TY - JOUR A1 - Wohlgemuth, Matthias A1 - Mitric, Roland T1 - Photochemical Chiral Symmetry Breaking in Alanine JF - Journal of Physical Chemistry A N2 - We introduce a general theoretical approach for the simulation of photochemical dynamics under the influence of circularly polarized light to explore the possibility of generating enantiomeric enrichment through polarized-light-selective photochemistry. The method is applied to the simulation of the photolysis of alanine, a prototype chiral amino acid. We show that a systematic enantiomeric enrichment can be obtained depending on the helicity of the circularly polarized light that induces the excited-state photochemistry of alanine. By analyzing the patterns of the photoinduced fragmentation of alanine we find an inducible enantiomeric enrichment up to 1.7%, which is also in good correspondence to the experimental findings. Our method is generally applicable to complex systems and might serve to systematically explore the photochemical origin of homochirality. KW - circularly-polarized light KW - amino-acids KW - homochirality KW - molecular dynamics KW - dichroism Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-158557 UR - https://pubs.acs.org/doi/10.1021/acs.jpca.6b07611 N1 - This document is the Accepted Manuscript version of a Published Work that appeared in final form in Journal of Physical Chemistry A, copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see https://pubs.acs.org/doi/10.1021/acs.jpca.6b07611 VL - 45 IS - 120 ER - TY - JOUR A1 - Shityakov, Sergey A1 - Salvador, Ellaine A1 - Pastorin, Giorgia A1 - Förster, Carola T1 - Blood-brain barrier transport studies, aggregation, and molecular dynamics simulation of multiwalled carbon nanotube functionalized with fluorescein isothiocyanate JF - International Journal of Nanomedicine N2 - In this study, the ability of a multiwalled carbon nanotube functionalized with fluorescein isothiocyanate (MWCNT-FITC) was assessed as a prospective central nervous system-targeting drug delivery system to permeate the blood-brain barrier. The results indicated that the MWCNT-FITC conjugate is able to penetrate microvascular cerebral endothelial monolayers; its concentrations in the Transwell® system were fully equilibrated after 48 hours. Cell viability test, together with phase-contrast and fluorescence microscopies, did not detect any signs of MWCNT-FITC toxicity on the cerebral endothelial cells. These microscopic techniques also revealed presumably the intracellular localization of fluorescent MWCNT-FITCs apart from their massive nonfluorescent accumulation on the cellular surface due to nanotube lipophilic properties. In addition, the 1,000 ps molecular dynamics simulation in vacuo discovered the phenomenon of carbon nanotube aggregation driven by van der Waals forces via MWCN-TFITC rapid dissociation as an intermediate phase. KW - endothelial cells KW - cytotoxicity KW - blood-brain barrier KW - fluorescein isothiocyanate KW - aggregation KW - molecular dynamics KW - fluorescence microscopy KW - Transwell® system KW - multiwalled carbon nanotube KW - mice Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-149233 VL - 10 ER - TY - JOUR A1 - Sarukhanyan, Edita A1 - Shityakov, Sergey A1 - Dandekar, Thomas T1 - Rational drug design of Axl tyrosine kinase type I inhibitors as promising candidates against cancer JF - Frontiers in Chemistry N2 - The high level of Axl tyrosine kinase expression in various cancer cell lines makes it an attractive target for the development of anti-cancer drugs. In this study, we carried out several sets of in silico screening for the ATP-competitive Axl kinase inhibitors based on different molecular docking protocols. The best drug-like candidates were identified, after parental structure modifications, by their highest affinity to the target protein. We found that our newly designed compound R5, a derivative of the R428 patented analog, is the most promising inhibitor of the Axl kinase according to the three molecular docking algorithms applied in the study. The molecular docking results are in agreement with the molecular dynamics simulations using the MM-PBSA/GBSA implicit solvation models, which confirm the high affinity of R5 toward the protein receptor. Additionally, the selectivity test against other kinases also reveals a high affinity of R5 toward ABL1 and Tyro3 kinases, emphasizing its promising potential for the treatment of malignant tumors. KW - Axl tyrosine kinase KW - anti-cancer drug-like molecules KW - rational drug design KW - molecular docking KW - molecular dynamics Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-199505 SN - 2296-2646 VL - 7 IS - 920 ER - TY - JOUR A1 - Sarukhanyan, Edita A1 - Shityakov, Sergey A1 - Dandekar, Thomas T1 - In silico designed Axl receptor blocking drug candidates against Zika virus infection JF - ACS Omega N2 - After a large outbreak in Brazil, novel drugs against Zika virus became extremely necessary. Evaluation of virus-based pharmacological strategies concerning essential host factors brought us to the idea that targeting the Axl receptor by blocking its dimerization function could be critical for virus entry. Starting from experimentally validated compounds, such as RU-301, RU-302, warfarin, and R428, we identified a novel compound 2′ (R428 derivative) to be the most potent for this task amongst a number of alternative compounds and leads. The improved affinity of compound 2′ was confirmed by molecular docking as well as molecular dynamics simulation techniques using implicit solvation models. The current study summarizes a new possibility for inhibition of the Axl function as a potential target for future antiviral therapies. KW - free energy KW - molecular docking KW - molecular dynamics KW - simulation KW - pharmacology KW - proteins KW - structure-activity relationship KW - viruses KW - Zika virus Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-176739 VL - 3 IS - 5 ER - TY - JOUR A1 - Quast, Helmut A1 - Gescheidt, Georg A1 - Spichty, Martin T1 - Topological dynamics of a radical ion pair: Experimental and computational assessment at the relevant nanosecond timescale JF - Chemistry N2 - Chemical processes mostly happen in fluid environments where reaction partners encounter via diffusion. The bimolecular encounters take place at a nanosecond time scale. The chemical environment (e.g., solvent molecules, (counter)ions) has a decisive influence on the reactivity as it determines the contact time between two molecules and affects the energetics. For understanding reactivity at an atomic level and at the appropriate dynamic time scale, it is crucial to combine matching experimental and theoretical data. Here, we have utilized all-atom molecular-dynamics simulations for accessing the key time scale (nanoseconds) using a QM/MM-Hamiltonian. Ion pairs consisting of a radical ion and its counterion are ideal systems to assess the theoretical predictions because they reflect dynamics at an appropriate time scale when studied by temperature-dependent EPR spectroscopy. We have investigated a diketone radical anion with its tetra-ethylammonium counterion. We have established a funnel-like transition path connecting two (equivalent) complexation sites. The agreement between the molecular-dynamics simulation and the experimental data presents a new paradigm for ion–ion interactions. This study exemplarily demonstrates the impact of the molecular environment on the topological states of reaction intermediates and how these states can be consistently elucidated through the combination of theory and experiment. We anticipate that our findings will contribute to the prediction of bimolecular transformations in the condensed phase with relevance to chemical synthesis, polymers, and biological activity. KW - ion pairing KW - radical anion KW - kinetics KW - thermodynamics KW - molecular dynamics KW - QM/MM KW - EPR Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-285195 SN - 2624-8549 VL - 2 IS - 2 SP - 219 EP - 230 ER - TY - THES A1 - Merget, Benjamin T1 - Computational methods for assessing drug-target residence times in bacterial enoyl-ACP reductases and predicting small-molecule permeability for the \(Mycobacterium\) \(tuberculosis\) cell wall T1 - Computermethoden zur Bestimmung von Protein-Ligand Verweilzeiten in bakteriellen Enoyl-ACP Reduktasen und Vorhersage der Permeabilitätswahrscheinlichkeit kleiner Moleküle gegenüber der \(Mycobacterium\) \(tuberculosis\) Zellwand N2 - \textbf{Molecular Determinants of Drug-Target Residence Times of Bacterial Enoyl-ACP Reductases.} Whereas optimization processes of early drug discovery campaigns are often affinity-driven, the drug-target residence time $t_R$ should also be considered due to an often strong correlation with \textit{in vivo} efficacy of compounds. However, rational optimization of $t_R$ is not straightforward and generally hampered by the lack of structural information about the transition states of ligand association and dissociation. The enoyl-ACP reductase FabI of the fatty acid synthesis (FAS) type II is an important drug-target in antibiotic research. InhA is the FabI enzyme of \textit{Mycobacterium tuberculosis}, which is known to be inhibited by various compound classes. Slow-onset inhibition of InhA is assumed to be associated with the ordering of the most flexible protein region, the substrate binding loop (SBL). Diphenylethers are one class of InhA inhibitors that can promote such SBL ordering, resulting in long drug-target residence times. Although these inhibitors are energetically and kinetically well characterized, it is still unclear how the structural features of a ligand affect $t_R$. Using classical molecular dynamics (MD) simulations, recurring conformational families of InhA protein-ligand complexes were detected and structural determinants of drug-target residence time of diphenyl\-ethers with different kinetic profiles were described. This information was used to deduce guidelines for efficacy improvement of InhA inhibitors, including 5'-substitution on the diphenylether B-ring. The validity of this suggestion was then analyzed by means of MD simulations. Moreover, Steered MD (SMD) simulations were employed to analyze ligand dissociation of diphenylethers from the FabI enzyme of \textit{Staphylococcus aureus}. This approach resulted in a very accurate and quantitative linear regression model of the experimental $ln(t_R)$ of these inhibitors as a function of the calculated maximum free energy change of induced ligand extraction. This model can be used to predict the residence times of new potential inhibitors from crystal structures or valid docking poses. Since correct structural characterization of the intermediate enzyme-inhibitor state (EI) and the final state (EI*) of two-step slow-onset inhibition is crucial for rational residence time optimization, the current view of the EI and EI* states of InhA was revisited by means of crystal structure analysis, MD and SMD simulations. Overall, the analyses affirmed that the EI* state is a conformation resembling the 2X23 crystal structure (with slow-onset inhibitor \textbf{PT70}), whereas a twist of residues Ile202 and Val203 with a further opened helix $\alpha 6$ corresponds to the EI state. Furthermore, MD simulations emphasized the influence of close contacts to symmetry mates in the SBL region on SBL stability, underlined by the observation that an MD simulation of \textbf{PT155} chain A with chain B' of a symmetry mate in close proximity of the SBL region showed significantly more stable loops, than a simulation of the tetrameric assembly. Closing Part I, SMD simulations were employed which allow the delimitation of slow-onset InhA inhibitors from rapid reversible ligands. \textbf{Prediction of \textit{Mycobacterium tuberculosis} Cell Wall Permeability.} The cell wall of \textit{M. tuberculosis} hampers antimycobacterial drug design due to its unique composition, providing intrinsic antibiotic resistance against lipophilic and hydrophilic compounds. To assess the druggability space of this pathogen, a large-scale data mining endeavor was conducted, based on multivariate statistical analysis of differences in the physico-chemical composition of a normally distributed drug-like chemical space and a database of antimycobacterial--and thus very likely permeable--compounds. The approach resulted in the logistic regression model MycPermCheck, which is able to predict the permeability probability of small organic molecules based on their physico-chemical properties. Evaluation of MycPermCheck suggests a high predictive power. The model was implemented as a freely accessible online service and as a local stand-alone command-line version. Methodologies and findings from both parts of this thesis were combined to conduct a virtual screening for antimycobacterial substances. MycPermCheck was employed to screen the chemical permeability space of \textit{M. tuberculosis} from the entire ZINC12 drug-like database. After subsequent filtering steps regarding ADMET properties, InhA was chosen as an exemplary target. Docking to InhA led to a principal hit compound, which was further optimized. The quality of the interaction of selected derivatives with InhA was subsequently evaluated using MD and SMD simulations in terms of protein and ligand stability, as well as maximum free energy change of induced ligand egress. The results of the presented computational experiments suggest that compounds with an indole-3-acethydrazide scaffold might constitute a novel class of InhA inhibitors, worthwhile of further investigation. N2 - \textbf{Molekulare Determinanten von Wirkstoff-Angriffsziel Verweilzeiten bakterieller Enoyl-ACP Reduktasen.} In frühen Phasen der Wirkstoffentwicklung sind Optimierungsprozesse häufig affini\-täts\-geleitet. Darüber hinaus sollte zusätzlich die Wirkstoff-Angriffsziel Verweilzeit $t_R$ berücksichtigt werden, da diese oft eine starke Korrelation zur \textit{in vivo} Wirksamkeit der Substanzen aufweist. Rationale Optimierung von $t_R$ ist jedoch auf Grund eines Mangels an struktureller Information über den Übergangszustand der Ligandbindung und Dissoziierung nicht einfach umsetzbar. Die Enoyl-ACP Reduktase FabI der Fettsäurebio\-synthese (FAS) Typ II ist ein wichtiger Angriffspunkt in der Antibiotikaforschung. InhA ist das FabI Enzym des Organismus \textit{Mycobacterium tuberculosis} und kann durch Substanzen diverser Klassen gehemmt werden. Es wird vermutet, dass Hemmung von InhA durch langsam-bindende (``slow-onset'') Inhibitoren mit der Ordnung der flexibelsten Region des Enzyms assoziiert ist, dem Substratbindungsloop (SBL). Diphenylether sind eine InhA Inhibitorenklasse, die eine solche SBL Ordnung fördern und dadurch lange Verweilzeiten im Angriffsziel aufweisen. Obwohl diese Inhibitoren energetisch und kinetisch gut charakterisiert sind, ist noch immer unklar, wie die strukturellen Eigenschaften eines Liganden $t_R$ beeinflussen. Durch die Verwendung klassischer Molekulardynamik (MD) Simulationen wurden wiederkehrende Konformationsfamilien von InhA Protein-Ligand Komplexen entdeckt und strukturelle Determinanten der Wirkstoff-Angriffsziel Verweilzeit von Diphenylethern mit verschiedenen kinetischen Profilen beschrieben. Anhand dieser Ergebnisse wurden Richtlinien zur Wirksamkeitsoptimierung von InhA Inhibitoren abgeleitet, einschließlich einer 5'-Substitution am Diphenylether B-Ring. Die Validität dieses Vorschlags wurde mittels MD Simulationen nachfolgend analysiert. Darüber hinaus wurden ``Steered MD'' (SMD) Simulationen als MD Technik für umfangreicheres Sampling verwendet um die Liganddissoziation von Diphenylethern aus dem FabI Enzym von \textit{Staphylococcus aureus} zu untersuchen. Dieser Ansatz resultierte in einem sehr akkuraten, quantitativen linearen Regressionsmodell der experimentellen Verweilzeit $ln(t_R)$ dieser Inhibitoren als Funktion der berechneten maximalen freien Energieänderung induzierter Ligandextraktion. Dieses Modell kann genutzt werden um die Verweilzeiten neuer potentieller Inhibitoren aus Kristallstrukturen oder validen Dockingposen vorherzusagen. Die korrekte strukturelle Charakterisierung des intermediären und des finalen Zustandes (EI und EI*-Zustand) eines Enzym-Inhibitor Komplexes bei einem zweistufigen Inhibitionsmechanismus durch langsam-bindende Hemmstoffe ist essentiell für rationale Verweilzeitoptimierung. Daher wurde die gegenwärtige Ansicht des EI und EI*-Zustandes von InhA mittels Kristallstrukturanalyse, MD und SMD Simulationen erneut aufgegriffen. Insgesamt bestätigten die Analysen, dass der EI*-Zustand einer Konformation ähnlich der 2X23 Kristallstruktur (mit langsam-bindenden Inhibitor \textbf{PT70}) gleicht, während eine Drehung der Reste Ile202 und Val203 mit einer weiter geöffneten Helix $\alpha 6$ dem EI-Zustand entspricht. Des Weiteren zeigten MD Simulationen den Einfluss naher Kristallkontakte zu Symmetrie-Nachbarn in der SBL Region auf die SBL Stabilität. Dies wird durch die Beobachtung hervorgehoben, dass die Ketten A und B' eines InhA-\textbf{PT155}-Komplexes und des angrenzenden Symmetrie-Nachbars, welche in engem Kontakt in der SBL Region stehen, signifikant stabilere SBLs aufweisen, als die Ketten A und B in einer Simulation des Tetramers. Zum Abschluss von Teil I wurden SMD Simulationen angewandt, auf deren Basis es möglich war, langsam-bindende InhA Inhibitoren von schnell-reversiblen (``rapid reversible'') Liganden zu unterscheiden. \textbf{Vorhersage von \textit{Mycobacterium tuberculosis} Zellwand Permeabilität.} Die Zellwand von \textit{M.~tuberculosis} erschwert die antimycobakterielle Wirkstofffindung auf Grund ihrer einzigartigen Zusammensetzung und bietet eine intrinsische Antibiotikaresistenz gegenüber lipophilen und hydrophilen Substanzen. Um den chemischen Raum wirkstoffähnlicher Moleküle gegen diesen Erreger (``Druggability Space'') einzugrenzen, wurde eine groß angelegte Dataminingstudie durchgeführt, welche auf multivariater statistischer Analyse der Unterschiede der physikochemischen Zusammensetzung eines normalverteilten wirkstoffähnlichen chemischen Raumes und einer Datenbank von antimycobakteriellen -- und somit höchstwahrscheinlich permeablen -- Substanzen beruht. Dieser Ansatz resultierte in dem logistischen Regressionsmodell MycPermCheck, welches in der Lage ist die Permeabilitätswahrscheinlichkeit kleiner organischer Moleküle anhand ihrer physikochemischen Eigenschaften vorherzusagen. Die Evaluation von MycPermCheck deutet auf eine große Vorhersagekraft hin. Das Modell wurde als frei zugänglicher online Service und als lokale Kommandozeilenversion implementiert. Methodiken und Ergebnisse aus beiden Teilen dieser Dissertation wurden kombiniert um ein virtuelles Screening nach antimycobakteriellen Substanzen durchzuführen. Myc\-PermCheck wurde verwendet um den chemischen Permeabilitätsraum von \textit{M.~tuberculosis} anhand der gesamten ZINC12 Datenbank wirkstoffähnlicher Moleküle abzuschätzen. Nach weiteren Filterschritten mit Bezug auf ADMET Eigenschaften, wurde InhA als exemplarisches Angriffsziel ausgewählt. Docking nach InhA führte schließlich zu einer Treffersubstanz, welche in darauffolgenden Schritten weiter optimiert wurde. Die Interaktionsqualität ausgewählter Derivate mit InhA wurde daraufhin mittels MD und SMD Simulationen in Bezug auf Protein und Ligand Stabilität, sowie auch der maximalen freien Energieänderung induzierter Ligandextraktion, untersucht. Die Ergebnisse der vorgestellten computerbasierten Experimente legen nahe, dass Substanzen mit einem Indol-3-Acethydrazid Gerüst eine neuartige Klasse von InhA Inhibitoren darstellen könnten. Weiterführende Untersuchungen könnten sich somit als lohnenswert erweisen. KW - Computational chemistry KW - Arzneimitteldesign KW - Molekulardynamik KW - Permeabilität KW - Tuberkelbakterium KW - Computational drug-design KW - steered molecular dynamics KW - molecular dynamics KW - residence time KW - mycobacterium tuberculosis KW - staphylococcus aureus KW - permeability KW - InhA KW - FabI KW - Enoyl-acyl-carrier-protein-Reductase KW - Drug design KW - Computational chemistry Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-127386 ER - TY - THES A1 - Le, Thien Anh T1 - Theoretical investigations of proton transfer and interactions or reactions of covalent and non-covalent inhibitors in different proteins T1 - Theoretische Untersuchungen des Protontransfers und Interaktion oder Reaktion von kovalenten und nicht-kovalenten Inhibitoren in verschiedenen Proteinen N2 - Nowadays, computational-aided investigations become an essential part in the chemical, biochemical or pharmaceutical research. With increasing computing power, the calculation of larger biological systems becomes feasible. In this work molecular mechanical (MM) and quantum mechanical approaches (QM) and the combination of both (QM/MM) have been applied to study several questions which arose from different working groups. Thus, this work comprises eight different subjects which deals with chemical reactions or proton transfer in enzymes, conformational changes of ligands or proteins and verification of experimental data. This work firstly deals with reaction mechanisms of aromatic inhibitors of cysteine proteases which can be found in many organisms. These enzymes are responsible for various cancer or diseases as for example Human African Trypanosomiasis (HAT) or the Chagas disease. Aromatic SNAr-type electrophiles might offer a new possibility to covalently modify these proteases. Quantum mechanical calculations have been performed to gain insights into the energetics and possible mechanisms. The next chapter also deals with Trypanosomiasis but the focus was set on a different enzyme. The particularity of Trypanosomiasis is the thiol metabolism which can also be modified by covalent inhibitors. In this context, the wild type and point mutations of the enzyme tryparedoxin have been investigated via molecular dynamic (MD) simulations to examine the influence of specific amino acids in regard to the inhibitor. Experimental data showed that a dimerization of the enzyme occurs if the inhibitor is present. Simulations revealed that the stability of the dimer decreases in absence of the inhibitor and thus confirms these experiments. Further investigations concerning cysteine proteases such as cruzain and rhodesain have been conducted with respect to experimental kinetic data of covalent vinylsulfone inhibitors. Several approaches such as QM or QM/MM calculations and docking, MD or MMPBSA/MMGBSA simulations have been applied to reproduce these data. The utilization of force field approaches resulted in a qualitatively accurate prediction. The kinase AKT is involved in a range of diseases and plays an important role in the formation of cancer. Novel covalent-allosteric inhibitors have been developed and crystallized in complex with AKT. It was shown that depending on the inhibitor a different cysteine residue is modified. To investigate these differences in covalent modification computational simulations have been applied. Enoyl-(acyl carrier) (ENR) proteins are essential in the last step of the fatty acid biosynthesis II (FAS) and represent a good target for inhibition. The diphenylether inhibitor SKTS1 which was originally designed to target the ENR’s of Staphylococcus aureus was also crystallized in InhA, the ENR of Mycobacterium tuberculosis (TB). Crystal structures indicate a change of the inhibitor's tautomeric form. This subject was investigated via MD simulations. Results of these simulations confirmed the tautomerization of the inhibitor. This work also deals with the development of a covalent inhibitor originating from a non-covalent ligand. The target FadA5 is an essential enzyme for the degradation of steroids in TB and is responsible for chronic tuberculosis. This enzyme was crystallized in complex with a non-covalent ligand which served as starting point for this study. Computations on QM or QM/MM level and docking and MD simulations have been applied to evaluate potential candidates. The next chapter focuses on the modification of the product spectrum of Bacillus megaterium levansucrase, a polymerase which catalyzes the biosynthesis of fructans. The covalent modification of the wild type or mutants of the enzyme lead to an accumulation of oligosaccharides but also to polymers with higher polymerization degree. To understand these changes in product spectra MD simulations have been performed. Finally, the proton transfer in catalytic cysteine histidine dyads was investigated. The focus was set on the influence of the relaxation of the protein environment to the reaction. Calculations of the enzymes FadA5 and rhodesain revealed that the preferred protonation state of the dyade depends on the protein environment and has an impact on the reaction barrier. Furthermore, the adaptation of the environment to a fixed protonation state was analyzed via MD simulations. N2 - Heutzutage sind computergestützte Untersuchungen ein essentieller Teil in der chemischen, biochemischen oder pharmazeutischen Forschung. Durch die in den Jahren gestiegene Rechenleistung ist die Berechnung biologischer Systeme möglich. Im Rahmen dieser Arbeit wurden molekularmechanische (MM) und quantenmechanische (QM) Methoden sowie die Kombination beider (QM/MM) für verschiedene Studien eingesetzt, die teilweise aus Fragestellungen verschiedener Arbeitsgruppen hervorgegangen sind. Dadurch umfasst diese Arbeit acht verschiedene Themenkomplexe, bei denen chemische Reaktionen, aber auch der Protonentransfer in Enzymen, Konformationsänderungen von Liganden oder Proteinen und die Verifizierung experimenteller Daten im Fokus standen. Die Arbeit befasst sich anfangs mit Reaktionsmechansimen aromatischer Inhibitoren für Cysteinproteasen, Enzyme, welche in vielen Organismen enthalten sind. Diese Enzyme sind für verschiedene Karzinome oder Krankheiten wie der Afrikanischen Trypanosomiasis oder der Chagas-Krankheit verantwortlich. Aromatische SNAr-Elektrophile bieten hierbei eine neue Möglichkeit der kovalenten Modifikation dieser Proteasen. Quantenmechanische wurden durchgeführt, um Einblicke in die Energetik und mögliche Mechanismen zu erhalten. Das nächste Kapitel befasst sich ebenfalls mit Trypanosomiasis, setzt aber den Fokus auf ein anderes Enzym. Die Besonderheit von Trypanosomiasis ist der Thiol Metabolismus, welcher durch kovalente Inhibitoren modifiziert werden kann. In diesem Kontext wurden der Wildtyp und Punktmutationen des Enzyms Tryparedoxin mittels Molekulardynamik Simulationen untersucht, um Interaktionen einzelner Aminosäuren mit dem kovalenten Inhibitor zu evaluieren. Experimentelle Daten zeigten, dass eine Dimerisierung des Enzyms in Anwesenheit des Inhibitors stattfindet. Durch MD-Simulationen konnte gezeigt werden, dass die Stabilität des Dimers in Abwesenheit des Inhibitors sinkt, wodurch experimentellen Daten bestätigt wurden. Weitere Untersuchungen zu Cysteinproteasen wie Cruzain und Rhodeasin wurden durchgeführt, um experimentelle kinetische Daten von kovalenten Vinylsulfon Inhibitoren zu reproduzieren. Hierbei wurden Methoden wie QM oder QM/MM Rechnungen aber auch Docking, MD und MMPBSA/MMGBSA Simulationen angewandt, um diese Daten zu reproduzieren. In den Untersuchungen zeigte sich, dass die Verwendung der Kraftfeld-basierten Methoden zu qualitativ richtigen Vorhersagen führte. Die Kinase AKT ist in einer Reihe von Krankheiten involviert und spielt eine wichtige Rolle bei der Entstehung von Krebs. Neue kovalent-allosterische Inhibitoren wurden entwickelt und im kovalenten Komplex mit AKT kristallisiert. Die Kristallstrukturen zeigten, dass je nach Inhibitor ein anderes Cystein adressiert wurde. Um diese Unterschiede zu untersuchen, wurden computergestützte Simulationen verwendet. Enoyl-(acyl carrier) (ENR) Proteine sind essentiell für den letzten Schritt in der Fettsäurebiosynthese II (FAS) und bilden ein gutes Target zur Inhibition. Der Diphenylether Inhibitor SKTS1, welchen man ursprünglich als Target für den ENR von Staphylococcus aureus entwarf, wurde auch in InhA, dem ENR von Mycobacterium Tuberculosis (TB), kristallisiert. Die Kristallstrukturen weisen je nach Protein auf einen Wechsel der tautomeren Form des Inhibitors hin. Dieser Sachverhalt wurde mittels MD Simulationen untersucht. Hierbei zeigten die Ergebnisse eine Übereinstimmung mit den experimentellen Daten. Diese Arbeit befasst sich ebenfalls mit der Entwicklung eines kovalenten Inhibitors ausgehend von einem nicht-kovalenten Liganden. Das Target FadA5 ist ein integrales Enzym zur Degradation von Steroiden in TB und ist für die chronische Tuberkulose verantwortlich. Dieses Enzym wurde im Komplex mit einem nicht-kovalenten Liganden kristallisiert, welches als Startpunkt dieser Untersuchungen diente. QM, QM/MM, Docking und MD Simulationen wurden hierbei verwandt, um potentielle Kandidaten zu evaluieren. Das nächste Kapitel befasst sich mit der Modifikation des Produktspektrums von Bacillus megaterium Levansucrase, eine Polymerase, welche die Biosynthese von Fruktanen katalysiert. Durch kovalente Modifikatoren im Wildtyp oder bei Mutanten des Enzyms konnte sowohl eine Anreicherung von Oligosacchariden, aber auch von Polymeren mit höherem Polymerisationsgrad erzielt werden. Um diese Änderungen im Produktspektrum zu verstehen, wurden MD Simulationen durchgeführt. Schließlich wurde die Untersuchung des Protonentransfers in katalytischen Cystein Histidin Dyaden durchgeführt. Hierbei stand der Einfluss der Relaxation der Proteinumgebung auf diese Reaktion im Fokus. Berechnungen in den Enzymen FadA5 und Rhodesain zeigten, dass der präferierte Protonierungszustand der Diade von der Proteinumgebung abhängt und einen großen Einfluss auf die Reaktionsbarriere hat. Um dynamische Effekte einzubeziehen, wurde die Adaption der Umgebung auf einen fixierten Protonierungszustand mittels MD Simulationen analysiert. KW - Computational chemistry KW - Molekularbewegung KW - QM/MM KW - proteins KW - covalent and non-covalent inhibitors KW - Protonentransfer KW - Enzyminhibitor KW - molecular dynamics Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-170511 ER - TY - JOUR A1 - Capra, Valérie A1 - Busnelli, Marta A1 - Perenna, Alessandro A1 - Ambrosio, Manuela A1 - Accomazzo, Maria Rosa A1 - Galés, Celine A1 - Chini, Bice A1 - Rovati, G. Enrico T1 - Full and Partial Agonists of Thromboxane Prostanoid Receptor Unveil Fine Tuning of Receptor Superactive Conformation and G Protein Activation JF - PLoS ONE N2 - The intrahelical salt bridge between \(E/D^{3.49}\) and \(R^{3.50}\) within the E/DRY motif on helix 3 (H3) and the interhelical hydrogen bonding between the E/DRY and residues on H6 are thought to be critical in stabilizing the class A G protein-coupled receptors in their inactive state. Removal of these interactions is expected to generate constitutively active receptors. This study examines how neutralization of \(E^{3.49/6.30}\) in the thromboxane prostanoid (TP) receptor alters ligand binding, basal, and agonist-induced activity and investigates the molecular mechanisms of G protein activation. We demonstrate here that a panel of full and partial agonists showed an increase in affinity and potency for E129V and E240V mutants. Yet, even augmenting the sensitivity to detect constitutive activity (CA) with overexpression of the receptor or the G protein revealed resistance to an increase in basal activity, while retaining fully the ability to cause agonist-induced signaling. However, direct G protein activation measured through bioluminescence resonance energy transfer (BRET) indicates that these mutants more efficiently communicate and/or activate their cognate G proteins. These results suggest the existence of additional constrains governing the shift of TP receptor to its active state, together with an increase propensity of these mutants to agonist-induced signaling, corroborating their definition as superactive mutants. The particular nature of the TP receptor as somehow "resistant" to CA should be examined in the context of its pathophysiological role in the cardiovascular system. Evolutionary forces may have favored regulation mechanisms leading to low basal activity and selected against more highly active phenotypes. KW - coupled receptor KW - ligand binding KW - intracellular loop KW - molecular dynamics KW - Beta(1)-adrenergic receptor KW - ionic look KW - Beta(2)-adrenergic receptor KW - crystal structure KW - constitutive activity Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-131013 VL - 8 IS - 3 ER -