TY - THES A1 - Yu, Sung-Huan T1 - Development and application of computational tools for RNA-Seq based transcriptome annotations T1 - Entwicklung und Anwendung bioinformatischer Werkzeuge für RNA-Seq-basierte Transkriptom-Annotationen N2 - In order to understand the regulation of gene expression in organisms, precise genome annotation is essential. In recent years, RNA-Seq has become a potent method for generating and improving genome annotations. However, this Approach is time consuming and often inconsistently performed when done manually. In particular, the discovery of non-coding RNAs benefits strongly from the application of RNA-Seq data but requires significant amounts of expert knowledge and is labor-intensive. As a part of my doctoral study, I developed a modular tool called ANNOgesic that can detect numerous transcribed genomic features, including non-coding RNAs, based on RNA-Seq data in a precise and automatic fashion with a focus on bacterial and achaeal species. The software performs numerous analyses and generates several visualizations. It can generate annotations of high-Resolution that are hard to produce using traditional annotation tools that are based only on genome sequences. ANNOgesic can detect numerous novel genomic Features like UTR-derived small non-coding RNAs for which no other tool has been developed before. ANNOgesic is available under an open source license (ISCL) at https://github.com/Sung-Huan/ANNOgesic. My doctoral work not only includes the development of ANNOgesic but also its application to annotate the transcriptome of Staphylococcus aureus HG003 - a strain which has been a insightful model in infection biology. Despite its potential as a model, a complete genome sequence and annotations have been lacking for HG003. In order to fill this gap, the annotations of this strain, including sRNAs and their functions, were generated using ANNOgesic by analyzing differential RNA-Seq data from 14 different samples (two media conditions with seven time points), as well as RNA-Seq data generated after transcript fragmentation. ANNOgesic was also applied to annotate several bacterial and archaeal genomes, and as part of this its high performance was demonstrated. In summary, ANNOgesic is a powerful computational tool for RNA-Seq based annotations and has been successfully applied to several species. N2 - Exakte Genomannotationen sind essentiell für das Verständnis Genexpressionsregulation in verschiedenen Organismen. In den letzten Jahren entwickelte sich RNA-Seq zu einer äußerst wirksamen Methode, um solche Genomannotationen zu erstellen und zu verbessern. Allerdings ist das Erstellen von Genomannotationen bei manueller Durchführung noch immer ein zeitaufwändiger und inkonsistenter Prozess. Die Verwendung von RNA-Seq-Daten begünstigt besonders die Identifizierung von nichtkodierenden RNAs, was allerdings arbeitsintensiv ist und fundiertes Expertenwissen erfordert. Ein Teil meiner Promotion bestand aus der Entwicklung eines modularen Tools namens ANNOgesic, das basierend auf RNA-Seq-Daten in der Lage ist, eine Vielzahl von Genombestandteilen, einschließlich nicht-kodierender RNAs, automatisch und präzise zu ermitteln. Das Hauptaugenmerk lag dabei auf der Anwendbarkeit für bakterielle und archaeale Genome. Die Software führt eine Vielzahl von Analysen durch und stellt die verschiedenen Ergebnisse grafisch dar. Sie generiert hochpräzise Annotationen, die nicht unter Verwendung herkömmlicher Annotations-Tools auf Basis von Genomsequenzen erzeugt werden könnten. Es kann eine Vielzahl neuer Genombestandteile, wie kleine nicht-kodierende RNAs in UTRs, ermitteln, welche von bisherigen Programme nicht vorhergesagt werden können. ANNOgesic ist unter einer Open-Source-Lizenz (ISCL) auf https://github.com/Sung-Huan/ANNOgesic verfügbar. Meine Forschungsarbeit beinhaltet nicht nur die Entwicklung von ANNOgesic, sondern auch dessen Anwendung um das Transkriptom des Staphylococcus aureus-Stamms HG003 zu annotieren. Dieser ist einem Derivat von S. aureus NCTC8325 - ein Stamm, Dear ein bedeutendes Modell in der Infektionsbiologie darstellt. Zum Beispiel wurde er für die Untersuchung von Antibiotikaresistenzen genutzt, da er anfällig für alle bekannten Antibiotika ist. Der Elternstamm NCTC8325 besitzt zwei Mutationen im regulatorischen Genen (rsbU und tcaR), die Veränderungen der Virulenz zur Folge haben und die in Stamm HG003 auf die Wildtypsequenz zurückmutiert wurden. Dadurch besitzt S. aureus HG003 das vollständige, ursprüngliche Regulationsnetzwerk und stellt deshalb ein besseres Modell zur Untersuchung von sowohl Virulenz als auch Antibiotikaresistenz dar. Trotz seines Modellcharakters fehlten für HG003 bisher eine vollständige Genomsequenz und deren Annotationen. Um diese Lücke zu schließen habe ich als Teil meiner Promotion mit Hilfe von ANNOgesic Annotationen für diesen Stamm, einschließlich sRNAs und ihrer Funktionen, generiert. Dafür habe ich Differential RNA-Seq-Daten von 14 verschiedenen Proben (zwei Mediumsbedingungen mit sieben Zeitpunkten) sowie RNA-Seq-Daten, die von fragmentierten Transkripten generiert wurden, analysiert. Neben S. aureus HG003 wurde ANNOgesic auf eine Vielzahl von Bakterien- und Archaeengenome angewendet und dabei wurde eine hohe Performanz demonstriert. Zusammenfassend kann gesagt werden, dass ANNOgesic ein mächtiges bioinformatisches Werkzeug für die RNA-Seq-basierte Annotationen ist und für verschiedene Spezies erfolgreich angewandt wurde. KW - RNA-Seq KW - Genome Annotation KW - small RNA KW - Genom KW - Annotation KW - Small RNA KW - Bioinformatik Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-176468 ER - TY - THES A1 - Pernitzsch, Sandy Ramona T1 - Functional Characterization of the abundant and conserved small regulatory RNA RepG in Helicobacter pylori T1 - Funktionelle Charakterisierung der abundanten und konservierten kleinen regulatorischen RNA RepG in Helicobacter pylori N2 - Bacterial small non-coding RNAs (sRNAs) play fundamental roles in controlling and finetuning gene expression in a wide variety of cellular processes, including stress responses, environmental signaling and virulence in pathogens. Despite the identification of hundreds of sRNA candidates in diverse bacteria by genomics approaches, the mechanisms and regulatory capabilities of these posttranscriptional regulators have most intensively been studied in Gram-negative Gammaproteobacteria such as Escherichia coli and Salmonella. So far, almost nothing is known about sRNA-mediated regulation (riboregulation) in Epsilonproteobacteria, including the major human pathogen Helicobacter pylori. H. pylori was even thought to be deficient for riboregulation as none of the sRNAs known from enterobacteria are conserved in Helicobacter and since it lacks the major RNA chaperone Hfq, which is crucial for sRNA function as well as stability in many bacteria. Nonetheless, more than 60 cis- and trans-acting sRNA candidates were recently identified in H. pylori by a global RNA sequencing approach, indicating that this pathogen, in principle, has the capability to use riboregulation for its gene expression control. However, the functions and underlying mechanisms of H. pylori sRNAs remained unclear. This thesis focused on the first functional characterization and target gene identification of a trans-acting sRNA, RepG (Regulator of polymeric G-repeats), in H. pylori. Using in-vitro and in-vivo approaches, RepG was shown to directly base-pair with its C/Urich terminator loop to a variable homopolymeric G-repeat in the 5’ untranslated region (UTR) of the tlpB mRNA, thereby regulating expression of the chemotaxis receptor TlpB. While the RepG sRNA is highly conserved, the length of the G-repeat in the tlpB mRNA leader varies among different H. pylori isolates, resulting in a strain-specific tlpB regulation. The modification of the number of guanines within the G-stretch in H. pylori strain 26695 demonstrated that the length of the homopolymeric G-repeat determines the outcome of posttranscriptional control (repression or activation) of tlpB by RepG. This lengthdependent targeting of a simple sequence repeat by a trans-acting sRNA represents a new twist in sRNA-mediated regulation and a novel mechanism of gene expression control, since it uniquely links phase variation by simple sequence repeats to posttranscriptional regulation. In almost all sequenced H. pylori strains, tlpB is encoded in a two gene operon upstream of HP0102, a gene of previously unknown function. This study provided evidence that HP0102 encodes a glycosyltransferase involved in LPS O-chain and Lewis x antigen production. Accordingly, this glycosyltransferase was shown to be essential for mice colonization by H. pylori. The coordinated posttranscriptional regulation of the tlpB-HP0102 operon by antisense base-pairing of RepG to the phase-variable G-repeat in the 5’ UTR of the tlpB mRNA allows for a gradual, rather than ON/OFF, control of HP0102 expression, thereby affecting LPS biosynthesis in H. pylori. This fine-tuning of O-chain and Lewis x antigen expression modulates H. pylori antibiotics sensitivity and thus, might be advantageous for Helicobacter colonization and persistence. Whole transcriptome analysis based on microarray and RNA sequencing was used to identify additional RepG target mRNAs and uncover the physiological role of this riboregulator in H. pylori. Altogether, repG deletion affected expression of more than 40 target gene candidates involved various cellular processes, including membrane transport and adhesion, LPS modification, amino acid metabolism, oxidative and nitrosative stress, and nucleic acid modification. The presence of homopolymeric G-repeats/G-rich sequences in almost all target mRNA candidates indicated that RepG hijacks a conserved motif to recognize and regulate multiple target mRNAs in H. pylori. Overall, this study demonstrates that H. pylori employs riboregulation in stress response and virulence control. In addition, this thesis has successfully established Helicobacter as a new model organism for investigating general concepts of gene expression control by Hfq-independent sRNAs and sRNAs in bacterial pathogens. N2 - Bakterielle kleine, nicht-kodierende RNAs (sRNAs, engl. für small RNAs) spielen eine fundamentale Rolle in der Kontrolle und Feinabstimmung der Genexpression in Bakterien. Sie sind an einer Vielzahl von zellulären Prozessen, einschließlich der Adaption an unterschiedliche Stress- sowie Umweltbedingungen und der Virulenz von bakteriellen Pathogenen, beteiligt. Trotz der Identifizierung von Hunderten von sRNA-Kandidaten in diversen Bakterien durch genomweite Untersuchungsmethoden, wurden die regulatorischen Eigenschaften und Mechanismen dieser posttranskriptionellen Regulatoren bisher hauptsächlich in Gram-negativen Gammaproteobakterien wie Escherichia coli und Salmonella untersucht. Bislang ist nur wenig über sRNA-basierte Regulation (Riboregulation) in Epsilonproteobakterien, einschließlich dem weitverbreiteten Humanpathogen Helicobacter pylori, bekannt. Es wurde sogar angenommen, dass H. pylori über keine Art der Riboregulation verfügt, da keine der enterobakteriellen sRNAs in Helicobacter konserviert sind. Zudem konnte in diesem Erreger kein Homolog für das RNAChaperon Hfq, welches in vielen Bakterien essentiell für die Funktion und Stabilität von sRNAs ist, identifiziert werden. Nichtsdestotrotz wurden mit Hilfe einer globalen RNASequenzierungsstudie,die auf der Sequenzierung primärer Transkripte in einem Hochdurchsatzverfahren basiert, kürzlich mehr als 60 in cis- und in trans-agierende sRNAKandidaten in H. pylori identifiziert. Diese Transkriptomanalyse deutet darauf hin, dass H. pylori prinzipiell die Fähigkeit hat Riboregulation zur Kontrolle seiner Genexression zu nutzen. Die Funktionen und Mechanismen von sRNAs in H. pylori sind jedoch immer noch unklar. In der vorgelegten Arbeit wurde erstmals eine in trans-agierende sRNA, RepG (Regulator of polymeric G-repeats), in Helicobacter charakterisiert sowie dessen zelluläre Zielgene identifiziert. Mit Hilfe diverser in-vitro und in-vivo Analysen konnte gezeigt werden, dass der C/U-reiche Transkriptionsterminatorloop von RepG direkt an eine variable, repetitive G-Sequenz in der 5‘ untranslatierten Region (UTR) der tlpB mRNA bindet. Durch diese direkte sRNA-mRNA Interaktion wird die Expression des Chemotaxis Rezeptors TlpB reguliert. Im Gegensatz zu einer hohen Konservierung der Sequenz der RepG sRNA, variiert die Länge des G-Stretches im 5‘ UTR der tlpB mRNA zwischen unterschiedlichen H. pylori Isolaten. Diese Längenvariation resultiert in einer Stamm-spezifischen Regulation der TlpB Expression. Die Modifikation der Anzahl der Guanin-Basen im G-Stretch des H. pylori Stammes 26695 demonstrierte, dass die Länge der repetitiven G-Sequenz das Ergebnis der posttranskriptionellen Regulation (Repression oder Aktivierung) von tlpB durch RepG beeinflusst. Die hier beschriebene Längen-abhängige Interaktion zwischen einer in transagierenden sRNA und einer einfachen, repetitiven Sequenz repräsentiert nicht nur ein neues Konzept für die Genregulation durch sRNAs, sondern stellt auch einen neuen Mechanismus der Genexpressionskontrolle dar. Darüber hinaus, veranschaulicht die hier beschriebene sRNA-mRNA Interaktion eine bislang einzigartige Verknüpfung von Phasenvariation durch hochvariabel, repetitive Sequenzen mit Genregulation durch sRNAs. In nahezu allen sequenzierten H. pylori Stämmen ist das tlpB Gen in einem Operon zusammen mit einem Gen mit bisher unbekannter Funktion, HP0102, kodiert. In dieser Arbeit konnte gezeigt werden, dass HP0102 für eine Glykosyltransferase kodiert, die an der Synthese der O-Seitenketten des LPS und des Lewis x Antigens in H. pylori beteiligt ist. Darüber hinaus konnte demonstriert werden, dass diese Glykosyltransferase für die Kolonisierung des murinen Magens durch H. pylori essentiell ist. Die koordinierte, posttranskriptionelle Regulation des tlpB-HP0102 Operons, welche durch antisense Basenpaarung zwischen RepG und der phasen-variablen, repetitiven G-Sequenz im 5‘ UTR der tlpB mRNA vermittelt wird, ermöglicht eine graduelle Kontrolle der Genexpression von HP0102, und somit Einflussnahme auf die LPS Biosynthese in H. pylori. Diese Feinabstimmung der LPS O-Seitenketten und Lewis x Antigen Expression beeinflusst die Resistenz von H. pylori gegen diverse Antibiotika und könnte somit sowohl für die Kolonisierung als auch für die persistente Infektion des Wirts durch H. pylori vorteilhaft sein. Um Einblicke in die physiologische Funktion von RepG zu gewinnen, wurden in einer genom-weiten Transkriptomanalyse mittels Microarray und RNA-Sequenzierung weitere Zielgene von RepG bestimmt. Insgesamt beeinflusste die Deletion von repG die Expression von mehr als 40 potentiellen Zielgenen, welche an diversen zellulären Prozessen beteiligt sind, wie z.B. Membrantransport und Adhäsion, Aminosäure- und Nukleinsäure-Metabolismus, oxidative und nitrosative Stressantwort sowie LPS Modifizierung. Die Identifizierung von homopolymeren G-Stretchen bzw. G-reichen Sequenzen in allen ZielmRNAs deutet darauf hin, dass RepG ein konserviertes Motiv bindet, um mehrere Zielgene in H. pylori zu erkennen und zu regulieren. Zusammenfassend zeigt diese Arbeit, dass H. pylori Riboregulation basierend auf sRNAs nutzt, um seine Genexpression in unterschiedlichen Stress- und Virulenzbedingungen zu regulieren. Darüber hinaus hat diese Studie Helicobacter als neuen Modelorganismus für die Untersuchung genereller Wirkungsweisen Hfq-unabhängiger sRNAs und sRNAs in bakteriellen Pathogenen etabliert. KW - Small RNA KW - Helicobacter pylori KW - Genregulation KW - Riboregulation KW - Chemotaxis KW - LPS Biosynthese KW - Sequenzwiederholung KW - Phasenvariation Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-122686 ER - TY - THES A1 - Matera, Gianluca T1 - Global mapping of RNA-RNA interactions in \(Salmonella\) via RIL-seq T1 - Globale Analyse der RNA-RNA-Interaktionen in \(Salmonella\) mittels RIL-seq N2 - RNA represents one of the most abundant macromolecules in both eukaryotic and prokaryotic cells. Since the discovery that RNA could play important gene regulatory functions in the physiology of a cell, small regulatory RNAs (sRNAs) have been at the center of molecular biology studies. Functional sRNAs can be independently transcribed or derived from processing of mRNAs and other non-coding regions and they often associate with RNA-binding proteins (RBPs). Ever since the two major bacterial RBPs, Hfq and ProQ, were identified, the way we approach the identification and characterization of sRNAs has drastically changed. Initially, a single sRNA was annotated and its function studied with the use of low-throughput biochemical techniques. However, the development of RNA-seq techniques over the last decades allowed for a broader identification of sRNAs and their functions. The process of studying a sRNA mainly focuses on the characterization of its interacting RNA partner(s) and the consequences of this binding. By using RNA interaction by ligation and sequencing (RIL-seq), the present thesis aimed at a high-throughput mapping of the Hfq-mediated RNA-RNA network in the major human pathogen Salmonella enterica. RIL-seq was at first performed in early stationary phase growing bacteria, which enabled the identification of ~1,800 unique interactions. In- depth analysis of such complex network was performed with the aid of a newly implemented RIL-seq browser. The interactome revealed known and new interactions involving sRNAs and genes part of the envelope regulon. A deeper investigation led to the identification of a new RNA sponge of the MicF sRNA, namely OppX, involved in establishing a cross-talk between the permeability at the outer membrane and the transport capacity at the periplasm and the inner membrane. Additionally, RIL-seq was applied to Salmonella enterica grown in SPI-2 medium, a condition that mimicks the intracellular lifestyle of this pathogen, and finally extended to in vivo conditions during macrophage infection. Collectively, the results obtained in the present thesis helped unveiling the complexity of such RNA networks. This work set the basis for the discovery of new mechanisms of RNA-based regulation, for the identification of a new physiological role of RNA sponges and finally provided the first resource of RNA interactions during infection conditions in a major human pathogen. N2 - RNA ist eines der am häufigsten vorkommenden Makromoleküle sowohl in eukaryontischen als auch in prokaryontischen Zellen. Seit der Entdeckung, dass RNA wichtige genregulatorische Funktionen in der Physiologie einer Zelle spielen könnte, stehen kleine regulatorische RNAs (sRNAs) im Mittelpunkt molekularbiologischer Studien. Funktionelle sRNAs können alleinstehend von nicht-codierenden oder codierenden Bereichen des Genoms transkribiert werden, aber sie können auch durch die Prozessierung einer mRNA entstehen. Des Weiteren sind sRNAs häufig mit RNA- bindenden Proteinen (RBPs) assoziiert. Seitdem die beiden wichtigsten bakteriellen RBPs, Hfq und ProQ, identifiziert wurden, hat sich die Art und Weise, wie wir an die Identifizierung und Charakterisierung von sRNAs herangehen, drastisch verändert. Ursprünglich wurden sRNAs annotiert und anschließend für einzelne sRNAs die Funktion mit biochemischen Techniken untersucht. Die Entwicklung von RNA-seq-Techniken in den letzten Jahrzehnten ermöglichte nun jedoch eine globale Identifizierung von sRNAs und ihren Funktionen. Der Prozess der Untersuchung einer sRNA konzentriert sich hauptsächlich auf die Charakterisierung ihrer interagierenden RNA-Partner und die Folgen dieser Bindung. Mit Hilfe der RNA-Interaktion durch Ligation und Sequenzierung (RIL-seq) wurde in der vorliegenden Arbeit eine Hochdurchsatzkartierung des Hfq-vermittelten RNA-RNA-Netzwerks in dem wichtigen humanen Krankheitserreger Salmonella enterica durchgeführt. RIL-seq wurde zunächst in Bakterien in der frühen stationären Wachstumsphase durchgeführt, was die Identifizierung von ~1.800 einzigartigen Interaktionen ermöglichte. Mit Hilfe eines neu implementierten RIL-seq-Browsers wurde daraufhin eine eingehende Analyse dieses komplexen Netzwerks durchgeführt. Das Interaktom enthüllte bekannte und neue Interaktionen zwischen sRNAs und mRNAs, die Teil des Zellwand-Regulons sind. Eine tiefergehende Untersuchung führte zur Identifizierung eines neuen RNA-Schwammes, OppX, welcher mit der sRNA MicF bindet und so die Herstellung eines Cross-Talks zwischen der Permeabilität an der äußeren Membran und der Transportkapazität am Periplasma und der inneren Membran ermöglicht. Darüber hinaus wurde RIL-seq für Salmonella enterica angewandt, welche in SPI-2-Medium gewachsen waren, wobei diese Bedingung, die den intrazellulären Lebensstil dieses Erregers nachahmt. Durch die Infektion von Makrophagen mit dem Bakterium, wurde das RIL-seq Protokoll des Weiteren unter in vivo Bedingungen getestet. Insgesamt trugen die in dieser Arbeit erzielten Ergebnisse dazu bei, die Komplexität solcher RNA- Netzwerke zu enthüllen. Diese Arbeit bildete die Grundlage für die Entdeckung neuer Mechanismen der RNA-basierten Regulierung als auch für die Identifizierung einer neuen physiologischen Rolle von RNA- Schwämmen und lieferte letztendlich die erste Untersuchung für RNA- Interaktionen unter Infektionsbedingungen in einem wichtigen menschlichen Krankheitserreger. KW - Small RNA KW - RNA KW - infection biology KW - Salmonella KW - MicF Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-268776 ER - TY - THES A1 - Klepsch, Maximilian Andreas T1 - Small RNA-binding complexes in Chlamydia trachomatis identified by Next-Generation Sequencing techniques T1 - Identifizierung von kleinen RNA-bindenden Komplexen in Chlamydia trachomatis mittels Hochdurchsatz- Sequenziertechniken N2 - Chlamydia infect millions worldwide and cause infertility and blinding trachoma. Chlamydia trachomatis (C. trachomatis) is an obligate intracellular gram-negative pathogen with a significantly reduced genome. This bacterium shares a unique biphasic lifecycle in which it alternates between the infectious, metabolically inert elementary bodies (EB) and the non-infections, metabolically active replicative reticular bodies (RB). One of the challenges of working with Chlamydia is its difficult genetic accessibility. In the present work, the high-throughput method TagRNA-seq was used to differentially label transcriptional start sites (TSS) and processing sites (PSS) to gain new insights into the transcriptional landscape of C. trachomatis in a coverage that has never been achieved before. Altogether, 679 TSSs and 1067 PSSs were detected indicating its high transcriptional activity and the need for transcriptional regulation. Furthermore, the analysis of the data revealed potentially new non-coding ribonucleic acids (ncRNA) and a map of transcriptional processing events. Using the upstream sequences, the previously identified σ66 binding motif was detected. In addition, Grad-seq for C. trachomatis was established to obtain a global interactome of the RNAs and proteins of this intracellular organism. The Grad-Seq data suggest that many of the newly annotated RNAs from the TagRNA-seq approach are present in complexes. Although Chlamydia lack the known RNA-binding proteins (RBPs), e.g. Hfq and ProQ, observations in this work reveal the presence of a previously unknown RBP. Interestingly, in the gradient analysis it was found that the σ66 factor forms a complex with the RNA polymerase (RNAP). On the other hand, the σ28 factor is unbound. This is in line with results from previous studies showing that most of the genes are under control of σ66. The ncRNA IhtA is known to function via direct base pairing to its target RNA of HctB, and by doing so is influencing the chromatin condensation in Chlamydia. This study confirmed that lhtA is in no complex. On the other hand, the ncRNA ctrR0332 was found to interact with the SNF2 protein ctl0077, a putative helicase. Both molecules co-sedimented in the gradient and were intact after an aptamer-based RNA pull-down. The SWI2/SNF2 class of proteins are nucleosome remodeling complexes. The prokaryotic RapA from E. coli functions as transcription regulator by stimulating the RNAP recycling. This view might imply that the small ncRNA (sRNA) ctrR0332 is part of the global regulation network in C. trachomatis controlling the transition between EBs and RBs via interaction with the SNF2 protein ctl0077. The present work is the first study describing a global interactome of RNAs and proteins in C. trachomatis providing the basis for future interaction studies in the field of this pathogen. N2 - Chlamydien verursachen jährlich Millionen Neuinfektionen weltweit und können zu Spätschäden wie Unfruchtbarkeit und Erblindung führen. Chlamydien sind obligat intrazelluläre, gram-negative Pathogene mit einem stark reduzierten Genom. Sie besitzen einen einzigartigen biphasischen Lebenszyklus, bei dem der Erreger zwischen den metabolisch inaktiven, infektiösen Elementarkörperchen (EBs) und den nicht infektiösen, metabolisch aktiven und replikativen Retikularkörperchen (RBs) alterniert. Eine Problemantik beim Arbeiten mit Chlamydien ist die Schwierigkeit der gezielten genetischen Manipulation des Pathogens. In der vorliegenden Arbeit wurde die Hochdurchsatz-Sequenziermethode TagRNA-Seq genutzt, um die transkriptionelle Organisation von Chlamydia trachomatis (C. trachomatis) zu analysieren und besser zu verstehen. Transkriptionelle Start Stellen (TSS) und Prozessierungsstellen (PSS) werden dabei unterschiedlich markiert, sodass eine zuverlässigere und genauere Auflösung erreicht wird als bisher durch in anderen Studien verwendete Methoden. Insgesamt konnten so 679 TSSs und 1067 PSSs detektiert werden. Es konnte gezeigt werden, dass das Transkriptom von C. trachomatis weitaus aktiver ist als bisher angenommen und eine Regulation auf transkriptioneller Ebene bedarf. Die Methode erlaubte zudem die Identifizierung von potenziell neuen nicht-kodierende RNAs sowie die Kartierung von transkriptionellen Prozessierungsereignissen. Unter Verwendung der 5’-upstreamliegenden Sequenzen konnte außerdem das in anderen Bakterien bereits bekannte σ66-Bindemotiv detektiert werden. In der vorliegenden Arbeit wurde zudem die Methode Grad-Seq in C. trachomatis etabliert, um ein globales Interaktom für RNAs (engl. ribonucleic acid) und Proteine des intrazellulären Organismus zu erstellen. Für viele der im TagRNA-Seq Ansatz identifizierten und neu annotierten RNAs konnte so eine Komplexbildung beobachtet werden. Dies deutet auf das Vorhandensein eines bislang unbekanntes RNA-Bindeprotein (RBP) hin, da Chlamydien keines der bekannten RBPs, z.B. Hfq oder ProQ, besitzen. Die Gradienten-Analyse ergab, dass der σ66-Faktor in einem Komplex mit der RNA-Polymerase (RNAP) vorliegt und dass der σ28-Faktor ungebunden ist. Diese Beobachtung entspricht den Ergebnissen vorheriger Studien, die zeigten das die meisten Gene durch σ66 kontrolliert werden. Die Daten bestätigen außerdem, dass IhtA, eine ncRNA (engl. non-coding ribonucleic acid), die über direkte Basenpaarbindung mit ihrem Ziel-RNA von hctB interagiert, nicht in einem Komplex vorliegt. Für die ncRNA ctrR0332 hingegen konnte das SNF2-Protein ctl0077 als Interaktionspartner identifiziert werden. Beide Moleküle co-sedimentieren im Gradienten und konnten mittels eines Aptamer-basierenden RNA Pull-Downs in intakter Form isoliert werden. Die Klasse der SWI2/SNF2-Proteine gehört zu den Nukleosomen-Remodeling-Komplexen. In Prokaryoten konnte für das in E. coli vorkommende RapA, welches ebenfalls zu den SWI2/SNF2-Proteinen zählt, die Funktion eines Transkriptionsregulators nachgewiesen werden, indem die RNAP-Wiederverwertung stimuliert wird. Dies könnte bedeuten, dass die ncRNA ctrR0332 ebenfalls Teil eines globalen Regulationsnetzwerks ist, welches durch Interaktion mit dem SNF2-Protein ctl0077 die Transition zwischen dem RB- und EB-Stadium reguliert. In der vorliegenden Arbeit konnte erstmals ein globales Interaktom von RNAs und Proteinen in C. trachomatis erstellt werden, welches als Grundlage für zukünftige Interaktionsstudien des Pathogens genutzt werden kann. KW - High throughput screening KW - Small RNA KW - Chlamydia trachomatis Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-199741 ER - TY - THES A1 - Hock Siew, Tan T1 - Functional characterization of an acid-regulated sRNA in \(Helicobacter\) \(pylori\) T1 - Funktionelle Charakterisierung einer durch Säure regulierten SRNA in \(Helicobacter\) \(pylori\) N2 - Low pH is the main environmental stress encountered by Helicobacter pylori in the human stomach. To ensure its survival under acidic conditions, this bacterium utilizes urease (encoded by the ureAB operon), a nickel-activated metalloenzyme, which cleaves urea into ammonia to buffer the periplasmic space. Expression of the ureAB operon is tightly regulated at the transcriptional level. Moreover, the urease activity is modulated post translationally via the activity of nickel-binding proteins such as HP1432 that act as nickel sponges to either sequester or release nickel depending on the pH. However, little is known how the levels of these nickel-binding proteins are regulated at the post-transcriptional level. Interestingly, more than 60 candidate small regulatory RNAs (sRNAs) have been identified in a differential RNA-seq approach in H. pylori strain 26695, suggesting an uncharacterized layer of post-transcriptional riboregulation in this pathogen. sRNAs control their trans- or cis- encoded targets by direct binding. Many of the characterized sRNAs are expressed in response to specific environmental cues and are ideal candidates to confer post-transcriptional regulation under different growth conditions. This study demonstrates that a small RNA termed ArsZ (Acid Responsive sRNA Z) and its target HP1432 constitute yet another level of urease regulation. In-vitro and in-vivo experiments show that ArsZ interacts with the ribosome binding site (RBS) of HP1432 mRNA, effectively repressing translation of HP1432. During acid adaptation, the acid-responsive ArsRS two-component system represses expression of ArsZ. ArsRS and ArsZ work in tandem to regulate expression of HP1432 via a coherent feedforward loop (FFL). ArsZ acts as a delay mechanism in this feedforward loop to ensure that HP1432 protein levels do not abruptly change upon transient pH drops encountered by the bacteria. ArsZ “fine-tunes” the dynamics of urease activity after pH shift presumably by altering nickel availability through post transcriptional control of HP1432 expression. Interestingly, after adaptation to acid stress, ArsZ indirectly activates the transcription of HP1432 and forms an incoherent FFL with ArsRS to regulate HP1432. This study identified a non-standard FFL in which ArsZ can participate directly or indirectly in two different network configurations depending on the state of acid stress adaptation. The importance of ArsZ in the acid response of H. pylori is further supported by bioinformatics analysis showing that the evolution of ArsZ is closely related to the emergence of modern H. pylori strains that globally infect humans. No homologs of arsZ were found in the non-pylori species of Helicobacter. Moreover, this study also demonstrates that the physiological role of a sRNA can be elucidated without the artificial overexpression of the respective sRNA, a method commonly used to characterize sRNAs. Coupled with time-course experiments, this approach allows the kinetics of ArsZ regulation to be studied under more native conditions. ArsZ is the first example of a trans-acting sRNA that regulates a nickel storage protein to modulate apo-urease maturation. These findings may have important implications in understanding the details of urease activation and hence the colonization capability of H. pylori, the only bacterial class I carcinogen to date (WHO, 1994). N2 - In der natürlichen Umgebung des menschlichen Magens ist Helicobacter pylori insbesondere niedrigen pH-Werten ausgesetzt. Um diese Bedingungen zu überleben, setzt das Bakterium das Enzym Urease ein (kodiert durch das ureAB Operon), ein Nickel-aktiviertes Metalloenzym, welches Urea zu Ammonium umsetzt um den pH-Wert des periplasmatischen Raums abzupuffern. Die Expression dieses Operons ist auf transkriptioneller Ebene streng reguliert. Zudem ist die Aktivität des Urease Enzyms auf post-translationaler Ebene moduliert. Dies geschieht durch die Aktivität von Nickel-Bindeproteinen wie HP1432, die in Abhängigkeit vom pH-Wert Nickelionen abfangen oder wieder freigeben. Allerdings ist nur sehr wenig darüber bekannt, wie diese Nickel-Bindeproteine auf post-transkriptioneller Ebene reguliert werden. Interessanterweise wurden mehr als 60 sRNA-Kandidaten (engl. small RNA für dt. kleine RNA) durch eine differentielle RNA-seq Methode im H. pylori Stamm 26695 identifiziert. Dies legt eine nicht charakterisierte Ebene post-transkriptioneller Riboregulierung in diesem Pathogen nahe. sRNAs kontrollieren ihre trans- oder cis-kodierten Zielgene durch direkte Interaktion. Viele der charakterisierten sRNAs werden als Antwort auf spezifische Umweltsignale exprimiert und stellen ideale Kandidaten für post-transkriptionelle Regulatoren unter verschiedenen Wachstumsbedingungen dar. In dieser Arbeit wird gezeigt, dass die kleine RNA ArsZ (engl. acid responsive sRNA Z für dt. säureabhängige sRNA Z) und ihr Zielgen HP1432 ein zusätzliches Level der Urease-Regulierung darstellen. In-vitro und in-vivo Experimente zeigen, dass ArsZ mit der Ribosomenbindestelle (RBS) der HP1432 mRNA interagiert, wodurch dessen Translation verhindert wird. Während der Säureanpassung verhindert das säureabhängige ArsRS Zweikomponentensystem die Expression von ArsZ. Zusammen regulieren ArsRS und ArsZ das Zielgen HP1432 in Form eines kohärenten Feed-forward-loops (FFL). ArsZ agiert hier als Verzögerungsmechanismus, um sicherzustellen, dass sich bei einem transienten Abfall des pH-Wertes das Proteinlevel von HP1432 nicht abrupt verändert. Nach pH-Änderungen vermittelt ArsZ eine Feinregulierung der Ureaseaktivität, vermutlich indem es durch die post-transkriptionelle Kontrolle der HP1432 Expression die Verfügbarkeit von Nickel verändert. Interessanterweise aktiviert ArsZ nach der Säureanpassung indirekt die Transkription von HP1432 und schließt dadurch einen inkohärenten FFL mit ArsRS zur Regulierung von HP1432. Diese Studie identifizierte einen Nicht-Standard-FFL, in dem ArsZ abhängig von dem Status der Säureadaptation in zwei verschiedenen Netzwerkkonfigurationen direkt oder indirekt agieren kann. Bioinformatorische Analysen unterstützen die Relevanz von ArsZ in der Säureantwort von H. pylori zusätzlich. Hierbei kann gezeigt werden, dass die Evolution von ArsZ mit dem Aufkommen moderner H. pylori Stämme einhergeht, die weltweit Menschen infizieren. In nicht-pylori Helicobacter Spezies konnten keine Homologe von arsZ gefunden werden. Zudem zeigt diese Studie, dass die physiologische Rolle einer sRNA ohne ihre artifizielle Überexpression aufgeklärt werden kann, eine standard-mäßige Herangehensweise zur Charakterisierung kleiner RNAs. In Kombination mit Zeitverlaufsexperimenten konnte die zeitabhängige Regulierung von Zielgenen durch ArsZ unter natürlicheren Bedingungen untersucht werden. ArsZ ist das erste Beispiel einer trans-agierenden sRNA die ein Nickel-Speicherprotein reguliert, um die Reifung der Apo-Urease zu modulieren. Diese Ergebnisse können wichtige Informationen liefern, um die Aktivierung des Urease Enzyms besser zu verstehen und um damit detailliertere Einblicke in die Kolonisierungsfähigkeit von H. pylori zu gewinnen, dem bislang einzigen bakteriellen Klasse-I-Karzinogen (WHO, 1994). KW - Small RNA KW - Helicobacter pylori KW - Feedforward loop KW - Acid adaptation KW - HP1432, Hpn2 KW - ArsZ Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-150671 ER - TY - THES A1 - Fuchs, Manuela T1 - Global discovery and functional characterization of Hfq-associated sRNA-target networks in \(C.\) \(difficile\) T1 - Globale Identifizierung und funktionelle Charakterisierung von Hfq-assoziierten sRNA-Zielnetzwerken in \(C.\) \(difficile\) N2 - In this work, dRNA-seq (differential RNA sequencing) and RNAtag-seq were applied to first define the global transcriptome architecture of C. difficile, followed by Hfq RIP-seq (RNA immunoprecipitation followed by RNA-seq) and RIL-seq (RNA interaction by ligation and sequencing) to characterize the Hfq-mediated sRNA interactome on a transcriptome-wide scale. These approaches resulted in the annotation of > 60 novel sRNAs. Notably, it not only revealed 50 Hfq-bound sRNAs, but also > 1000 mRNA-sRNA interactions, confirming Hfq as a global RNA matchmaker in C. difficile. Similar to its function in Gram-negative species, deletion of Hfq resulted in decreased sRNA half-lives, providing evidence that Hfq affects sRNA stability in C. difficile. Finally, several sRNAs and their function in various infection relevant conditions were characterized. The sRNA nc085 directly interacts with the two-component response regulator eutV, resulting in regulation of ethanolamine utilization, an abundant intestinal carbon and nitrogen source known to impact C. difficile pathogenicity. Meanwhile, SpoY and SpoX regulate translation of the master regulator of sporulation spo0A in vivo, thereby affecting sporulation initiation. Furthermore, SpoY and SpoX deletion significantly impacts C. difficile gut colonization and spore burden in a mouse model of C. difficile infection. N2 - Der anaerobe Gram-positive humanpathogene Erreger Clostridioides difficile (C. difficile) gilt als Hauptursache für nosokomiale Antibiotika-assoziierte Diarrhöe. Verschiedene Virulenzfaktoren und -eigenschaften beeinflussen das Fortschreiten und den Schweregrad der Krankheit, darunter Toxinexpression und Sporenbildung. Kleine regulatorische RNAs (sRNAs) sind bekannte post- transkriptionelle Regulatoren von Virulenz- und Stress-assoziierten Stoffwechselwegen in vielen pathogenen Bakterien. In Gram-negativen Arten wird sRNA-abhängige post-transkriptionelle Regulierung häufig durch das RNA-Chaperon Hfq vermittelt, welches die sRNA-mRNA- Basenpaarung erleichtert. Trotz ihrer Bedeutung in Gram-negativen Bakterien ist vergleichsweise wenig über die verschiedenen Aspekte der post-transkriptionellen Regulation in Gram-positiven Arten bekannt. Erste Daten deuten auf eine wichtige Funktion von Hfq bei der Regulierung verschiedener infektionsassoziierter Signalwege in C. difficile hin, sowie auf die Existenz eines umfangreichen post-transkriptionellen Netzwerks. Eine globale Identifizierung von Hfq- assoziierten RNAs und deren Einfluss auf die Virulenz von und Kolonisierung durch C. difficile ist jedoch bisher noch nicht erfolgt. In dieser Arbeit wurde dRNA-seq (differentielle RNA-Sequenzierung) und RNAtag-seq angewandt, um zunächst die globale Transkriptom-Architektur von C. difficile zu definieren. Anschließend wurde Hfq RIP-seq (RNA-Immunpräzipitation gefolgt von RNA-seq) und RIL-seq (RNA-Interaktion durch Ligation und Sequenzierung) durchgeführt, um das Hfq-vermittelte sRNA-Interaktom auf globaler Ebene zu charakterisieren. Diese Ansätze führten zur Annotation von > 60 neuen sRNAs. Darüber hinaus wurden 50 Hfq-gebundene sRNAs, sowie > 1000 mRNA- sRNA-Interaktionen identifiziert, wodurch Hfq als globaler RNA-Matchmaker in C. difficile bestätigt wurde. Analog zu seiner Funktion in Gram-negativen Arten, führte die Deletion von Hfq zu verringerten sRNA-Halbwertszeiten, was darauf hindeutet, dass Hfq die sRNA-Stabilität in C. difficile beeinflusst. Schließlich wurden mehrere sRNAs und ihre Funktion unter verschiedenen infektionsrelevanten Bedingungen charakterisiert. Die sRNA nc085 interagiert direkt mit dem Zweikomponenten-Regulator eutV, was zu einer Regulierung der Ethanolaminverwertung führt. Als häufig vorkommenden Kohlenstoff- und Stickstoffquelle im Darm, kann Ethanolamin die Pathogenität von C. difficile beeinflussen. SpoY und SpoX regulieren dagegen die Translation des Hauptregulators der Sporulation spo0A in vivo und damit die Sporulationsinitiation. Darüber hinaus hat die Deletion von SpoY und SpoX signifikante Auswirkungen auf die Besiedlung des Darms mit C. difficile sowie die Sporenbelastung in einem Mausmodell der C. difficile-Infektion. Insgesamt liefert diese Arbeit Beweise für eine umfassende Hfq-abhängige post-transkriptionelle Regulierung, die die Physiologie und Virulenz eines Gram-positiven Erregers beeinflusst. Auch wenn mit dieser Arbeit die Charakterisierung der sRNA-vermittelten Regulation in C. difficile gerade erst begonnen hat, können die RIL-seq-Daten als Grundlage für zukünftige mechanistische Studien der RNA-basierten Genregulation in C. difficile herangezogen werden. KW - Clostridium difficile KW - Non-coding RNA KW - Small RNA KW - RNA-bindendes Protein KW - Sporulation KW - post-transcriptional regulation KW - anaerobe KW - Gram-positive KW - differential RNA-seq KW - transcriptional termination site KW - Hfq KW - RIL-seq KW - Spo0A KW - RNS-Bindungsproteine KW - Sporenbildung Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-345982 ER - TY - THES A1 - Fröhlich, Kathrin T1 - Assigning functions to Hfq-dependent small RNAs in the model pathogen Salmonella Typhimurium T1 - Funktionelle Charakterisierung Hfq-abhängiger kleiner RNAs im Modellpathogen Salmonella Typhimurium N2 - Non-coding RNAs constitute a major class of regulators involved in bacterial gene expression. A group of riboregulators of heterogeneous size and shape referred to as small regulatory RNAs (sRNAs) control trans- or cis-encoded genes through direct base-pairing with their mRNAs. Although mostly inhibiting their target mRNAs, several sRNAs also induce gene expression. An important co-factor for sRNA activity is the RNA chaperone, Hfq, which is able to rearrange intramolecular secondary structures and to promote annealing of complementary RNA sequences. In addition, Hfq protects unpaired RNA from degradation by ribonucleases and thus increases sRNA stability. Co-immunoprecipitation of RNA with the Hfq protein, and further experimental as well as bioinformatical studies performed over the last decade suggested the presence of more than 150 different sRNAs in various Enterobacteria including Escherichia coli and Salmonellae. So-called core sRNAs are considered to fulfill central cellular activities as deduced from their high degree of conservation among different species. Approximately 25 core sRNAs have been implicated in gene regulation under a variety of environmental responses. However, for the majority of sRNAs, both the riboregulators’ individual biological roles as well as modes of action remain to be elucidated. The current study aimed to define the cellular functions of the two highly conserved, Hfq-dependent sRNAs, SdsR and RydC, in the model pathogen Salmonella Typhimurium. SdsR had been known as one of the most abundant sRNAs during stationary growth phase in E. coli. Examination of the conservation patterns in the sdsR promoter region in combination with classic genetic analyses revealed SdsR as the first sRNA under direct transcriptional control of the alternative σ factor σS. In Salmonella, over-expression of SdsR down-regulates the synthesis of the major porin OmpD, and the interaction site in the ompD mRNA coding sequence was mapped by a 3'RACE-based approach. At the post-transcriptional level, expression of ompD is controlled by three additional sRNAs, but SdsR plays a specific role in porin regulation during the stringent response. Similarly, RydC, the second sRNA adressed in this study, was initially discovered in E. coli but appeared to be conserved in many related γ-proteobacteria. An interesting aspect of this Hfq-dependent sRNAs is its secondary structure involving a pseudo-knot configuration, while the 5’ end remains single stranded. A transcriptomic approach combining RydC pulse-expression and scoring of global mRNA changes on microarrays was employed to identify the targets of this sRNA. RydC specifically activated expression of the longer of two versions of the cfa mRNA encoding for the phospholipid-modifying enzyme cyclopropane fatty acid synthase. Employing its conserved single-stranded 5' end, RydC acts as a positive regulator and masks a recognition site of the endoribonuclease, RNase E, in the cfa leader. N2 - Die bakterielle Genexpression wird unter anderem maßgeblich von nicht-kodierenden RNAs bestimmt. Kleine regulatorische RNAs (sRNAs) sind eine bezüglich Größe und Struktur heterogene Gruppe von Riboregulatoren, die ihre in cis oder in trans-kodierten Zielgene mittels direkter Basenpaarungen kontrollieren. Während der Großteil der sRNAs reprimierend wirkt, konnte für einige RNAs gezeigt werden, dass sie die Expression ihres Zieltranskripts verstärken. Ein wichtiger Kofaktor für die regulatorische Funktion der sRNAs ist das RNA-Chaperon Hfq, welches sowohl die Umfaltung intramolekularer Sekundärstrukturen ermöglicht, als auch die Ausbildung von Basenpaarungen zwischen komplementären RNA-Sequenzen steuert. Zusätzlich schützt Hfq nicht-gepaarte RNAs vor dem Abbau durch Ribonukleasen, und trägt damit zur Stabilität der Moleküle bei. Durch Ko-Immunopräzipitation mit Hfq sowie in weiteren experimentellen als auch bioinformatischen Studien konnten im letzten Jahrzehnt in diversen Enterobakterien, wie z.B. auch Escherichia coli und Salmonellae, mehr als 150 verschiedene sRNAs bestimmt werden. Von so genannten "core sRNAs" (Kern-sRNAs) wird aufgrund ihres hohen Grades an Konservierung in unterschiedlichen Spezies angenommen, dass sie zentrale Funktionen erfüllen. Etwa 25 core sRNAs agieren unter verschiedenen Umweltbedingungen als Regulatoren. Ihre exakte biologische Rolle, sowie ihre Funktionsweise sind jedoch größtenteils noch unbekannt. In der vorliegenden Arbeit wurden die beiden konservierten, Hfq-abhängigen sRNAs, SdsR und RydC, im Modellpathogen Salmonella Typhimurium charakterisiert. SdsR war als eine der abundantesten sRNAs der stationären Phase in E. coli beschrieben worden. Durch Auswertung der Konservierungsmuster der sdsR Promotorsequenz sowie klassische genetische Analyse konnte SdsR als erste sRNA unter direkter Kontrolle des alternativen σ Faktors σS bestimmt werden. In Salmonella führt die Überexpression von SdsR zur Reprimierung des Membranporins OmpD, und die Bindestelle von SdsR auf dem ompD Transkript wurde mittels einer auf 3'-RACE basierenden Methode ermittelt. Obwohl die Expression von ompD auf post-transkriptionaler Ebene von drei weiteren sRNAs kontrolliert wird, konnte eine spezische Regulation des Porins durch SdsR während Aminosäure-Hungerung gezeigt werden. Auch RydC, die zweite in dieser Studie analysierte sRNA, wurde zunächst in E. coli beschrieben und ist aber auch in weiteren γ-Proteobakterien konserviert. Interessanterweise enthält die Sekundärstruktur dieser Hfq-abhängigen sRNA einen Pseudoknoten, während das 5'-Ende ungepaart ist. Die Zielgene von RydC wurden mittels einer Transkriptomanalyse bestimmt, in der die Änderung der Häufigkeitsverteilung aller mRNAs nach kurzzeitiger Überexpression der sRNA auf Microarrays untersucht wurde. RydC bewirkte die spezifische Aktivierung des längeren von insgesamt zwei Versionen der cfa mRNA, die für eine Cyclopropan-fettsäuresynthase kodiert, ein Enzym das zur Modifikation von Phospholipiden dient. Eine Basenpaarung über das freie 5'-Ende der sRNA RydC führt zur Aktivierung der cfa-Expression, und maskiert eine Erkennungssequenz der Endoribonuklease, RNase E, innerhalb des Transkripts. KW - Small RNA KW - Genexpression KW - Hfq KW - Small RNA KW - Hfq KW - Salmonella KW - Salmonella typhimurium Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-85488 ER - TY - THES A1 - Erbacher, Christoph T1 - Systemic and local mechanisms of small fiber pathology in female patients with fibromyalgia syndrome T1 - Systemische und lokale Mechanismen der Kleinfaserpathologie bei Patientinnen mit Fibromyalgie Syndrom N2 - Fibromyalgia syndrome (FMS) is a largely heterogeneous chronic pain syndrome of unclear pathophysiology, which lacks objective diagnostics and specific treatment. An immune-related shift towards a pro-inflammatory profile is discussed at a systemic level. Small fiber pathology (SFP) and local participation of non-neuronal skin cells like keratinocytes in cutaneous nociception are potential peripheral contributors. Small RNAs, particularly microRNAs (miRs) and newly described tRNA fragments (tRFs) act as posttranscriptional key regulators of gene expression and may modulate systemic and peripheral cell pathways. On cellular level, the exact mechanisms of keratinocyte-intraepidermal nerve fiber (IENF) interaction in the skin are insufficiently understood. Via small RNA sequencing and quantitative real-time PCR, we investigated miR and tRF signatures in whole blood cells and skin biopsy-derived keratinocytes of female FMS patients versus healthy controls. We applied gene target prediction analysis to uncover underlying cellular pathways affected by dysregulated small RNAs. Altered FMS small RNAs from blood were compared with their expression in disease controls, i.e. Parkinson`s patients and patients with major depression and chronic pain. Association of SFP with small RNAs was investigated via correlation with clinical parameter. To explore keratinocyte-nerve fiber interactions with high relevance for SFP and cutaneous nociception, we adapted a super-resolution array tomography (srAT) approach and expansion microscopy (ExM) for human skin samples. Further, we created a fully human 2D co-culture model of primary keratinocytes and induced pluripotent stem cell derived sensory neurons. Blood miR deregulation indicated systemic modulation of immune processes exerted by CholinomiRs and by miRs targeting the FoxO signaling pathway. Short sized tRFs were associated with mRNA metabolism and splicing. This supports the hypothesis of an inflammatory/autoimmunity component in FMS. Expression of blood small RNAs in FMS were discriminative against disease controls, highlighting their potential as objective biomarker. Blood small RNAs were predominantly upregulated and correlations between miR and clinical parameter reflected rather pain in general than SFP. In FMS keratinocytes, a downregulation of miRs and tRFs was evident. Pathways for adenosine monophosphate-activated protein kinase (AMPK), adherens junction, and focal adhesion were predicted to be affected by miRs, while tRFs may influence proliferation, migration, and cell growth. Similar to blood miRs, altered miRs in keratinocytes correlated mostly with widespread pain and pain severity parameter. TRFs were partially associated with more severe IENF loss. Small RNAs in FMS keratinocytes may modulate pathways that define how keratinocytes interact with each other and with IENF. These interactions include nerve fiber ensheathment, a conserved epithelial mechanism, which we visualize in human epidermis and a fully human co-culture model. Additionally, we revealed plaques of connexin 43, a pore forming protein involved in intercellular communication, at keratinocyte- nerve fiber contact sites. Objective quantification of these morphological findings in FMS and other diseases with SFP may inherit diagnostic value similar to IENF density. We provide evidence for distinct miR and tRF signatures in FMS with implications for systemic immune regulation and local cell-cell interaction pathways. In the periphery we explored novel keratinocyte-nerve fiber interactions relevant for SFP and cutaneous nociception. N2 - Das Fibromyalgie Syndrom (FMS) umfasst ein sehr heterogenes chronisches Schmerzsyndrom mit ungeklärter Pathophysiologie, ohne objektive Diagnostik und gezielt wirkende Behandlungsmöglichkeiten. Auf systemischer Ebene wird eine entzündungsfördernde Verschiebung von Immunprozessen diskutiert. In der Peripherie stellen die Kleinfaserpathologie (SFP) und Beteiligungen nicht-neuronaler Hautzellen, beispielsweise Keratinozyten, an kutaner Nozizeption potenziell beitragende Faktoren dar. Kleine RNAs, vor allem microRNAs (miRs) und die kürzlich beschriebenen tRNA Fragmente (tRFs) agieren als posttranskriptionelle Schlüsselregulatoren der Genexpression und könnten daher systemische und periphere Zellprozesse modulieren. Die genauen zellulären Mechanismen bei der Interaktion von Keratinozyten mit intraepidermalen Nervenfasern (IENF) in der Haut sind nur unzureichend verstanden. Mittels Sequenzierung von kleinen RNAs und quantitativer Real-Time PCR untersuchten wir miR und tRF Signaturen in Vollblutzellen und in durch Hautbiopsie gewonnene Keratinozyten von FMS Patientinnen im Vergleich zu gesunden weiblichen Kontrollen. Um zugrundeliegende Zellprozesswege aufzudecken, die von der Deregulierung kleiner RNAs betroffen sind, verwendeten wir Vorhersageprogramme für regulierte Gene. In FMS verändert vorliegende kleine RNAs im Blut verglichen wir mit ihrer Expression in Krankheitskontrollen, d.h. Parkinson Patientinnen und Patientinnen mit schwerer Depression und chronischem Schmerz. Die Beziehung zwischen SFP und kleinen RNAs wurde mittels der Korrelation mit klinischen Parametern untersucht. Zur Erforschung von Keratinozyten-Nervenfaser Interaktionen, mit großer Relevanz für SFP und kutane Nozizeption, adaptierten wir eine superauflösende Array-Tomographie (srAT) Methodik und Expansionsmikroskopie (ExM) für humane Hautproben. Außerdem entwickelten wir ein rein humanes 2D Ko-Kultur Zellmodell, bestehend aus primären Keratinozyten und sensiblen Neuronen, die aus induzierten pluripotenten Stammzellen generiert wurden. MiR Deregulierungen in Blut wiesen auf systemische Modulierung von Immunprozessen hin, ausgeübt durch CholinomiRs und miRs, die auf den FoxO Signalweg einwirken. Die tRFs mit kurzer Fragmentlänge waren mit mRNA Metabolismus und Splicing verknüpft. Diese Ergebnisse unterbauen die Hypothese einer entzündungsfördernden/autoimmunen Komponente in FMS. Die Expression kleiner RNAs aus FMS Blut war unterschiedlich zu Krankheitskontrollen, was ihr Potenzial als objektive Biomarker hervorhebt. Kleine RNAs im Blut waren überwiegend erhöht exprimiert und Korrelation zwischen miRs und klinischen Parametern spiegelten eher Schmerzen im Allgemeinen wider als SFP. In Keratinozyten von FMS Patientinnen war eine Herunterregulierung von miRs und tRFs ersichtlich. Der Signalweg der Adenosinmonophosphat aktivierten Proteinkinase (AMPK), sowie Adherens Junction und Fokale Adhäsion waren prognostiziere Prozesse unter Einfluss von miRs. Ähnlich wie bei den Blut miRs, korrelierten veränderte miRs in Keratinozyten vor allem mit der Verbreitung des Schmerzes über den Körper und der Schmerzintensität. TRFs waren teilweise mit einem höheren Verlust an IENF verknüpft. Kleine RNAs in Keratinozyten von FMS Patientinnen könnten jene Prozesse modulieren, die festlegen, wie Keratinozyten miteinander und mit IENF interagieren. Diese Interaktionen beinhalten den konservierten Mechanismus der Nervenfaserumhüllung, den wir in humaner Epidermis und einem komplett humanen Ko-Kultur Modell auflösen konnten. Zusätzlich zeigten wir Anhäufungen von Connexin 43, einem an interzellulärer Kommunikation beteiligten porenformenden Protein, an Keratinozyten-Nervenfaser Kontaktstellen. Eine objektive Quantifizierung dieser morphologischen Befunde in FMS und weiteren Erkrankungen mit SFP könnte einen diagnostischen Wert vergleichbar mit dem der IENF Dichte innehaben. Wir liefern Belege für klare miR und tRF Signaturen in FMS mit Bedeutung für systemische Immunregulation und lokale Zell-Zell Interaktionsprozesse. In der Peripherie erkundeten wir neueartige Keratinozyten-Nervenfaser Interaktionen relevant für SFP und kutane Nozizeption. KW - Fibromyalgiesyndrom KW - Small RNA KW - Keratinozyt KW - Mikroskopie KW - Fibromyalgia syndrome KW - small RNA expression KW - super-resolution microscopy KW - Fibromyalgie Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-290203 ER - TY - THES A1 - Alzheimer, Mona T1 - Development of tissue-engineered three-dimensional infection models to study pathogenesis of \(Campylobacter\) \(jejuni\) T1 - Entwicklung dreidimensionaler Infektionsmodelle basierend auf Gewebezüchtung zur Erforschung der Pathogenese von \(Campylobacter\) \(jejuni\) N2 - Infectious diseases caused by pathogenic microorganisms are one of the largest socioeconomic burdens today. Although infectious diseases have been studied for decades, in numerous cases, the precise mechanisms involved in the multifaceted interaction between pathogen and host continue to be elusive. Thus, it still remains a challenge for researchers worldwide to develop novel strategies to investigate the molecular context of infectious diseases in order to devise preventive or at least anti-infective measures. One of the major drawbacks in trying to obtain in-depth knowledge of how bacterial pathogens elicit disease is the lack of suitable infection models to authentically mimic the disease progression in humans. Numerous studies rely on animal models to emulate the complex temporal interactions between host and pathogen occurring in humans. While they have greatly contributed to shed light on these interactions, they require high maintenance costs, are afflicted with ethical drawbacks, and are not always predictive for the infection outcome in human patients. Alternatively, in-vitro two-dimensional (2D) cell culture systems have served for decades as representatives of human host environments to study infectious diseases. These cell line-based models have been essential in uncovering virulence-determining factors of diverse pathogens as well as host defense mechanisms upon infection. However, they lack the morphological and cellular complexity of intact human tissues, limiting the insights than can be gained from studying host-pathogen interactions in these systems. The focus of this thesis was to establish and innovate intestinal human cell culture models to obtain in-vitro reconstructed three-dimensional (3D) tissue that can faithfully mimic pathogenesis-determining processes of the zoonotic bacterium Campylobacter jejuni (C. jejuni). Generally employed for reconstructive medicine, the field of tissue engineering provides excellent tools to generate organ-specific cell culture models in vitro, realistically recapitulating the distinctive architecture of human tissues. The models employed in this thesis are based on decellularized extracellular matrix (ECM) scaffolds of porcine intestinal origin. Reseeded with intestinal human cells, application of dynamic culture conditions promoted the formation of a highly polarized mucosal epithelium maintained by functional tight and adherens junctions. While most other in-vitro infection systems are limited to a flat monolayer, the tissue models developed in this thesis can display the characteristic 3D villi and crypt structure of human small intestine. First, experimental conditions were established for infection of a previously developed, statically cultivated intestinal tissue model with C. jejuni. This included successful isolation of bacterial colony forming units (CFUs), measurement of epithelial barrier function, as well as immunohistochemical and histological staining techniques. In this way, it became possible to follow the number of viable bacteria during the infection process as well as their translocation over the polarized epithelium of the tissue model. Upon infection with C. jejuni, disruption of tight and adherens junctions could be observed via confocal microscopy and permeability measurements of the epithelial barrier. Moreover, C. jejuni wildtype-specific colonization and barrier disruption became apparent in addition to niche-dependent bacterial localization within the 3D microarchitecture of the tissue model. Pathogenesis-related phenotypes of C. jejuni mutant strains in the 3D host environment deviated from those obtained with conventional in-vitro 2D monolayers but mimicked observations made in vivo. Furthermore, a genome-wide screen of a C. jejuni mutant library revealed significant differences for bacterial factors required or dispensable for interactions with unpolarized host cells or the highly prismatic epithelium provided by the intestinal tissue model. Elucidating the role of several previously uncharacterized factors specifically important for efficient colonization of a 3D human environment, promises to be an intriguing task for future research. At the frontline of the defense against invading pathogens is the protective, viscoelastic mucus layer overlying mucosal surfaces along the human gastrointestinal tract (GIT). The development of a mucus-producing 3D tissue model in this thesis was a vital step towards gaining a deeper understanding of the interdependency between bacterial pathogens and host-site specific mucins. The presence of a mucus layer conferred C. jejuni wildtype-specific protection against epithelial barrier disruption by the pathogen and prevented a high bacterial burden during the course of infection. Moreover, results obtained in this thesis provide evidence in vitro that the characteristic corkscrew morphology of C. jejuni indeed grants a distinct advantage in colonizing mucous surfaces. Overall, the results obtained within this thesis highlight the strength of the tissue models to combine crucial features of native human intestine into accessible in-vitro infection models. Translation of these systems into infection research demonstrated their ability to expose in-vivo like infection outcomes. While displaying complex organotypic architecture and highly prismatic cellular morphology, these tissue models still represent an imperfect reflection of human tissue. Future advancements towards inclusion of human primary and immune cells will strive for even more comprehensive model systems exhibiting intricate multicellular networks of in-vivo tissue. Nevertheless, the work presented in this thesis emphasizes the necessity to investigate host-pathogen interactions in infection models authentically mimicking the natural host environment, as they remain among the most vital parts in understanding and counteracting infectious diseases. N2 - In der heutigen Zeit tragen insbesondere durch pathogene Mikroorganismen ausgelöste Infektionskrankheiten zur sozioökonomischen Belastung bei. Obwohl bereits jahrzehntelang an der Entstehung von Infektionskrankheiten geforscht wird, bleiben in zahlreichen Fällen die genauen Mechanismen, welche an den vielfältigen Interaktionen zwischen Pathogen und Wirt beteiligt sind, unbeschrieben. Gerade deshalb bleibt es für Wissenschaftler weltweit eine Herausforderung, neue Strategien zur Untersuchung des molekularen Kontexts von Infektionskrankheiten zu entwickeln, um präventive oder zumindest anti-infektive Maßnahmen ergreifen zu können. In den meisten Fällen ist jedoch das Fehlen geeigneter Infektionsmodelle, mit denen der Krankheitsverlauf im Menschen authentisch nachgestellt werden kann, eines der größten Hindernisse um detailliertes Wissen darüber gewinnen zu können wie bakterielle Pathogene die Krankheit auslösen. Zahlreiche Studien sind dabei auf Tiermodelle angewiesen, um die komplexen zeitlichen Abläufe zwischen Wirt und Pathogen im menschlichen Körper nachzuahmen. Während diese Modelle in hohem Maß dazu beigetragen haben, Aufschluss über diese Abläufe zu geben, sind sie doch sehr kostenintensiv, mit ethischen Bedenken behaftet und können nicht immer die Folgen einer Infektion im menschlichen Patienten vorhersagen. Seit Jahrzehnten werden daher alternativ in-vitro 2D Zellkultursysteme eingesetzt, um den Verlauf von Infektionskrankheiten zu erforschen, welche die Bedingungen im menschlichen Wirt wiederspiegeln sollen. Diese auf Zelllinien basierenden Modelle sind essentiell in der Entdeckung von Virulenzfaktoren diverser Pathogene, aber auch in der Aufklärung von wirtsspezifischen Abwehrmechanismen. Dennoch fehlt ihnen die morphologische und zelluläre Komplexität von intaktem menschlichen Gewebe. Dadurch sind die Erkenntnisse, die mit diesen Systemen über Infektionsverläufe gewonnen werden können, limitiert. Die vorgelegte Arbeit konzentriert sich auf die Etablierung und Weiterentwicklung intestinaler, humaner Zellkulturmodelle, um dreidimensionales Gewebe in vitro zu rekonstruieren mit dem Ziel, Pathogenese-beeinflussende Prozesse des zoonotischen Bakteriums C. jejuni nachzustellen. Das Fachgebiet der Gewebezüchtung wird üblicherweise für rekonstruktive Medizin eingesetzt und bietet exzellente Mittel zur in-vitro Herstellung organspezifischer Zellkulturmodelle, welche die unverkennbare Mikroarchitektur humanen Gewebes realistisch nachempfinden können. Die in dieser Arbeit verwendeten Modelle basieren auf einem extrazellulären Matrixgerüst, das aus der Dezellularisierung von Schweinedarm gewonnen wurde. Durch die Wiederbesiedelung mit human Kolonzellen und der Kultivierung unter dynamischen Bedingungen entwickelte sich ein hochpolarisiertes mucosales Epithel, das durch funktionale Zell-Zell-Kontakte (tight und adherens junctions) aufrechterhalten wird. Während andere in-vitro Infektionssysteme meist durch die Präsenz einer flachen Zellschicht limitiert werden, entwickelt das in dieser Arbeit eingeführte Gewebemodell die für den menschlichen Dünndarm charakteristische Architektur aus Villi und Krypten. Zunächst wurden experimentelle Bedingungen für die Infektion eines zuvor entwickelten, statisch kultivierten Dünndarmmodells mit C. jejuni etabliert. Dies beinhaltete die erfolgreiche Isolierung koloniebildender Einheiten, die Messung der epithelialen Barrierefunktion, sowie immunhistochemische und histologische Färbetechniken. Dadurch konnte die Anzahl der Bakterien sowie deren Translokalisierung über das polarisierte Epithel während des Infektionsprozesses nachvollzogen werden. Außerdem konnte die Beeinträchtigung von Zell-Zell-Kontakten durch konfokale Mikroskopie und Permeabilitätsmessungen der epithelialen Barriere beobachtet werden. Neben der Bestimmung der Kolonisierungsrate von C. jejuni Isolaten und der dadurch hervorgerufenen spezifischen Zerstörung der epithelialen Barriere konnten die Bakterien auch innerhalb der 3D Mikroarchitektur des Gewebemodells lokalisiert werden. Außerdem konnte im Rahmen der 3D Gewebeumgebung beobachtet werden, dass Pathogenese-relevante Phänotypen von C. jejuni Mutantenstämmen im Vergleich zu konventionellen in-vitro 2D Zellschichten abwichen, diese aber dafür mit den in-vivo gemachten Beobachtungen übereinstimmten. Darüber hinaus wies die genomweite Suche einer C. jejuni Mutantenbibliothek signifikante Unterschiede zwischen bakteriellen Faktoren, die für die Interaktion mit nicht polarisierten Wirtszellen oder dem hochprismatischen Epithel des Gewebemodells bedeutsam oder entbehrlich waren, auf. Die Aufklärung der Funktion einiger bisher nicht charakterisierter Faktoren, die zu einer effizienten Kolonisierung menschlichen Gewebes beitragen, verspricht eine faszinierende Aufgabe für die zukünftige Forschung zu werden. Die vorderste Verteidigungslinie gegen eindringende Pathogene bildet die schützende, viskoelastische Mukusschicht, die mukosale Oberflächen entlang des menschlichen Gastrointestinaltrakts überzieht. Mit der Entwicklung eines mukusproduzierenden Gewebemodells in der hier vorgelegten Arbeit gelang ein entscheidender Schritt zur Erforschung der Wechselbeziehungen zwischen bakteriellen Pathogenen und wirtsspezifischen Muzinen. Während des Infektionsverlaufs wurde das unterliegende Epithel durch die Anwesenheit der Mukusschicht vor der Zerstörung durch die Mikroben geschützt und eine erhöhte bakterielle Belastung verhindert. Darüber hinaus liefern die Resultate dieser Arbeit einen in-vitro Nachweis für den bakteriellen Vorteil einer spiralförmigen Morphologie, um muköse Oberflächen zu besiedeln. Zusammenfassend unterstreicht diese Arbeit das Potential der hier entwickelten Gewebemodelle, entscheidende Eigenschaften des menschlichen Darms in einem leicht zugänglichen in-vitro Infektionsmodell zu vereinigen. Der Einsatz dieser Modelle im Rahmen der Infektionsforschung bewies deren Fähigkeit in-vivo beobachtete Infektionsverläufe widerzuspiegeln. Während diese Infektionsmodelle bereits organotypische Architektur und hochprismatische Zellmorphologie aufweisen, ist ihre Darstellung von menschlichem Gewebe noch nicht perfekt. Durch den Einsatz von humanen Primär- und Immunzellen wird es in Zukunft möglich sein, noch umfassendere Modellsysteme zu entwickeln, die komplexe multizelluläre Netzwerke von in-vivo Geweben aufweisen. Nichtsdestotrotz verdeutlicht die hier vorgelegte Arbeit wie wichtig es ist, die Interaktionen zwischen Wirt und Pathogen innerhalb von Infektionsmodellen zu erforschen, welche die natürliche Wirtsumgebung wiedergeben. Dies spielt eine entscheidende Rolle, um die Entstehung von Infektionskrankheiten nachvollziehen und ihnen entgegenwirken zu können. KW - Campylobacter jejuni KW - Tissue Engineering KW - Small RNA KW - 3D tissue model KW - Bacterial infection KW - 3D Gewebemodelle KW - Bakterielle Infektion KW - 3D cell culture KW - Infection models Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-193440 ER -