TY - RPRT A1 - Stawski, Theresa Paola A1 - Lauth, Hans-Joachim T1 - The Stateness Index (StIx) – Conceptual Design and Empirical Results N2 - Exploring and explaining diversity and patterns of stateness is crucial for understanding causes of efficiency, duration, or the collapse of a state. The new Stateness Index (StIx) contributes to the conceptual and analytical debate on stateness and state fragility. StIx is a tool for measuring stateness and state quality since 1950 that includes country-ranking through aggregated and disaggregated data to advance performance comparison and policy analysis. This article first sums up the main theoretical aspects, followed by descriptive results. T3 - Würzburger Arbeitspapiere zur Politikwissenschaft und Soziologie (WAPS) - 15 KW - Begrenzte Staatlichkeit KW - Staat KW - Messung KW - Index KW - Fragile Staaten KW - Staat KW - Messung KW - Index KW - Fragilität KW - State KW - Measurement KW - Index KW - Fragility Y1 - 2024 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-347616 ER - TY - JOUR A1 - Plötz, P.-A. A1 - Polyutov, S. P. A1 - Ivanov, S. D. A1 - Fennel, F. A1 - Wolter, S. A1 - Niehaus, T. A1 - Xie, Z. A1 - Lochbrunner, S. A1 - Würthner, Frank A1 - Kühn, O. T1 - Biphasic aggregation of a perylene bisimide dye identified by exciton-vibrational spectra JF - Physical Chemistry Chemical Physics N2 - The quantum efficiency of light emission is a crucial parameter of supramolecular aggregates that can be tuned by the molecular design of the monomeric species. Here, we report on a strong variation of the fluorescence quantum yield due to different phases of aggregation for the case of a perylene bisimide dye. In particular, a change of the dominant aggregation character from H- to J-type within the first aggregation steps is found, explaining the observed dramatic change in quantum yield. This behaviour is rationalised by means of a systematic study of the intermolecular potential energy surfaces using the time-dependent density functional based tight-binding (TD-DFTB) method. This provides a correlation between structural changes and a coupling strength and supports the notion of H- type stacked dimers and J-type stack-slipped dimers. The exciton-vibrational level structure is modelled by means of an excitonic dimer model including two effective vibrational modes per monomer. Calculated absorption and fluorescence spectra are found to be in reasonable agreement with experimental ones, thus supporting the conclusion on the aggregation behaviour. KW - Potential-energy curves KW - Simulations KW - Molecular-dynamics KW - Systems KW - Fluorescence KW - Sracking KW - Pathway KW - Dimers KW - State Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-187387 VL - 18 IS - 36 ER -