TY - THES A1 - Simin, Dmitrij T1 - Quantum Sensing with Highly Coherent Spin Centers in Silicon Carbide T1 - Quantensensorik mit hochkohärenten Spinzentren in Siliciumcarbid N2 - In the present work, the energetic structure and coherence properties of the silicon vacancy point defect in the technologically important material silicon carbide are extensively studied by the optically detected magnetic resonance (ODMR) technique in order to verify its high potential for various quantum applications. In the spin vacancy, unique attributes are arising from the C3v symmetry and the spin-3/2 state, which are not fully described by the standard Hamiltonian of the uniaxial model. Therefore, an advanced Hamiltonian, describing well the appearing phenomena is established and the relevant parameters are experimentally determined. Utilizing these new accomplishments, several quantum metrology techniques are proposed. First, a vector magnetometry scheme, utilizing the appearance of four ODMR lines, allows for simultaneous detection of the magnetic field strength and the tilting angle of the magnetic field from the symmetry axis of the crystal. The second magnetometry protocol utilizes the appearance of energetic level anticrossings (LAC) in the ground state (GS) energy levels. Relying only on the change in photoluminescence in the vicinity of this GSLACs, this all-optical method does not require any radio waves and hence provides a much easier operation with less error sources as for the common magnetometry schemes utilizing quantum points. A similar all-optical method is applied for temperature sensing, utilizing the thermal shift of the zero field splitting and consequently the anticrossing in the excited state (ES). Since the GSLACs show no dependence on temperature, the all-optical magnetometry and thermometry (utilizing the ESLACs) can be conducted subsequently on the same defect. In order to quantify the achievable sensitivity of quantum metrology, as well as to prove the potential of the Si-vacancy in SiC for quantum processing, the coherence properties are investigated by the pulsed ODMR technique. The spin-lattice relaxation time T1 and the spin-spin relaxation time T2 are thoroughly analyzed for their dependence on the external magnetic field and temperature. For actual sensing implementations, it is crucial to obtain the best signal-to-noise ratio without loss in coherence time. Therefore, the irradiation process, by which the defects are created in the crystal, plays a decisive role in the device performance. In the present work, samples irradiated with electrons or neutrons with different fluences and energies, producing different defect densities, are analyzed in regard to their T1 and T2 times at room temperature. Last but not least, a scheme to substantially prolong the T2 coherence time by locking the spin polarization with the dynamic decoupling Carr-Purcell-Meiboom-Gill (CPMG) pulse sequence is applied. N2 - In der vorliegenden Arbeit werden die energetische Struktur und die Kohärenzeigenschaften der Silizium Fehlstelle in dem technologisch relevanten Material Siliciumcarbid mit Hilfe der optisch detektierten Magnetresonanz (ODMR) Technik extensiv analysiert, um ihr außerordentliches Potential für verschiedene quanten-mechanische Anwendungen zu untermauern. Aus der C3v Symmetrie und dem 3/2 Spinsystem des Defekts entstehen einzigartige Attribute, die nur teilweise durch den Standard Hamiltonoperator des Modells einer einachsigen Symmetrie wahrheitsgemäß beschrieben werden. Aus diesem Grund wird ein weiterentwickelter Hamiltonoperator aufgestellt, welcher die auftretenden Eigenschaften genau wiedergibt. Aus experimentellen Messungen werden anschließend seine Parameter bestimmt. Das nun vorliegende genaue Verständnis der auftretenden Phänomene wird dazu genutzt, diverse Methoden zur Quantensensorik auszuarbeiten. Zuerst wird ein Schema für Vektormagnetometrie aufgestellt, welches sich das Auftreten von vier ODMR Linien zunutze macht. Die Methode ermöglicht simultane Detektion, sowohl von der Magnetfeldstärke, als auch von dem Winkel zwischen der Magnetfeldrichtung und der Symmetrieachse des Kristalls. Das zweite Magnetometrie protokoll nutzt das Auftreten von energetischen anticrossings (level anticrossing, LAC) im Grundzustand (ground state, GS). Durch das Verfolgen der Änderung der Photolumineszenz in der Nähe dieser GSLACs, braucht diese rein optische Technik keine Radiowellen und ist dementsprechend viel leichter umzusetzen und bietet weniger Fehlerquellen als die üblichen Magnetometriemethoden an Quantenpunkten. Eine ähnliche, rein optische Methode wird auch für Temperaturmessungen vorgestellt, welche auf der thermisch induzierten Verschiebung der Nullfeldaufspaltung und somit auch der anticrossings im angeregten Zustand (excited state, ES) basiert. Da die GSLACS keine Temperaturabhängigkeit zeigen, können die rein optischen Methoden zur Magnetfeld- und Temperaturmessung nacheinander am selben Defekt erfolgen. Um die erreichbare Sensitivität der Quantenmetrologie zu quantifizieren und auch um das Potential der Si-Vakanzen für Quantencomputing zu demonstrieren, werden die Kohärenzeigenschaften mit Hilfe der gepulsten ODMR Technik analysiert. So werden die Spin-Gitter Relaxationszeit T1 und die Spin-Spin Relaxationszeit T2 eingehend analysiert und deren Abhängigkeit von einem externen Magnetfeld und der Temperatur aufgestellt. Für tatsächliche Implementierung in einem Sensor, ist es entscheidend ein Optimum zwischen dem Signal-Rausch-Verhältnis und der Kohärenzlänge zu etablieren. Deswegen spielt die Kristallbestrahlung, durch die die Defekte erzeugt werden, eine wichtige Rolle für die Leistungsfähigkeit des Endgerätes. In der vorliegenden Arbeit werden unterschiedlich bestrahlte Proben, nämlich einmal mit Elektronen und einmal mit Neutronen unterschiedlicher Energie und mit unterschiedlichen Bestrahlungsdosen, analysiert. Anschließend wird eine Methode zur substantiellen Verlängerung der T2 Kohärenzzeit durch das locking der Spinpolarisation mit der Carr-Purcell-Meiboom-Gill (CPMG) Pulssequenz durchgeführt. KW - Siliciumcarbid KW - ODMR-Spektroskopie KW - Gitterbaufehler KW - silicon vacancy KW - pulsed ODMR KW - quantum metrology KW - quantum sensing KW - Siliciumvakanz KW - Silicium Fehlstelle KW - Quantensensorik KW - Feldstärkemessung Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-156199 ER - TY - THES A1 - Kraus, Hannes T1 - Optically Detected Magnetic Resonance on Organic and Inorganic Carbon-Based Semiconductors T1 - Optisch detektierte Magnetresonanz an organischen und anorganischen kohlenstoffbasierten Halbleitern N2 - In dieser Arbeit werden drei verschiedene kohlenstoffbasierte Materialsysteme behandelt: (i) Organische Halbleiter und kleine Moleküle, in Kombination mit Fullerenen für Anwendungen in der organischen Photovoltaik (OPV), (ii) Halbleitende Einzelwand-Kohlenstoffnanoröhren und (iii) Siliziumkarbid (SiC), dessen Defekte erst seit kurzem als Kandidaten für Quantenapplikationen gehandelt werden. Alle Systeme wurden mit optisch detektierter Magnetresonanzspektroskopie (ODMR) untersucht. Im OPV-Kapitel, die intrinsischen Parameter und Orientierungen von Exzitonen mit hohem Spin wurden für die Materialsysteme P3HT, PTB7 und DIP untersucht. Speziell der Einfluss von Ordnung diesen organischen Systemen wurde diskutiert. Der zweite Teil des Kapitels beschäftigt sich mit Triplettgeneration mittels Elektronenrücktransfer im leistungsfähigen Materialsystem PTB7:PC71BM. Das Kohlenstoffnanoröhren-Kapitel zeigt zuert den ersten zweifelsfreien Nachweis von Triplettexzitonen in halbleitenden (6,5) Einzelwandkohlenstoffnanoröhren (SWNT), mittels ODMR-Spektroskopie. Ein Modell für die Anregungskinetik, die intrinsischen Parameter des Exzitons und Abhängigkeit von der Orientierung der Röhren wurden diskutiert. Der letzte Teil der Arbeit gilt Spinzentren in Siliziumkarbid. Nach einer kurzen Einführung in das Materialsystem wird die Spinmultiplizität für die V2 und V3 Siliziumfehlstellen, sowie eines Frenkelpaars und eines noch nicht zugeordneten Defekts (UD) in 6H SiC, weiterhin für die V2 Fehlstelle und das Frenkelpaar in 4H SiC, durchgängig zu S=3/2 festgestellt. Das spinpolarisierte Befüllen der 3/2-Zustände des Grundzustands der Siliziumfehlstellen erlaubt stimulierte Mikrowellenemission. Ausserdem wurde für UD und Frenkelpaar in 6H SiC eine große Temperaturabhängigkeit der Nullfeldparameter festgestellt, während die Siliziumfehlstellen temperaturunabhängig sind. Anwendung des UD und Frenkelpaars als Temperatursensor, und der Vakanzen als Vektormagnetometer wurden diskutiert. N2 - In this work, three different material systems comprising carbon were researched: (i) Organic polymers and small molecules, in conjunction with fullerene molecules for applications in organic photovoltaics (OPV), (ii) single walled semiconducting carbon nanotubes and (iii) silicon carbide (SiC), whose defect color centers are recently in the limelight as candidates for quantum applications. All systems were analyzed using the optically detected magnetic resonance (ODMR) spectroscopy. In the OPV chapter, first the intrinsic parameters and orientations of high spin excitons were analyzed in the materials P3HT, PTB7 and DIP. Specifically the influence of ordering in these organic systems was adressed. The second part of the OPV chapter is concerned with triplet generation by electron back transfer in the high-efficiency OPV material combination PTB7:PC71BM. The carbon nanotube chapter first shows the way to the first unambiguous proof of the existence of triplet excitons in semiconducting (6,5) single-walled carbon nanotubes (SWNT) by ODMR spectroscopy. A model for exciton kinetics, and also orientation and intrinsic parameters were propoesed. The last part of this work is devoted to spin centers in silicon carbide (SiC). After a brief introduction, the spin multiplicity of the V2 and V3 silicon vacancies, and also of a Frenkel pair and an unassigned defect UD in 6H SiC, and of the V2 vacancy and the Frenkel pair in 4H SiC, was shown to be S=3/2. The spin polarized pumping of the 3/2 manifold of the quartet ground state of the silicon vacancies allows stimulated microwave emission. Furthermore, in 6H SiC, the UD and Frenkel pair were shown to have a large dependence of their intrinsic zero field interaction parameters on the temperature, while the vacancies are temperature independent. The application of the UD and Frenkel pair as temperature sensor, and of the vacancies as a vector magnetic field sensor is discussed. KW - ODMR-Spektroskopie KW - Organischer Halbleiter KW - quantum center KW - Siliciumcarbid KW - Nanoröhre Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-106308 ER -