TY - JOUR A1 - Welker, Armin A1 - Kersten, Christian A1 - Müller, Christin A1 - Madhugiri, Ramakanth A1 - Zimmer, Collin A1 - Müller, Patrick A1 - Zimmermann, Robert A1 - Hammerschmidt, Stefan A1 - Maus, Hannah A1 - Ziebuhr, John A1 - Sotriffer, Christoph A1 - Schirmeister, Tanja T1 - Structure‐Activity Relationships of Benzamides and Isoindolines Designed as SARS‐CoV Protease Inhibitors Effective against SARS‐CoV‐2 JF - ChemMedChem N2 - Inhibition of coronavirus (CoV)‐encoded papain‐like cysteine proteases (PL\(^{pro}\)) represents an attractive strategy to treat infections by these important human pathogens. Herein we report on structure‐activity relationships (SAR) of the noncovalent active‐site directed inhibitor (R)‐5‐amino‐2‐methyl‐N‐(1‐(naphthalen‐1‐yl)ethyl) benzamide (2 b), which is known to bind into the S3 and S4 pockets of the SARS‐CoV PL\(^{pro}\). Moreover, we report the discovery of isoindolines as a new class of potent PL\(^{pro}\) inhibitors. The studies also provide a deeper understanding of the binding modes of this inhibitor class. Importantly, the inhibitors were also confirmed to inhibit SARS‐CoV‐2 replication in cell culture suggesting that, due to the high structural similarities of the target proteases, inhibitors identified against SARS‐CoV PL\(^{pro}\) are valuable starting points for the development of new pan‐coronaviral inhibitors. KW - antiviral agents KW - computational chemistry KW - drug design KW - protease inhibitors KW - structure-activity relationships Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-225700 VL - 16 IS - 2 SP - 340 EP - 354 ER - TY - THES A1 - Sippel, Martin T1 - Computational Structure-based Design Approaches: Targeting HIV-1 Integrase and the Macrophage Infectivity Potentiator of Legionella pneumophila T1 - Computergestütztes strukturbasiertes Design bei HIV-1 Integrase und dem Macrophage Infectivity Potentiator (MIP) von Legionella pneumophila N2 - Die vorliegende Arbeit thematisiert das computergestützte strukturbasierte Design auf dem Gebiet der HIV-1-Integrase und des Macrophage Infectivity Potentiator (MIP) von Legionella pneumophila. Die durchgeführten Studien geben wertvolle Aufschlüsse über den Wirk-mechanismus einer bekannten Integrase-Inhibitorenklasse and zeigt darüber hinaus einen neuartigen Ansatz zur Integrase-Inhibition auf. Im Falle des MIP-Enzyms konnten zwei niedermolekulare Inhibitoren ermittelt werden. Die Integrase-Studien ergaben wertvolle Informationen im Hinblick auf das Design neuer Inhibitoren. Docking-Experimente konnten die Hypothese weiter untermauern, nach der die Klasse der Diketosäure-Inhibitoren nicht als freie Liganden, sondern als Metallion-Komplexe an das aktive Zentrum der Integrase binden. Die Ergebnisse dieser Studie helfen dabei, das Verständnis über den Wirkmechanismus dieser wichtigen Klasse von Integrase-Inhibitoren weiter zu vertiefen. Um der Entwicklung von Integrase-Inhibitoren einen neuen Impuls zu geben, wurde eine neue Strategie zur Inhibition dargelegt: Anstatt an das aktive Zentrum soll eine neue Inhibitor-Klasse an das Dimerisierungs-Interface eines Integrase-Monomers binden, die katalytisch notwendige Dimerisierung verhindern und somit die enzymatische Aktivität stören. Das Hauptproblem hierbei bestand in den fehlenden Strukturdaten des freien Monomers. Hierzu wurden Molekulardynamik-Simulationen durchgeführt, um nähere strukturelle Informationen zu erhalten. Momentaufnahmen unterschiedlicher Konformationen dienten als Input-Strukturen für eine Docking-Studie mit dem peptidischen Inhibitor YFLLKL, um dessen Bindemodus aufzuklären. Hierbei zeigte sich, dass dieser Ligand an eine Interface-Konformation bindet, die durch eine Y-förmige Bindestelle charakterisiert ist. Im nächsten Schritt sollte diese Protein-Konformation mit kleinen, nicht-peptidischen Molekülen adressiert werden. Die erste Strategie bestand darin, ein Pharmakophor-Modell zu erstellen, das zur Suche nach Molekülen mit einer guten Komplementarität zur Y-förmigen Bindetasche geeignet ist. Das folgende virtuelle Screening ergab zehn Verbindungen, die eine gute Komplementarität und günstige hydrophobe Wechselwirkungen aufwiesen. Leider zeigte keine der Verbindungen eine reproduzierbare Aktivität im Integrase-Assay. Hierbei verbleiben jedoch gewisse Zweifel, da in dem Assay die Zugabe von BSA vorgeschrieben war, das möglicherweise die hydrophoben Inhibitor-Kandidaten gebunden hat. Die erwähnte erste Strategie wurde überdacht: In einem zweiten Ansatz galt die Hauptaufmerksamkeit der Absättigung von wasserstoffbrückenbildenden Resten. Diese waren zuvor von den eher hydrophoben Verbindungen nicht optimal abgesättigt worden. Zwei Pharmakophor-Modelle wurden erstellt und in einem virtuellen Screening eingesetzt: Docking-Studien der Hits zeigten jedoch, dass nach wie vor viele wasserstoffbrückenbildende Reste des Proteins nicht vom Liganden abgesättigt wurden. Nach abschließender eingehender Betrachtung der Bindemoden der verbliebenen Moleküle aus dem virtuellen Screening konnten nur acht für weitere Testungen ausgewählt werden (Ergebnisse der experimentellen Testung durch Kooperationspartner stehen noch aus). Diese geringe „Ausbeute“ an geeigneten Verbindungen für das Integrase-Dimerisierungsinterface zeigt, wie schwer dieses Target zu adressieren ist: Das Interface weist eine schnell wechselnde Abfolge von basischen, sauren und hydrophoben Resten auf. Im Gegensatz zu anderen Protein-Protein-Interfaces zeigt das Integrase-Interface keine „aufgeräumte“ Bindetasche mit klar voneinander getrennten hydrophoben und hydrophilen Bereichen. Für das zweite Enzym, MIP, konnten mit Hilfe des strukturbasierten Designs zwei niedermolekulare Inhibitoren gefunden werden. Beide Verbindungen führten zu einer deutlichen Abnahme der katalytischen Aktivität. Soweit bekannt, sind bisher keinerlei niedermolekulare MIP-Inhibitoren veröffentlicht. Der Vergleich von MIP mit der humanen PPIase FKBP12 zeigte eine größtenteils ähnliche Tasche, die jedoch einen entscheidenden Unterschied aufweist, nämlich in der Orientierung des Restes Tyr109. Die detaillierte Betrachtung der Strukturdaten beider Enzyme konnte schließlich eine Erklärung liefern, warum ein ketoacyl-substituiertes Pipecolinderivat nicht an MIP bindet, ein sulfonsubstituiertes Pipecolinderivat hingegen das Enzym inhibiert. Die Erkenntnisse über das Inhibitoren-Design für Legionella-MIP können auch auf andere Organismen (z.B. Trypanosomen) übertragen werden, bei denen ebenfalls (homologes) MIP ein Pathogenitätsfaktor ist. N2 - In this thesis, computational structure-based design approaches were employed to target the HIV-1 integrase and the macrophage infectivity potentiator (MIP) of Legionella pneumophila. The thesis yields valuable information about the mechanism of action of a known class of integrase inhibitors and a novel approach towards enzyme inhibition, which still is mainly unaddressed in current integrase research. For the MIP enzyme, two small-molecule MIP inhibitors were discovered. The computational studies of HIV-1 integrase have provided valuable information for IN inhibitor design. Docking experiments supported the hypothesis that the well-known diketo acid inhibitors enter the IN active site not as free ligands, but rather as metal complexes. These results help to reveal the mechanism of action of this important class of IN inhibitors.To give an impulse for the development of a novel class of inhibitors, a new strategy towards IN inhibition was introduced: An alternative binding site, the dimerization interface of an IN catalytic core domain monomer, was explored for inhibitor design. The lack of structural data of the free monomer was overcome by extensive MD studies. Snapshots derived from the MD simulation were used as protein input structures in a docking study with the inhibitory peptide YFLLKL to reveal its potential binding mode. The docking procedure showed that the peptidic ligand binds to a dimerization interface conformation which shows a Y-shaped binding site.. The next step was to address this protein conformation with small, non-peptidic molecules. The first strategy towards finding small-molecule interface binders was to create a pharmacophore model with hydrophobic features and shape constraints, aiming to find molecules with a good complementarity to the Y-shaped dimerization interface. Virtual screening yielded a total of 10 compounds, which all displayed good shape complementarity and favorable hydrophobic interactions. Unfortunately, none of the compounds showed a reproducible inhibitory activity in biological assays. Some doubts remain about the validity of the assay results: The use of BSA was critical, since it is not unlikely that BSA “intercepted” the hydrophobic candidate compounds. The first strategy towards finding small-molecule dimerization inhibitors was reconsidered: In the second approach, the satisfaction of hydrogen bonding residues at the dimerization interface, was of major interest. Two pharmacophore models were employed, which retrieved several hundred hit molecules. However, docking of these molecules showed that still many hydrogen bonding groups of the protein remained unaddressed by the ligands. Eventually, after visual inspection, only eight molecules were selected as candidate compounds for further testing (results pending). This small “yield” underlines the difficulties in finding interface binders: The IN dimerization interface is a peculiar target with frequently alternating basic, acidic, and hydrophobic residues. It is not a well-ordered binding site with continuous hydrophobic areas and distinct hydrogen bond donors / acceptors. Other protein-protein interfaces show such well-ordered binding sites. Accordingly, the peculiarity of the IN dimerization interface, in addition to the delicate task of disrupting protein-protein interactions at all, makes the development of IN dimerization inhibitors very challenging. For MIP, the studies revealed two experimentally validated MIP inhibitors, which significantly reduce MIP enzymatic activity. To our knowledge, no small-molecule MIP inhibitor has been reported in the literature so far. A detailed analysis of the available structural data of MIP and a comparison to the human PPIase counterpart, FKBP12, pointed out a conformational diversity among the MIP structures and a crucial difference between the two PPIases, which could be traced to mainly one residue (Tyr109). The detailed comparison of FKBP12 and MIP complex structures made it possible to give an explanation, why a ketoacyl-substituted pipecoline derivative most probably does not bind to MIP, but a sulfone-substituted pipecoline derivative does bind to MIP. Knowledge of Legionella MIP inhibitors could be transferred also to other organisms (e.g. trypanosoms), where homologous MIP proteins are also pathological factors. KW - Legionella pneumophila KW - Integrasen KW - HIV KW - Arzneimitteldesign KW - Molekulardesign KW - Legionärskrankheit KW - Arzneimitteldesign KW - Molecular modelling KW - HIV KW - Legionnaires' Disease KW - drug design Y1 - 2010 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-51247 ER - TY - JOUR A1 - Kruse, N. A1 - Tony, H. P. A1 - Sebald, Walter T1 - Conversion of human interleukin-4 into a high affinity antagonist by a single amino acid replacement N2 - lnterleukin-4 (IL-4) represents a prototypic lymphokine (for a recent review see Paul, 1991). It promotes differentiation of B-cells and the proliferation of T- and B-cell, and other cell types of the lymphoid system. An antagonist of human IL-4 was discovered during the studies presented here after Tyr124 of the recombinant proteinbad been substituted by an aspartic acid residue. This IL-4 variant, Y124D, bound with high affinity to the IL-4 receptor (K\(_D\) = 310 pM), but retained no detectable proliferative activity for T -<:ells and inhibited IL-4-dependent T -cell proliferation competitively (K\(_i\) = 620 pM). The loss of efficacy in variant Y124D was estimated to be > 100-fold on the basis of a weak partial agonist activity for the very sensitive induction of CD23 positive B-cells. The subsitution of Tyr124 by either phenylalanine, histidine, asparagine, Iysine or glycine resulted in partial agonist variants with unaltered receptor binding atTmity and relatively small deficiencies in efficacy. These results demoostrate that high affinity binding and signal generation can be uncoupled efticiently in a Iigand of a receptor betonging to the recently identified hematopoietin receptor family. In addition we show for the first time, that a powerful antagonist acting on the IL-4 receptor system can be derived from the IL-4 protein. KW - Biochemie KW - drug design KW - partial agonists KW - receptor signalling Y1 - 1992 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-62469 ER - TY - JOUR A1 - Bencurova, Elena A1 - Gupta, Shishir K. A1 - Sarukhanyan, Edita A1 - Dandekar, Thomas T1 - Identification of antifungal targets based on computer modeling JF - Journal of Fungi N2 - Aspergillus fumigatus is a saprophytic, cosmopolitan fungus that attacks patients with a weak immune system. A rational solution against fungal infection aims to manipulate fungal metabolism or to block enzymes essential for Aspergillus survival. Here we discuss and compare different bioinformatics approaches to analyze possible targeting strategies on fungal-unique pathways. For instance, phylogenetic analysis reveals fungal targets, while domain analysis allows us to spot minor differences in protein composition between the host and fungi. Moreover, protein networks between host and fungi can be systematically compared by looking at orthologs and exploiting information from host–pathogen interaction databases. Further data—such as knowledge of a three-dimensional structure, gene expression data, or information from calculated metabolic fluxes—refine the search and rapidly put a focus on the best targets for antimycotics. We analyzed several of the best targets for application to structure-based drug design. Finally, we discuss general advantages and limitations in identification of unique fungal pathways and protein targets when applying bioinformatics tools. KW - Aspergillus KW - metabolic pathways KW - computational modelling KW - drug design Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-197670 SN - 2309-608X VL - 4 IS - 3 ER - TY - JOUR A1 - Barthels, Fabian A1 - Marincola, Gabriella A1 - Marciniak, Tessa A1 - Konhäuser, Matthias A1 - Hammerschmidt, Stefan A1 - Bierlmeier, Jan A1 - Distler, Ute A1 - Wich, Peter R. A1 - Tenzer, Stefan A1 - Schwarzer, Dirk A1 - Ziebuhr, Wilma A1 - Schirmeister, Tanja T1 - Asymmetric Disulfanylbenzamides as Irreversible and Selective Inhibitors of Staphylococcus aureus Sortase A JF - ChemMedChem N2 - Staphylococcus aureus is one of the most frequent causes of nosocomial and community‐acquired infections, with drug‐resistant strains being responsible for tens of thousands of deaths per year. S. aureus sortase A inhibitors are designed to interfere with virulence determinants. We have identified disulfanylbenzamides as a new class of potent inhibitors against sortase A that act by covalent modification of the active‐site cysteine. A broad series of derivatives were synthesized to derive structure‐activity relationships (SAR). In vitro and in silico methods allowed the experimentally observed binding affinities and selectivities to be rationalized. The most active compounds were found to have single‐digit micromolar Ki values and caused up to a 66 % reduction of S. aureus fibrinogen attachment at an effective inhibitor concentration of 10 μM. This new molecule class exhibited minimal cytotoxicity, low bacterial growth inhibition and impaired sortase‐mediated adherence of S. aureus cells. KW - antibiotics KW - biofilm KW - drug design KW - sortase A Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-214581 VL - 15 IS - 10 SP - 839 EP - 850 ER - TY - JOUR A1 - Bajda, Marek A1 - Wieckowska, Anna A1 - Hebda, Michalina A1 - Guzior, Natalia A1 - Sotriffer, Christoph A. A1 - Malawska, Barbara T1 - Structure-Based Search for New Inhibitors of Cholinesterases JF - International Journal of Molecular Sciences N2 - Cholinesterases are important biological targets responsible for regulation of cholinergic transmission, and their inhibitors are used for the treatment of Alzheimer’s disease. To design new cholinesterase inhibitors, of different structure-based design strategies was followed, including the modification of compounds from a previously developed library and a fragment-based design approach. This led to the selection of heterodimeric structures as potential inhibitors. Synthesis and biological evaluation of selected candidates confirmed that the designed compounds were acetylcholinesterase inhibitors with \(IC_{50}\) values in the mid-nanomolar to low micromolar range, and some of them were also butyrylcholinesterase inhibitors. KW - fragment-based design KW - cholinesterases inhibitors KW - butyrylcholinesterase KW - acetylcholinesterase KW - drug design Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-129423 VL - 14 IS - 3 ER -