TY - JOUR A1 - Ohlebusch, Barbara A1 - Borst, Angela A1 - Frankenbach, Tina A1 - Klopocki, Eva A1 - Jakob, Franz A1 - Liedtke, Daniel A1 - Graser, Stephanie T1 - Investigation of alpl expression and Tnap-activity in zebrafish implies conserved functions during skeletal and neuronal development JF - Scientific Reports N2 - Hypophosphatasia (HPP) is a rare genetic disease with diverse symptoms and a heterogeneous severity of onset with underlying mutations in the ALPL gene encoding the ectoenzyme Tissue-nonspecific alkaline phosphatase (TNAP). Considering the establishment of zebrafish (Danio rerio) as a new model organism for HPP, the aim of the study was the spatial and temporal analysis of alpl expression in embryos and adult brains. Additionally, we determined functional consequences of Tnap inhibition on neural and skeletal development in zebrafish. We show that expression of alpl is present during embryonic stages and in adult neuronal tissues. Analyses of enzyme function reveal zones of pronounced Tnap-activity within the telencephalon and the mesencephalon. Treatment of zebrafish embryos with chemical Tnap inhibitors followed by axonal and cartilage/mineralized tissue staining imply functional consequences of Tnap deficiency on neuronal and skeletal development. Based on the results from neuronal and skeletal tissue analyses, which demonstrate an evolutionary conserved role of this enzyme, we consider zebrafish as a promising species for modeling HPP in order to discover new potential therapy strategies in the long-term. KW - nonspecific alkaline-phosphae KW - in situ hybridization KW - hypophosphatasia KW - promotes KW - model KW - neurotransmission KW - differentiation KW - mineraliztion KW - metabolism KW - vertebrate Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-230024 VL - 10 ER - TY - THES A1 - Backhaus, Philipp T1 - Effects of Transgenic Expression of Botulinum Toxins in Drosophila T1 - Effekte der transgenen Expression von Botulinumtoxinen in Drosophila N2 - Clostridial neurotoxins (botulinum toxins and tetanus toxin) disrupt neurotransmitter release by cleaving neuronal SNARE proteins. We generated transgenic flies allowing for conditional expression of different botulinum toxins and evaluated their potential as tools for the analysis of synaptic and neuronal network function in Drosophila melanogaster by applying biochemical assays and behavioral analysis. On the biochemical level, cleavage assays in cultured Drosophila S2 cells were performed and the cleavage efficiency was assessed via western blot analysis. We found that each botulinum toxin cleaves its Drosophila SNARE substrate but with variable efficiency. To investigate the cleavage efficiency in vivo, we examined lethality, larval peristaltic movements and vision dependent motion behavior of adult Drosophila after tissue-specific conditional botulinum toxin expression. Our results show that botulinum toxin type B and botulinum toxin type C represent effective alternatives to established transgenic effectors, i.e. tetanus toxin, interfering with neuronal and non-neuronal cell function in Drosophila and constitute valuable tools for the analysis of synaptic and network function. N2 - Die verschiedenen Toxine der Bakterienspezies Clostridium (Botulinumtoxine und Tetanustoxin) interferieren mit Neuroexozytose durch Proteolyse der SNARE-Proteine. Wir haben transgene Fliegen generiert, die die Möglichkeit bieten konditional verschiedene Botulinumtoxine zu exprimieren. Durch biochemische Untersuchungen und Verhaltensexperimente haben wir das Potential dieser Toxine als Werkzeuge für die Analyse von Synapsen- und Netzwerkfunktion in Drosophila evaluiert. Durch Western Blot-Analysen stellten wir eine variierende Proteolysierbarkeit der Drosophila SNARE-Substrate durch die verschiedenen Botulinumtoxine dar. In Vivo untersuchten wir die Auswirkungen einer Zell-spezifischen Expression auf die Motorik in Larven und auf die Sehfähigkeit in adulten Fliegen. Unsere Resultate zeigen, dass Botulinumtoxin Typ B und C vielversprechende Alternativen zu etablierten molekularen Werkzeugen, wie Tetanustoxin, darstellen, um synaptische Transmission oder höhere Netzwerkfunktionen aufzuschlüsseln. Hierbei führt Botulinumtoxin Typ B zu einem spezifischen Verlust von neuronaler Aktivität, während Botulinumtoxin Typ C mit nicht Neuronen-spezifischer Zellfunktion interferiert. KW - Botulinustoxin KW - Drosophila KW - Synaptische Transmission KW - Behavioral neuroscience KW - molecular neuroscience KW - neurotoxins KW - SNARE proteins KW - neurotransmission Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-143279 ER -