media comprise thin metallic films, packed or fluidised beds, the Earth’s crust, and even dark clouds and other cosmological objects. As a representative example, a non-transparent slab is subjected to transient disturbances, and a rigorous analysis is presented whether physical time reasonably could be constructed under such condition. The analysis incorporates mapping functions that correlate physical events, e, in non-transparent media, with their images, f(e), tentatively located on a standard physical time scale. The analysis demonstrates, however, that physical time, in its rigorous sense, does not exist under non-transparency conditions. A proof of this conclusion is attempted in three steps: i) the theorem “there is no time without space and events” is accepted, (ii) images f[e(s,t)] do not constitute a dense, uncountably infinite set, and (iii) sets of images that are not uncountably infinite do not create physical time but only time-like sequences. As a consequence, mapping f[e(s,t)] in non-transparent space does not create physical analogues to the mathematical structure of the ordered, dense half-set R+ of real numbers, and reverse mapping, f-1f[e(s,t)] would not allow unique identification and reconstruction of original events from their images. In these cases, causality and determinism, as well as invariance of physical processes under time reversal, might be violated. Existence of time holes could be possible, as follows from the sequence of images, f[e(s,t)], that is not uncountably infinite, in contrast to R+. Practical impacts are expected for understanding physical diffusion-like, radiative transfer processes, stability models to protect superconductors against quenchs or for description of their transient local pair density and critical currents. Impacts would be expected also in mathematical formulations (differential equations) of classical physics, in relativity and perhaps in quantum mechanics, all as far as transient processes in non-transparent space would be concerned. An interesting problem is whether temporal cloaking (a time hole) in a transparent medium, as very recently reported in the literature, can be explained by the present analysis. The analysis is not restricted to objects of laboratory dimensions: Because of obviously existing radiation transfer analogues, it is tempting to discuss consequences also for much larger structures in particular if an origin of time is postulated. KW - Strahlungstransport KW - Zeitrichtung KW - Supraleiter KW - Computersimulation KW - Non-transparency KW - disturbance KW - physical time KW - time hole Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-67268 N1 - Von diesem Artikel gibt es eine überarbeitete Version unter urn:nbn:de:bvb:20-opus-73554. ER -